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Dendritic cells (DCs) are professional antigen-presenting 

cells (APCs) that bridge innate and adaptive immune re-

sponses, thereby leading to immune activation. DCs have 

been known to recognize pathogen-associated molecular 

patterns such as lipopolysaccharides (LPS) and nucleic 

acids via their pattern recognition receptors, which trigger 

signaling of their maturation and effector functions. Fur-

thermore, DCs take up and process antigens as a form of 

peptide loaded on the major histocompatibility complex 

(MHC) and present them to T cells, which are responsible 

for the adaptive immune response. Conversely, DCs can al-

so play a role in inducing immune suppression under spe-

cific circumstances. From this perspective, the role of DCs 

is related to tolerance rather than immunity. Immunologists 

refer to these special DCs as tolerogenic DCs (tolDCs). 

However, the definition of tolDCs is controversial, and 

there is limited information on their development and 

characteristics. In this review, we discuss the current con-

cept of tolDCs, cutting-edge methods for generating 

tolDCs in vitro, and future applications of tolDCs, includ-

ing clinical use.
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INTRODUCTION

Dendritic cells (DCs) mediate innate and adaptive immunity 

of the immune system. A major role of DCs is to present 

antigens to T cells. As professional antigen-presenting cells 

(APCs), DCs activate T cells through co-stimulatory mole-

cules such as CD80 and CD86. These are the classical im-

munogenic characteristics of DCs. In contrast, tolerogenic 

DCs (tolDCs) contribute to tolerance rather than immunity. 

TolDCs can induce T cell anergy and generate regulatory 

T (Treg) cells. TolDCs-mediated immune suppressive re-

sponses are achieved by the interaction between co-in-

hibitory molecules like programmed death ligand 1 (PD-L1) 

and ligand 2 (PD-L2) on DCs and programmed death 1 

(PD-1) on T cells. In addition to these surface molecules, 

anti-inflammatory cytokines such as interleukin-10 (IL-10) 

and transforming growth factor beta (TGF-β) from DCs 

can promote tolerance. How are tolDCs generated or in-

duced and what are the factors involved in this process? 

It is necessary to first distinguish tolDCs from immature 

DCs (imDCs). The capacity of imDCs for inducing an im-

mune response is inferior to that of mature DCs (mDCs) 

because imDCs express a lower frequency of MHC and 

co-stimulatory molecules on their surface than mature DCs. 

In addition, imDCs have no ability to secrete pro-in-

flammatory cytokines such as IL-6 and IL-12 (1). Because 
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Figure 1. Typical characteristics of tolerogenic dendritic cells. 
Down-regulation of co-stimulatory molecules (CD40, CD80, 
and CD86), which contribute to T cell priming and further 
immune responses, can be regarded as the tolerogenic phenotype 
of DCs. In contrast, up-regulation of inhibitory molecules 
(PD-L1, PD-L2, and FasL) of DCs can be a sign of tolerance 
because functional anergy or cell death can be induced in immune 
cells that have interacted with those inhibitory molecules. In 
terms of the cytokine-secreting profile, DCs secreting anti-in-
flammatory cytokines can be considered tolerogenic DCs by 
regulatory T cells; these DCs inhibit synthesis of inflammatory 
cytokines. Additionally, high expression of the immunomodu-
latory enzyme IDO and low expression of NF-κB allow DCs to 
acquire tolerogenic potential.

of their immature phenotypes, imDCs have limited ability 

to prime T cells and induce an immune response and thus 

have been considered tolDCs. However, the phenotype and 

definition of tolDCs remain controversial.

  Here, we define the typical phenotype and the character-

istic of tolDCs based on two perspectives: expression of 

regulatory molecules and secretion of cytokines. In this se-

quence, we will sum up the various factors that have been 

widely known to induce tolDCs in vitro. Finally, the im-

portance of tolDCs in clinical trials and their therapeutic 

application will be discussed in this review.

PHENOTYPIC AND FUNCTIONAL 

CHARACTERISTICS OF tolDCs

Expression level of co-stimulatory and inhibitory mole-

cules on the cell surface of tolDCs

CD80 and CD86 on the surface of DCs can interact with 

CD28 on T cells. The interaction can trigger a signal to 

stimulate a T cell immune response. Therefore, DCs ex-

pressing a low level of co-stimulatory molecules may have 

a decided tolerance advantage.

  On the contrary, surface inhibitory molecules such as 

PD-L1 and PD-L2 on DCs interact with PD-1 on T cells. 

