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Abstract: At present, realizing high-quality automatic welding through online monitoring is a
research focus in engineering applications. In this paper, a CNN–LSTM algorithm is proposed,
which combines the advantages of convolutional neural networks (CNNs) and long short-term
memory networks (LSTMs). The CNN–LSTM algorithm establishes a shallow CNN to extract
the primary features of the molten pool image. Then the feature tensor extracted by the CNN is
transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM
network for feature fusion. This process realizes the implicit mapping from molten pool images
to welding defects. The test results on the self-made molten pool image dataset show that CNN
contributes to the overall feasibility of the CNN–LSTM algorithm and LSTM network is the most
superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of
defects detection in CO2 welding molten pool is 94%. The processing time of a single image is
0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image.
The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is
universal and can be used for similar image recognition and classification tasks.

Keywords: deep learning; CNN; LSTM; CO2 welding; molten pool; online monitoring

1. Introduction

Welding is a dynamic, interactive, and non-linear process. The monitoring of welding defects is
a difficult problem due to these characteristics of welding. The main difficulties in this task include
deciding when a defect occurred and which type of defect occurred. In the actual welding process,
skilled welders can dynamically adjust the welding process from observing the state of molten pool
to prevent welding defects. That gave rise to our idea that we could adjust the welding process by
observing the molten pool. An accurate mapping model between the molten pool image and the weld
quality is a vital part of this method [1,2]. The molten pool images are independently used as inputs to
this model. A typical molten pool image contains many objects, such as welding wire, arc, molten pool,
weld seam, metal accumulation, splash, smoke, etc. Although the molten pool is the main part of the
whole image, it is necessary to consider all objects and the relationship between various objects for the
purpose of accurately reflecting the welding information through the molten pool image. Therefore,
extracting the features from all objects in the molten pool image and hybridizing the different features
are the key to establishing an accurate mapping model.

The research of molten pool image can be divided into two categories. One of them is based on
multiple molten pool images. The main idea is to find the mutation rule of molten pool characteristic
signals when welding defects occur by multi-level (time domain, frequency domain) statistical analysis
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of the characteristics of multiple molten pool images [3–8]. This idea can synthetically consider the
molten pool images’ information of the whole welding process, and the features used for analysis
are generally primary features, which are relatively easy to design and obtain. However, this idea
can only be used to analyze the overall welding quality and locate the welding defects after welding
is complete and does not satisfy requirements of real-time monitoring of welding. Another idea is
based on single molten pool images, which is more suitable for an online monitoring process [9–13].
In studying molten pool images of the welding process, the most original method is to manually design
and identify the statistics of the characteristics of molten pool (length, width, area, spatter number, etc.)
and then identify the molten pool state. Although this method is highly interpretable, it requires a lot
of prior knowledge and is very time-consuming. Furthermore, such a model poorly adapts to other
image classification problems. With the development of deep learning, convolutional neural network
(CNN) replaced the process of human design and the extraction of primary features, achieving great
results [14–16]. However, for the purpose of further improving the accuracy of defect recognition,
more convolutional layers need to be stacked in the feature fusion stage, which will bring huge
computational cost, making real-time monitoring infeasible. In view of the existing problems in the
feature hybrid stage, principal component analysis (PCA) and fully connected layers are widely used
to combine the results of feature extraction [17–21]. Although PCA has great interpretability, such a
deterministic process may leave out features with small contributions, and these features may entail
important information about welding quality. Therefore, the process of feature information fusion
lacks the ability of intelligent fusion. Adding a fully connected layer and adjusting the weight of each
shallow feature using back propagation can play a certain role in intelligent hybrid of features; however,
this hybrid method is often too simple and insufficient to extract high-level abstract information.

