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Abstract: The laser speckle correlation method has found widespread application for obtaining
information from vibrating objects. However, the resolution and accuracy of the laser speckle
correlation method as they relate to the defocusing degree have not been analyzed sufficiently.
Furthermore, the possible methods for speckle pattern quality assessment and enhancement have not
been studied. In this study, the resolution and accuracy of the laser speckle correlation method are
analyzed, and it is found that they are affected by the defocusing degree and speckle pattern quality,
respectively. A new speckle pattern quality criterion combining the mean intensity gradient and
frequency spectrum was proposed, called CMZ. The quality of the speckle pattern is higher when
the CMZ is closer to zero. The proposed criterion was verified by simulated speckle patterns and real
speckle patterns with different speckle sizes, densities, and gray contrasts. In the experimental setup
stage, a suitable defocusing degree can be selected based on the resolution requirement and optimal
speckle size, and other experimental parameters can be determined according to the CMZ criterion.
Rotation and vibration experiments verified the effectiveness of the laser speckle correlation method
and confirmed the reliability of the experiment preparation based on proposed CMZ criterion.

Keywords: laser speckle correlation; defocusing degree; speckle pattern quality criterion; vibration
measurement; rotation measurement

1. Introduction

Optical dynamic measurements have been widely used to detect noncontact vibrations,
continuous deformation, or movement of objects in various research and industrial applica-
tions. The common methods are divided into interferometric and imaging-based methods.
Interferometric methods include electric speckle pattern interferometry (ESPI) [1–4], shear
interferometry [5,6], and holographic interferometry [7–9], and these methods generally
produce subwavelength accuracy. Adopting high-efficiency phase extraction methods, such
as the temporal phase-shifting method [10,11], spatial carrier phase-shifting method [12,13],
and Fourier transform method [14,15], nanometer accuracy can be achieved under labo-
ratory conditions. However, its applications are limited by the sampling rate of camera
and environmental requirements. The more powerful laser Doppler vibrometry (LDV)
technique [16–18] can provide single-point high-speed dynamic measurements using a
photoelectric detector, but it is still essentially an interferometer that is sensitive to environ-
mental fluctuations. Furthermore, the digital image correlation (DIC) method [19–21] is
sensitive to object surface displacement, especially in-plane displacement. In DIC, artificial
speckle or laser speckle is as a carrier of deformation information and deforms together
with the specimen surface. Artificial speckle is most commonly used and is usually pre-
pared by spraying paints on the sample surface [22] or transferring speckle patterns to
sample surface using the water transfer printing technique [23]. However, laser speckles,
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formed by the reflection and scattering of laser irradiation onto a rough surface, are desir-
able in some situations. For example, in a high temperature environment, artificial speckle
will inevitably fall off and discoloration will occur. Song et al. [24] and Zheng et al. [25]
have applied laser speckle correlation method to a high temperature measurement field
successfully.

Gregory et al. [26] proposed defocused speckle photography and described how to
separate tilt (differential) topology variations on a scatter surface from linear displacements.
Horváth et al. [27] deduced the relationship between the small-deformation tensor and
the speckle field displacement in detail. Based on these analyses, another simple and
prospective application of the laser speckle correlation method has emerged. Jo et al. [28]
proposes to observe the movement of the secondary speckle patterns that are generated on
top of a target when it is illuminated by a laser beam spot. Through proper defocusing,
the movement of the object creates a scenario in which the same speckle pattern moves or
vibrates in the transverse plane, instead of the speckle pattern constantly changing. Grad-
ually, this method has achieved widespread application for obtaining information from
vibrating objects. For instance, Zeev et al. [29], Lin et al. [30], and Yevgeny et al. [31] applied
this method for the simultaneous remote extraction of multiple speech sources, vibration
measurements, and blood pulse pressure measurements, respectively. Furthermore, Wu
et al. [32] introduced a high-speed optical flow algorithm to tracking laser speckle images to
realize real-time audio detection and regeneration of a moving sound source. However, the
influence of the laser speckle quality and possible ways to achieve quality assessment and
enhancement have not received enough attention in vibration measurements. Furthermore,
the key parameter defocusing degree can be selected combining optimal speckle pattern
quality and resolution requirement.