The interaction between molecules results in anergy or 

functional inactivation of T cells (1-3). Although it has 

been reported that overexpression of PD-L1 or PD-L2 on 

DCs did not inhibit proliferation of T cells (4), high ex-

pression levels of PD-L1 or PD-L2 on the surface of DCs 

can still be a phenotypical characteristic of tolDCs, as 

shown in many individual studies (4-13). The expression 

of another death signal molecule CD95, a FAS-ligand, can 

also be a sign of tolerance (14,15).

Cytokine-secreting pattern

In addition to the expression of surface molecules, a pro-

file of cytokines secreted from DCs can represent the tol-

erogenic potential. The pro-inflammatory cytokine IL-12 

produced by DCs stimulates the growth and function of 

T cells (16). Moreover, IL-12 can stimulate the secretion 

of interferon-gamma (IFN-γ) or tumor necrosis factor al-

pha (TNF-α) and can activate natural killer (NK) cells 

(16). Therefore, DCs that have a low ability to secrete such 

inflammatory cytokines can have ‘tolerogenic potential’. 

DCs that secrete a high dose of anti-inflammatory cyto-

kines such as IL-10 and TGF-β can also be considered 

tolDCs because IL-10 inhibits the synthesis and induction 

of pro-inflammatory cytokines such as IL-12, TNF-α, and 

IFN-γ (17-19). Furthermore, IL-10 impairs the activation 

of NK and T cells (20,21), and TGF-β is important for 

the maintenance and survival of Treg cells (22).

Other characteristics of tolDCs

It has been reported that the direct effect of IL-12 on DCs 

is to promote nuclear localization of nuclear factor kap-

pa-light-chain-enhancer of activated B cells (NF-κB) (23). 

Therefore, a low expression level of NF-κB, which is 

widely related to the activation of DCs, could be another 

sign of tolerogenic characteristics of tolDCs.

  Indoleamine 2,3-dioxygenase (IDO), an immune check-

point molecule produced by tolDCs, is also related to the 

inhibition of T cell proliferation and survival (24-28). 

Moreover, IDO has been reported to promote functional 

development of Treg cells (29). Thus, the induction or 

up-regulation of IDO in DCs can tolerate the immune en-

vironment of the host.
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Figure 2. Generation of dendritic cells in vitro: at-a-glance. Substantial numbers of DCs can be obtained using in vitro culture systems 
with GM-CSF. DCs generated in culture with GM-CSF are imDCs, which can reach the mature stage by further stimulation with LPS 
or TNF-α. (A) In the case of mouse DCs, a large amount of DCs can be generated in the culture of murine BM cells treated with GM-CSF. 
BM cells are flushed out from the femur and tibia. After lysis of erythrocytes, the cells are cultured in medium containing GM-CSF for 
6 to 10 days. In this murine BM culture system, addition and replacement of medium are conducted on the one-third and two-third days 
of whole culture, respectively. DCs generated by this method in vitro are called BMDCs. (B) For generating human DCs in vitro, 
monocytes are isolated from peripheral blood mononuclear cells (PBMCs) and are cultured in the presence of GM-CSF. DCs 
differentiated from monocytes using this system are called MoDCs. 

  In summary, tolerogenic potential in DCs is indicated 

by the presence of down-regulation of factors related to 

boosting the immune response and up-regulation of in-

hibitory molecules, anti-inflammatory cytokines, and re-

lated enzymes (Fig. 1).

GENERATING tolDCs IN VITRO

Generation of DCs in vitro

It is necessary to know the factors that are responsible for 

the induction of DCs with tolerogenic characteristics. 

Because of the scarcity of DCs and their various subsets 

in vivo, many in vitro DC studies have been performed. 

In a murine system, the classic method of investigating 

DCs is using bone marrow-derived DCs (BMDCs). BMDCs 

can be generated by 6∼10 days culture in vitro (30,31). 

In this system, DCs are differentiated from bone marrow 

stem cells, and the culture medium must contain gran-

ulocyte-macrophage colony-stimulating factor (GM-CSF) 

(32). After reaching one-third of the total culture period, 

fresh medium is added at the same volume as the pre-ex-

isting medium. After reaching two-thirds of the total cul-

ture period, half of the culture medium is replaced with 

fresh medium. At the end of the culture period, BMDCs 

can be harvested by collecting suspended cells. These har-

vested ‘untouched BMDCs’ are imDCs. Additional treat-

ment of LPS, TNF-α, or IFN-γ causes imDCs to become 

fully mature DCs (Fig. 2A). Though the culture period and 

concentration of GM-CSF can vary, this method is highly 

standardized. The other technique for generating DCs, es-

pecially from humans, is differentiating DCs from periph-

eral monocytes (33-36). DCs differentiated in this system 

are called monocyte-derived DCs (MoDCs). Except that 

the origin of the DC is a monocyte, the other processes 

and principles of culture are almost identical to those of 

BMDCs (Fig. 2B). Incidentally, trials for differentiating 

human DCs from bone marrow have also been performed 

(37,38).