Traditional neural networks (including CNN) assume that all inputs and outputs are independent
of each other, while the basic assumption of recurrent neural network (RNN) is that there is an
interaction between the input sequences, and this feature of RNN provides a new approach to feature
hybrid [22,23]. References [24–30] propose a method for intelligently hybridizing the features of each
individual in the input sequence using the long short-term memory network (LSTM, a variant of RNN),
which can extract the long-term dependencies of the data features in the sequence to improve the
recognition accuracy. However, the original input of the whole online molten pool status recognition
task is a single molten pool image at a certain moment rather than a sequence of images. Therefore,
in view of the above problems and the complexity of the molten pool images, this paper proposes an
innovative strategy. In the feature extraction stage, multiple convolutional kernels are used to scan
the whole molten pool image to obtain the redundant features of all objects in the molten pool image.
Due to the distance that the convolution kernel slides each time is less than the size of the convolution
kernel itself, and there are overlapping parts in each scan area of the convolution kernel, so the feature
blocks extracted by the convolution kernel also depend strongly on each other. When describing a
thing, we often hope to construct a set of bases, which can form a complete description of a thing.
The same is true in the same level of a convolution network, that is, the relationship between feature
maps extracted from the same level of convolution kernels lies in the formation of a description of
images on different bases at the same level. So in the stage of feature fusion, several feature images
extracted by CNN are unified and reconstructed into a two-dimensional feature matrix that contains
the correlation information from the interior of a single feature image and from multiple feature images.
In order to improve the accuracy of molten pool image recognition, each row of the feature matrix is
considered as a basic unit to be hybridized, and the number of rows is considered as the length of a
sequence. In this way, the single image of molten pool is converted into “sequential” data in this sense.
Then, the long-term dependencies property of the LSTM network is used to filter and fusion the rows
of the feature matrix to obtain high-level abstract information. In this case, the model is transformed
into a multi-input single-output model like text sentiment analysis. Each input can be understood as a
contribution of the feature vector at this time step to the overall molten pool image identification task
in the context. The CNN–LSTM algorithm proposed in this paper establishes the end-to-end mapping
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relationship between molten pool image and welding defects. The advantage of this algorithm is that
it can intelligently learn the best hybrid features through the error back propagation algorithm in
the shallow CNN network for a single molten pool image to meet the engineering requirements for
real-time monitoring of the welding process. In this paper, the molten pool image is obtained by a CO2

welding test. The feasibility, superiority to other models, and contribution sources of the proposed
algorithm are tested and studied. The experiment is carried out on the MNIST and FashionMNIST
datasets to illustrate the versatility of the CNN–LSTM algorithm. The feature hybrid method in this
paper also has certain reference significance for similar image recognition tasks.

2. Deep Learning Model Based on CNN–LSTM

A CNN is a neural network that uses convolution operation instead of traditional matrix
multiplication in at least one layer of the network. It is especially used to deal with data with
similar grid structures, a data structure common in computer vision and image processing [14]. The 2D
image data can be directly used as the bottom-level input of a CNN, and then the essential features of
the image are extracted layer-by-layer through convolution and pooling operations. These features
have the invariance of translation, rotation, and scaling. However, the output layer of the traditional
CNN is fully connected with the hidden layer. This feature fusion method which takes all outputs of
the convolutional layer is far too simple for the purpose of our model. Problems with this method
include bad kernels, multiple kernels extracting the same information, and unnecessary information
extracted by kernels. It is possible to extract deeper image features and improve recognition accuracy
by increasing the number of convolutional kernels, convolutional layers, and pooling layers. But it
will undoubtedly lead to a huge network, thereby increasing the cost of computation, and also facing
the risk of overfitting [14,15]. As a time recurrent neural network, LSTM is suitable for processing the
sequence problem with time dependence. The input feature tensor is selectively forgotten, input and
output through three threshold structures. It can filter and fuse the empty input, similar information,
and unnecessary information extracted by the convolutional kernels, so that the effective feature
information can be stored in the state cell for a long time. Therefore, an algorithm combining CNN
and LSTM was proposed in literature [24–30], which has achieved good results in gesture recognition,
voice recognition, rainfall prediction, machine health condition prediction, text analysis, and other
fields. However, the above literature is targeted at prediction tasks, and the input of LSTM is also
a batch of images in time series. But the molten pool online monitoring process is faced with the
identification task. The original input of this task is a single molten pool image taken by the camera at a
certain moment. The ideas of sequence dependency are clearly inapplicable to this problem. Therefore,
in view of the above problems, this paper proposes an algorithm named CNN–LSTM for the online
monitoring task of the molten pool, which hybridizes the advantages of CNN and LSTM. The overall
architecture of CNN–LSTM is shown in Figure 1.
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Figure 1. Convolutional neural network and long short-term memory network (CNN–LSTM) algorithm
overall architecture.
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The CNN–LSTM algorithm is designed for the recognition task of a single image. Since CNN’s
feature extraction is adaptive and self-learning, our model can overcome the reliance of feature
extraction and data reconstruction relying on human experience and subjective consciousness in
traditional recognition algorithms. It uses multiple convolutional kernels to scan the entire molten
pool image to obtain redundant features of all objects as candidates. In the feature hybrid stage,
the three-dimensional feature tensor output from the last layer of CNN is firstly stretched into a
one-dimensional feature vector. As mentioned earlier, this vector has all feature information extracted
by convolutional kernels, which includes some blank information, similar information, unnecessary
information, and so on. Then the feature vector is mapped to two-dimensional space as the input of
LSTM. Each row of the feature matrix is considered as a basic unit to be hybridized. Each time step
reads a row of feature information and divides a feature matrix into several time steps to read. In this
way, the single image of molten pool is converted into “sequential” data in this sense. The LSTM
network is used to extract the dependencies between each row of feature matrix, so as to filter
and hybridize the features extracted from the CNN network. Figure 2 shows the innovation of the
CNN–LSTM network. In the time interval of the CNN–LSTM network identification molten pool
image, the input of LSTM network at time t includes the output ht−1 and unit state ct−1 at time t − 1,
and the network’s input xt of current time. The feature tensor and the cell state can be filtered and
hybridized by three carefully designed threshold structures, so that the effective features extracted
from the CNN can be stored in cell state for a long time and the invalid features are forgotten.
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3. Model Implementation and Parameter Details