Generation of tolDCs from DCs in vitro 

When BMDCs or MoDCs are stimulated with certain fac-

tors, the DCs are able to turn into tolDCs (Fig. 3). While 
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Figure 3. Factors for tolDC induction. Various factors contribute 
to the induction of tolDCs in vitro. These tolerogenic factors are 
categorized into four groups: cytokines, chemicals and drugs, 
organic molecules, and other factors. TSLP, thymic stromal 
lymphopoietin; IVIG, intravenous immunoglobulin; VIP, vaso-
active intestinal peptide; HGF, hepatocyte growth factor.

a variety of factors with the ability to induce tolDCs have 

been reported (39), there is no standardized protocol with 

the optimal concentration and treatment time. In the next 

section, we will introduce certain factors that are univer-

sally known as inducers of tolDCs.

VARIOUS FACTORS INDUCING tolDCs

Cytokines

There are several cytokines known to induce tolDCs from 

BMDCs or MoDCs in vitro. Among them, the most well- 

known cytokines are IL-10, IFN-γ, and TGF-β. IL-10- 

treated BMDCs have a low capacity to secrete inflam-

matory cytokines and to prime T cells (40). Moreover, af-

ter IL-10 treatment, BMDCs are inhibited in their matura-

tion (41,42). The effects of IL-10 on BMDCs also corre-

spond to DCs isolated from mouse spleen ex vivo (43). In 

addition to IL-10, IFN-γ has been demonstrated to induce 

tolerogenicity in DCs. IFN-γ-treated MoDCs cannot effi-

ciently present alloantigens to T cells. In addition, when 

co-cultured with naïve CD4
＋
 T cells, IFN-γ-treated 

MoDCs induce a high level of FoxP3 expression in CD4
＋
 

T cells and trigger the regulatory function of T cells (44). 

Notably, the destiny of DCs, whether they become sup-

pressors or activators, depends on the concentration of 

IFN-γ (45-47). High doses of IFN-γ inhibit maturation 

of MoDCs and induce their regulatory functions. For ex-

ample, as the concentration of IFN-γ increases, the ratio 

of IL-10 to IL-12 produced by DCs increases but the cyto-

toxicity of CD8
＋
 T cells that are co-cultured with the DCs 

decreases (45,46). On the contrary, Kerkar and his col-

leagues reported that IFN-γ triggers differentiation of 

MoDCs and the expression of co-stimulatory molecules as 

well as the MHC I molecule (47). IFN-γ treatment, when 

added to monocytes in the early differentiation stage, often 

results in the induction of macrophages rather than DCs 

(48). However, after exposure to a low dosage of IFN-γ, 

MoDCs are differentiated to tolDCs, thereby hindering the 

T cell response (47). Taken together, the treatment time 

and the concentration of IFN-γ are crucial for generating 

tolDCs, which suggests that a more defined protocol is still 

needed. Another cytokine, TGF-β, when added at the final 

stages of BMDC differentiation, has been reported to 

down-regulate the expression of co-stimulatory molecules 

and inhibit the production of inflammatory cytokines in 

BMDCs (40,49).

Organic molecules and chemicals

Dexamethasone (Dexa) is a steroid medication widely used 

for the treatment of various diseases. There are many re-

ports showing that Dexa is a tolerogenic compound. Dexa- 

stimulated DCs tend to exhibit down-regulated expression 

of co-stimulatory and MHC molecules, and subsequently 

an impaired T cell immune response (40,50-54). Further-

more, in vitro, Dexa treatment of DCs causes T cells to 

produce high amounts of IL-10 (54). While Dexa treatment 

methods for generating tolDCs differ among studies, Dexa 

is a tolerogenic reagent.

  Vitamin D3 (VitD3) is another well-known tolerogenic 

reagent. The addition of 1,25(OH)2D3, an active form of 

VitD3, into DC culture results in the induction of tolero-

genic surface molecules and the production of anti-in-

flammatory cytokines. In VitD3-treated DCs, the expres-

sion levels of CD80, CD86, and MHC II decrease and also 

the production of IL-6 and IL-12 are limited, compared 

to non-treated DCs (55,56). Functionally, VitD3 contributes 

to the down-regulation of IFN-γ in DCs, thereby sup-

pressing the T cell immune response (56). Because of their 

practical use and easy handling, Dexa and VitD3 have also 

been utilized in vivo (57) and are often used in combina-

tion (58,59).
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Others

Interestingly, DCs co-cultured with mesenchymal stem 

cells (MSCs) have immune-regulatory characteristics. In 

this system, DCs are overlaid on MSCs and cultured to-

gether (60). Under the influence of MSCs, DCs decrease 

IL-12 production and down-regulate expression of co-stim-

ulatory and MHC molecules, resulting in the induction of 

tolDCs and T cell unresponsiveness (61). For this reason, 

there are quite a few trials using MSCs to suppress im-

mune responses in vivo (62,63).