3.1. Model Implementation Process

It can be seen from Figure 1 that this algorithm is mainly divided into feature extraction stage
based on CNN and feature fusion stage based on LSTM. In the feature extraction stage, the forward
propagation process of the image signal is as follows: it is assumed that the l layer is a convolutional
layer, and the l− 1 layer is a pooling layer or an input layer. Then the calculation formula of the l layer is:

xl
j = f (∑i∈Mj

xl−1
i × kl

ij + bl
j) (1)

The xl
j on the left of the above equation represents the jth feature image of the l layer. The right

side shows the convolution operation and summation for all associated feature maps xl−1
i of the l − 1

layer and the jth convolutional kernel of the lth layer, and then adds an offset parameter, and finally
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passes the activation function f (*). Among them, l is the number of layers, f is the activation function,
Mj is an input feature map of the upper layer, b is offset, and k is convolutional kernel.

Assuming that the l layer is pooling layer (down sampling layer), the l − 1 layer is the
convolutional layer. The formula for the l layer is as follows:

xl
j = f (βl

jdown(xl−1
j ) + bl

j) (2)

In the above formula, l is the number of pooling layer, f is the activation function, down(*) is the
down sampling function; β is the down sampling coefficient, and b is the offset.

In the feature hybrid stage, the network uses three threshold structures to control the state of the
cell that preserves long-term memory. The meaning of long short-term memory is: ct corresponds to
long-term memory, and c̃t corresponds to short-term memory. The σ(*) in Expressions (3), (4), and (7)
is a Sigmoid function. If the output of Sigmoid function is 1, then the information is fully remembered.
If the output is 0, then it is completely forgotten. If the output is the value between 0 and 1, it is the
proportion of information to be remembered. The gate is actually equivalent to a fully connected
layer and its input is a vector and output is a real vector between 0 and 1. It uses the output vector of
the “gate” multiplied by the vector we want to control. The forgetting gate ft determines how much
historical information can be remained in a long-term state ct; c̃t is used to describe the short-term state
of current input. The input gate it determines how much of the current network input information can
be added to the long-term state ct; the output gate ot controls how much of the aggregated information
is available as the current output. The expressions are as follows:

ft = σ
(

W f •[ht−1, xt] + b f

)
, (3)

it = σ(Wi•[ht−1, xt] + bi), (4)

c̃t = tanh(Wc•[ht−1, xt] + bc), (5)

ct = ft ◦ ct−1 + it ◦ c̃t, (6)

ot = σ(Wo•[ht−1, xt] + bo), (7)

ht = ot ◦ tanh(ct), (8)

The above are the formulas of the forward propagation process of the image signal. “•” means
matrix multiplication, and “◦” means multiplication by elements of the same position. The output
of the last time step of the LSTM network includes current unit state c64 and current output h64.
We take h64 as the overall output of the LSTM part, which is the input of SOFTMAX. After the signal
passed through the SOFTMAX, the judgment of the category is given in the form of probability. In the
algorithm training stage, the network adopts the error back propagation method to iteratively update
the weights and offsets until the number of epochs is reached.

3.2. Model Parameter Details

Tensorflow is a deep learning framework developed by Google. It provides a visual tool
Tensorboard that can display the learning process of algorithms. In order to realize the CNN–LSTM
algorithm proposed in this paper, the relevant hyper-parameters under this deep learning framework
are set as follows: in view of the fact that the gray image of the molten pool taken by the charge
coupled device (CCD) camera is too large (768 × 768), it brings great difficulty to the network
operation. Therefore, the gray image size is first converted to 64 × 64. In the first convolutional layer
(Conv1), there are 32 convolutional kernels with a size of 5 × 5. The convolution stride is 1, and the
padding method is same to ensure that the image size is unchanged after convolution. At this time,
the image data is converted to 64 × 64 × 32. The first pooling layer (Pool1) uses the maximum pooling.
The pooling window with a size of 2 × 2, the pooling stride is 1, and the padding method is same.
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At this time, the image data is converted to 32 × 32 × 32. In the second convolution layer (Conv2),
there are 64 convolution kernels with a size of 5 × 5. The convolution stride is 1, and the padding
method is same. At this time, the image data is converted to 32 × 32 × 64. The second pooling layer
(Pool2) uses the maximum pooling. The pooling window with a size of 2 × 2, the pooling stride is 1,
and the padding method is same. At this time, the image data is converted to 16 × 16 × 64. The fully
connected layer adjusts the feature matrix to 64 × 64, and each time step takes one row as the input
to the LSTM network. There are 64 time steps in the total. There are 100 hidden units in the LSTM
network. Finally, the classification results of defects are obtained through SOFTMAX. In addition,
the learning rate of this network is set to 10−4, and Adam is chosen as the optimizer.

Considering the small sample size, in order to prevent overfitting and reduce the amount
of calculation, the first layer convolution result, the second layer convolution result and the fully
connected layer result all use ReLU (Rectified Linear Units) activation function: ReLU(x) = max(0,x),
which is shown in Figure 3. The ReLU activation function is more expressive than the linear function.
The convergence rate of ReLU is faster than that of nonlinear activation functions such as Sigmoid
and Tanh. Moreover, since the derivative of ReLU activation function is equal to 1, it can help with
vanishing gradient problem [31,32]. In order to further reduce the possibility of overfitting caused
by the small sample size, a random dropout method is used in the fully connected layer which is
shown in Figure 4. Some neurons are stochastically deactivated at each epoch. Dropout decreases the
dependencies between nodes and reduce overfitting by turning the CNN into an ensemble classifier of
many weak classifiers. The dropout parameter is set to 0.5 in our model.
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4. Test Design and Environment

4.1. Test Design

First of all, in order to help understand the mechanism of feature extraction and evolution of
the algorithm, the operation results of each convolution and pool layer will be visualized. Secondly,
in order to show the feasibility and generalization ability of CNN–LSTM algorithm, the training
performance and testing performance will be compared. The size of the original image was converted
into 32 × 32, 64 × 64, and 128 × 128 as the initial input. The contribution source of the feasibility of
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the algorithm was illustrated by the influence of different input sizes on the composition algorithm.
Among the tasks related to image feature extraction, CNN has been widely proved to be superior to
traditional algorithms. Therefore, in order to fully reflect the superiority of the algorithm and illustrate
the contribution sources of the superiority, performance comparison tests were conducted under the
same hyper-parameters with the composition algorithm (CNN, LSTM) and CNN-3 (add a convolution
and pooling layer, respectively). Finally, in order to illustrate the versatility of the CNN–LSTM
algorithm, the performance of the algorithm was tested on the MNIST and FashionMNIST datasets in
Appendix A.

In addition, in order to guarantee the fairness of the comparison test, other hyper-parameters such
as convolution kernel size, pool window size, stride, network learning rate, activation function, optimizer,
dropout value, LSTM’s hidden layer unit number, etc., were set to be same. The algorithm was analyzed
and compared using three criteria: recognition accuracy, convergence speed, and recognition time.