THERAPEUTIC APPLICATIONS OF tolDCs

TolDCs are now being tested for their therapeutic use in 

various types of diseases where immune suppression is 

needed. Diversely generated tolDCs are used for the treat-

ment of hyper-immune and autoimmune disorders such as 

rheumatoid arthritis (RA), multiple sclerosis (MS), and ex-

cessive tissue destruction and can be used to alleviate 

transplantation rejection.

TolDCs in clinical treatment for hyper- and autoim-

mune disorders

RA is the most representative and common autoimmune 

disease and has typical symptoms: synovitis and pro-

gressive cartilage destruction. In a murine system, the col-

lagen-induced arthritis (CIA) model is widely used for the 

study of RA. Until now, common therapies for RA have 

included administration of immunosuppressive drugs and 

biomolecules even though these methods have fatal side 

effects causing general suppression of the host immune 

system (53,64,65). Thus, adoptive transfer of tolDCs into 

a pathologic area can be a more effective treatment for RA 

patients. Adoption of tolDCs ameliorates inflammatory ar-

thritis by inducing the production of anti-inflammatory cy-

tokines and the generation of Treg cells, subsequently im-

pairing the T cell immune response (66-77). In addition 

to RA, other clinical trials targeting autoimmune disorders 

have recently adopted tolDCs. The disorders include MS 

(78), primary Sjögren’s syndrome (59), immune thrombo-

cytopenic purpura (79), diabetes (80), uveoretinitis (81), 

and experimental autoimmune encephalomyelitis (57).

Use of tolDCs in transplantation

TolDCs also play an important role in maintaining grafted 

organs (82-85). As in the treatment of autoimmune dis-

orders, the use of immunosuppressive drugs has been a 

dominant treatment method for transplantation recipients. 

However, as mentioned above, the use of these suppressors 

often causes a breakdown of the host immune system. 

Recently, the administration of regulatory cells has been 

investigated (86). Although there is still a long way to go 

before achieving the ideal application, therapy using 

tolDCs is potentially the most promising and powerful tool 

to escape graft destruction in transplantation patients com-

pared with therapy using other regulatory cells. As im-

munoregulatory APCs, tolDCs may be able to regulate and 

control other immune cells, which together give rise to 

tolerance. Although there have been many trials in animal 

transplantation models (blood, skin, heart, kidney, and pan-

creatic islet transplantations), clinical trials in humans have 

not been widely reported (87). It is obvious that injection 

of tolDCs can effectively suppress host immune system by 

inhibition of Ag-specific T cells and induction of Ag-spe-

cific Treg cells, but there are still many questions to be 

solved for safe and effective clinical goal:

  Which tolDCs should be used: donor or recipient? 

Which time-point is appropriate for injecting tolDCs: pri-

or-, peri-, or post-transplantation? Which route is more ef-

fective for injecting tolDCs: intravenous, intradermal, sub-

cutaneous, or another route? What are the ideal dosage and 

frequency of administration (87)?

CONCLUSIONS AND PROSPECTS

We have discussed the generation, characteristics, and 

therapeutic applications of tolDCs. The definite phenotype 

and biomarkers for tolDCs have not been defined and 

opinions regarding tolDCs are diverse. Sometimes, even 

immature or semi-mature DCs are simply regarded as 

tolDCs. Furthermore, conditioning tolDCs is also very 

complicated because tolerance-inducing factors and manip-

ulations for generating tolDCs are extremely varied.

  TolDCs are a promising tool to suppress immune re-

sponses in autoimmune disorders and transplantations. 

However, additional research is needed for clinical trials. 

First, in the preparation stage of conditioned DCs, specific 

protocols to generate tolDCs suitable for each application 

must be established. Establishing the appropriate timing 

and intensity of growth factor and tolerogenic reagent 

treatment is crucial. Furthermore, the migration, and tox-

icity issue of tolDCs in the host after injection should also 
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be considered. As another concern, the stability of ad-

ministered tolDCs in vivo must be also considered for ef-

fective therapeutic applications. Various types of tolDCs 

generated with diverse factors mentioned above were 

known to keep stably their tolerogenic phenotype and 

function in vivo (53,88,89), whereas there have been some 

reports showing that semi-mature DCs, which have been 

usually considered as tolDCs (90-92), became immuno-

genic cells when they were administered to in vivo (93,94). 

Even if there are a lot of things to be investigated, tolDCs 

could be powerful immune cells with immense potential 

for innovative clinical therapy in the future.
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