4.2. Test Environment

In terms of data sources, this paper relies on the key laboratory of Robotics and Welding
Technology of Guilin University of Aerospace Technology to carry out the CO2 welding test. In the
actual welding process, welding defects are caused by a variety of factors and have great uncertainty.
Through pre-processing, a total of 500 molten pool images of the three most common types of welding
including welding through, welding deviation, and normal welding were collected. The original size
of the images were 768 × 768. There were 300 pictures per class in the training set and 100 pictures
in each class in the validation set and testing set. The tail of the molten pool corresponding to the
welding through defect will leak to the back of the base metal and appear as a shadow on the image
(Figure 5a, yellow area). Welding through defects are mainly caused by the welding current being too
large, welding speed being too slow, the base material too thin, the base material not uniform, and so
on. The weld pool corresponding to the weld deviation defect will deviate from the predetermined
weld seam. Welding deviation defects are mainly caused by the vibration of the walking mechanism,
the low accuracy of the positioning, the instability of the arc, and so on. At this point, the molten pool
will deviate from the predetermined weld, which is reflected in the image as a part missing from the
molten pool (Figure 5b, yellow area). A normal molten pool has an elliptical shape. Figure 5 shows a
partial picture of the sample set.
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The algorithm performs performance tests under the ubuntu16.04 operating system, a GTX1080Ti
graphics card, a hardware environment of 64 GB running, and the Tensorflow deep learning framework.

5. Test Results and Analysis

5.1. Visual Analysis

According to the details of the network framework, the algorithm has two layers of convolution
and two layers of pooling for feature adaptive extraction of the molten pool image. Figure 6 shows the
feature extraction and evolution mechanism of CNN.
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As a whole, the comparison between the convolution results of the first layer and the convolution
results of the second layer shows that the activation degree of the background of the molten
pool decreases with the deepening of the convolution layer. The attention of convolution kernels
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gradually concentrates on the characteristic information of molten pool and ignores the background.
The convolution kernels in the first layer are mainly used to detect low-order features, such as the
edge, angle, and curve of the molten pool. The convolution kernels in the second layer are mainly
used to detect the combined features of low-order features, such as the arc and shape of the molten
pool. The result of the first convolution layer has a high spatial resolution, which is conducive to
the accurate positioning of the target, such as the separation of the molten pool and the background
but lacks robust feature representation. The spatial resolution of the second-layer convolution result
is reduced due to the pooling operation, resulting in weaker positioning functions, but with deeper
abstract features, and thus distortion tolerance [14,15]. The results of the second layer convolution are
more ambiguous than the first layer, but the unique part of the category is highlighted. The maximum
pooling operation can reduce the parameter calculation amount to prevent overfitting while better
retaining the main texture features of the molten pool. It can be seen that maximum pooling of the first
layer has a partial enhancement to the features extracted by the first convolution layer. However, after
the maximum pooling of the second layer, some relatively abstract discrete blocks appeared, which are
difficult to see by the naked eye. In addition, a small number of feature images are black or very
similar to other feature images, which means that the convolution kernels failed to extract information
or similar information were extracted by multiple convolution kernels. Therefore, it is necessary to
select and combine the feature information by using LSTM network before the classification.

Specifically, in the same convolution layer, the convolution kernels extract different features
in different molten pool states. Due to the excessive energy density of the weld, the molten pool
will collapse in the middle, resulting in shadow behind the molten pool image (Figure 5a, yellow
area). This feature is an irregular feature map similar to the elliptical gap in the convolution results.
The welding deviation defects caused by improper groove angle, uneven assembly clearance or low
precision of welding robot, resulting in the molten pool is only half (Figure 5b, yellow area), its own
irregularity is very strong, resulting in a large deviation and irregularity of convolution results. Due to
the regular shape of the molten pool in the normal state (Figure 5c, red area), the feature images
extracted from the convolution kernels are also approximately elliptic, and the molten pool in the
normal state is brighter than the other two states, so the convolution kernels have also extracted more
bright features. In the same molten pool state, taking the normal state as an example, as mentioned
above: the first layer of convolution kernels are more concerned with the characteristics of the
approximate elliptical edge of the molten pool; the second layer of convolution kernels focuses
on the overall morphological features of the approximate ellipse of the molten pool; the pooling layer
improves computational efficiency while preserving texture features that can represent grayscale
distributions of pixels and surrounding spatial neighborhoods.

5.2. Feasibility Analysis

The loss curve of CNN–LSTM algorithm in the training process is shown in Figure 7. On the
training set, the CNN–LSTM network begins to converge after about 200 epochs and the convergence
process is stable. On the validation set, CNN–LSTM begins to converge after about 300 epochs.
Although the convergence process fluctuates slightly, the overall trend of loss is clearly decreasing.
Although the accuracy of CNN–LSTM on the validation set is slightly lower than that on the training
set, with the increase of the training epoch, the accuracy on the verification set does not decrease,
and the recognition accuracy on the test set is 94%. Through the above analysis, we can find that
the algorithm of maximum pooling, ReLU activation function, and random dropout can effectively
suppress the overfitting due to the sparse set of samples, thus achieving excellent performance on both
the training and testing stage, which embodies the effectiveness and strong generalization ability of
the algorithm.

The effect of different input sizes on each algorithm is shown in Figure 8. It can be seen that
with the increase of input sequence size, the convergence speed and recognition accuracy of the CNN
network increase significantly. This is because with the increase of input sequence size, the details
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and features of molten pool image are more abundant, and the strong feature adaptive extraction
ability of CNN network comes into play. But for the LSTM algorithm, the recognition accuracy is the
highest when the size of the input image is 64 × 64. When the input size is 128 × 128, the recognition
accuracy is lower than that input with smaller size. This is likely because that when the size of
the input sequence is small, the details and features of the molten pool image are small and not
obvious, and LSTM cannot extract too much effective characteristic sequence information of the
molten pool. When the input sequence is long, LSTM can extract more effective sequence information,
and at the same time, it can exert its strong gradient retention and long-term dependence ability.
But when faced with a particularly long sequence, because the traditional neural network model uses
an encoder-decoder structure, the model of this structure usually encodes the input sequence into a
fixed-length vector representation. For short input sequences, the model can learn a reasonable vector
representation. However, the problem with this model is that when the input sequence is very long,
it is difficult for the model to learn a reasonable vector representation, so it is difficult to retain all
necessary information [33–35]. However, the CNN–LSTM network proposed in this paper increases the
convergence speed and recognition accuracy as the input sequence size increases. This indicates that
the method of automatic feature extraction by CNN has the largest overall contribution to the feasibility
of the CNN–LSTM algorithm, and the method of intelligent fusion of feature tensor by LSTM’s long
term dependence has the second largest contribution to the feasibility of the CNN–LSTM algorithm.Sensors 2018, 18, x FOR PEER REVIEW  10 of 16 
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5.3. Performance Analysis

The training performance comparison between the CNN–LSTM algorithm and each component
algorithm under the same hyper-parameter is shown in Figure 9. Taking the input image size 64 × 64
as an example, in terms of convergence speed, the LSTM network starts to converge from about
700 epochs and eventually converges to about 90% accuracy. The CNN network converges from about
600 epochs and eventually converges to about 93% accuracy. The CNN-3 network converges from
about 400 epochs and eventually converges to about 94% accuracy. The CNN–LSTM algorithm starts
to converge from about 300 epochs and eventually converges to about 96% accuracy. In terms of defect
recognition accuracy on the test set, the recognition accuracy of LSTM network is 88%, the recognition
accuracy of CNN network is 89%, the recognition accuracy of CNN-3 network is 91%, the recognition
accuracy of CNN–LSTM network is 94%. In terms of defect recognition speed, it can be found from
Table 1 that LSTM algorithm has the fastest recognition speed under any input image size, followed
by CNN. The CNN–LSTM has more training parameters due to the hybrid of CNN and LSTM, so it
takes more time, but it is still faster than the CNN-3 which contains the three-layer convolution and
pooling. In addition, when the input image size is 128 × 128, although CNN-3 can get a recognition
accuracy of 94% on the test set, the recognition time of a single image is five times longer than that of
the CNN–LSTM network when the input image size is 64 × 64. In the process of online monitoring of
the molten pool state, the most important thing is to ensure the recognition accuracy of the algorithm,
followed by the recognition time of a single image. Therefore, the CNN–LSTM network can guarantee
high-recognition accuracy by adjusting the input size in the shallow network under the requirement of
high-frequency molten pool monitoring while CNN needs to stack more convolution layers to improve
the recognition accuracy, but it undoubtedly brings huge real-time computational cost. Therefore,
considering all algorithms’ recognition accuracy, convergence speed and single image recognition
speed comprehensively, the CNN–LSTM algorithm is superior to all the other competitors in real-time
welding applications. This superiority is a result of using LSTM in the feature fusion stage, which filters
and hybridizes the feature tensor extracted by CNN with rows as the unit. This method can consume
a shorter recognition time with the guarantee of reaching a very high accuracy.Sensors 2018, 18, x FOR PEER REVIEW  12 of 16 
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Table 1. The recognition accuracy and recognition time of different algorithms under different
input sizes.

Algorithm Type
Input Size

32 × 32 64 × 64 128 × 128

Accuracy
(Recognition Time

(t/ms))

LSTM
0.85 0.88 0.8

(0.017) (0.033) (0.167)

CNN
0.88 0.89 0.92

(0.02) (0.06) (0.233)

CNN-3
0.90 0.91 0.94

(0.04) (0.099) (0.33)

CNN–LSTM
0.92 0.94 0.95

(0.033) (0.067) (0.2667)

6. Discussion

In order to meet the engineering requirements of high accuracy and real time in welding in an
online monitoring process, a CNN–LSTM algorithm was proposed based on the traditional deep
learning method. The original input of the model is a single image, and the LSTM network processes
the feature map extracted by CNN instead of the original sequence, as in the literature. The motivation
for using LSTM in this paper was to intelligently fuse the feature information that CNN has extracted,
rather than to extract the dependencies between each individual in the sequence. The feasibility of
the algorithm is based on using multiple convolution kernels to scan the whole image to obtain the
redundant features of the molten pool. The hybrid algorithm was designed in such a way that the rows
of the feature matrix extracted by CNN are considered as the basic units and put into the LSTM network
for a feature hybrid. The algorithm has high accuracy and short time to identify defects in the molten
pool, which completely meets the need of online monitoring in the molten pool. The experiment on
the self-made molten pool image dataset shows that the contribution of the feasibility of the algorithm
is more derived from the CNN’s feature adaptive extraction capability. However, the superiority of the
algorithm is derived from using LSTM in the feature hybrid stage, which filtered and hybridized the
feature tensor extracted by CNN in rows. The successful application of the CNN–LSTM algorithm on
the MNIST and FashionMNIST datasets show that the motivation of this algorithm is universal when
dealing with similar non-strict sequential image data.

Although the feature hybrid method in the CNN–LSTM algorithm is superior to the traditional
methods, there are still some shortcomings. In future research work, we should first consider obtaining
more defect types and sample sets of molten pool. Secondly, the choice of hyper-parameters should
be fully studied in the process of network construction. Thirdly, welding quality should be used
as a bridge to establish a corresponding model between the welding process and the weld pool
defects. Finally, a feedback control model should be established between the monitoring results of the
molten pool and the welding process to realize online monitoring of the welding process based on the
molten pool.
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Appendix A

The motivation of the CNN–LSTM algorithm is that each row of the feature matrix is regarded
as a basic input unit of the LSTM network, and the number of rows of the feature matrix is regarded
as the length of the sequence, so that the feature matrix can be filtered and hybridized by using the
long-term dependence ability of the LSTM network. In order to illustrate the universality of the
CNN–LSTM algorithm, this algorithm was tested on MNIST and FashionMNIST datasets which have
no strict timing dependence and then compared with basic algorithms. The MNIST dataset includes
10 categories of handwritten numerals from 0 to 9, and FashionMNIST includes 10 categories such as
T-shirt, Coat, Sandal, Bag, etc. The original size of the images in both datasets is 28 × 28. Figure A1
shows the variation of accuracy of different algorithms on these two public datasets during training.
It can be seen that on the relatively simple dataset of MNIST, all four algorithms are very stable during
training. Although the improvement accuracy of CNN–LSTM is not obvious compared with that of
CNN-3, the CNN–LSTM algorithm converges faster. Both CNN-3 and CNN–LSTM converge rapidly
on the more complex dataset of FashionMNIST, but with the increase of training epoch, CNN-3 is
unable to improve the accuracy, and the accuracy of CNN–LSTM algorithm is still rising. It can also be
seen from Figure A1 that CNN–LSTM has a higher accuracy than other algorithms in the early stages
of training, which shows that the CNN–LSTM algorithm can quickly adapt to different image scenarios.
Table A1 shows the recognition accuracy of each algorithm on the test set and the recognition time of a
single image. It can be seen that the CNN–LSTM algorithm takes less time than the CNN-3 algorithm
with similar recognition accuracy. As mentioned earlier, although the feature extraction ability of CNN
is very strong, the long-term dependency ability of LSTM network is stronger than that of stacked
convolution layer for fusing ability of feature tensor extracted by CNN. The successful application of
the CNN–LSTM algorithm on MNIST and FashionMNIST datasets show that our innovative model of
combining CNN and LSTM is generic when dealing with similar non-strict sequential image data.Sensors 2018, 18, x FOR PEER REVIEW  14 of 16 
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