In the DIC field, many quality assessment criteria aimed at sprayed speckle patterns
have been developed gradually. Subset entropy [33] and the sum of square subset intensity
gradients (SSSIG) [34] are suitable for subset optimization. In order to evaluate the quality
of the whole speckle pattern, Lecompte et al. [35] first proposed the mean speckle size
based on the image morphology, and then Grammond et al. [36] applied edge detection to
determine the speckle size and density. These methods based on speckle morphology lack
the ability to evaluate gray information, such as the contrast influence on the speckle pattern
quality. To overcome this deficiency, the mean intensity gradient (MIG) [37], the mean
intensity of the second derivative (MIOSD) [38] and standard deviation of gray intensities
within each speckle (SDGIS) [39] are proposed successively. Another trend is to consider the
primary and secondary peaks of the autocorrelation functions [40–42]. However, compared
with the sprayed speckle, the laser speckle has a more uniform distribution of speckle
particles, a smaller difference of the gray standard deviations between individual speckles,
and non-obvious secondary auto-correlation peaks. Thus, the assessment criteria described
above cannot be used directly. Song et al. proposed a new index, the multi-factor fusion
index (MFFI) [43], which took the inhomogeneity of the gray contribution, the mean square
deviation of the gray contribution, and the standard deviation of the speckle particles size
into consideration.

In this study, the resolution of the laser speckle correlation method is analyzed, and its
main influence factors are distance relationships between the measurement planes, which
depend on the defocusing degree. The defocusing degree also affects the speckle pattern
quality, further influencing the accuracy of the laser speckle correlation method. To ensure
a high quality of the speckle pattern, a new speckle pattern quality criterion combining the
MIG and frequency spectrum was proposed, called CMZ, which accounts for both random
error and the interpolation bias. A simple rule is presented based on the balance of random
error and interpolation bias, and it was verified that the quality of the speckle pattern is
higher when CMZ is closer to zero. Furthermore, the particular characteristics of the laser
speckle have been used, which were distinguished using traditional indices, such as MIG
and MIOSD. The proposed criterion was demonstrated by simulated speckle patterns with
different speckle sizes and densities. Experimental speckle patterns at different defocusing
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degrees, exposure times, and measurement locations and the corresponding translation pat-
terns were then used to validate the proposed criterion. Based on the sufficient resolution
requirement and optimal speckle size, a suitable defocusing degree (such that the distance
relationships between the measurement planes can be determined) and other experimental
parameters can be determined according to the CMZ criterion during the experimental
setup. Rotation experiments were used to illustrate the relationship between the resolution
and the defocusing degree, which further verified the CMZ criterion. Vibration experi-
ments simultaneously verified the effectiveness of the laser speckle correlation method and
the reliability of the experimental setup based on the proposed CMZ criterion.

2. Defocusing Degree Determination of Laser Speckle Correlation Method

By illuminating an object with a laser beam spot, a speckle pattern can be generated
due to the roughness of the object surface. When a spatially coherent beam is reflected
from the object whose roughness generates a random phase distribution, we may obtain
the self interfering speckle pattern in the far field.

As shown in Figure 1a,b the camera is focused on the plane behind or in front of the
object such that the object itself is defocused, respectively, where the focal plane is at a
distance of Z1.
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Figure 1. Schematic of the system: camera is focused on the plane (a) behind or (b) in front of
the object.

According to the analysis conducted by Zeeval et al. [29], this system was sensitive to
the tilt, and the effect caused by transversal and axial movement is negligible. When slightly
defocusing, object tilt creates a situation in which the same speckle pattern only moves or
vibrates in the transverse plane instead of constantly changing the speckle pattern. Thus,
shifts of the speckle pattern due to tilt can be easily detected by spatial pattern correlation.
According to the geometric relation, the tilt angle α can then be determined as follows:

α =
Z1U
M

(1)

where U represents the displacement of the pattern on the camera. M is the imaging system
magnification. Once tilt angles along the time axis are obtained during vibration, vibration
information including frequency and strain can be calculated. Thus, accurate correlation
tracking is a prerequisite to tilt angle calculation, even to vibration analysis.

Valid correlation calculations require a suitable speckle size to be imaged to the sensor
plane. In the case of an objective laser speckle, the speckle size S is described as follows:

S ≈ λZ1

D
(2)
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where λ and D are the optical wavelength and the dimension of the illuminated spot,
respectively. The size S′. of the speckle imaged to the sensor plane, which is obtained at
the Z1 plane, is expressed as follows:

S′ =
λZ1

DM
(3)

To ensure that every speckle in the sensor plane equals K pixels, the condition is
described as follows:

λZ1

DM
= K× Lx (4)

where Lx is the physical size of one pixel in the CCD sensor.
According to formula (1), a greater distance Z1 and a smaller magnification factor M

correspond to a higher tilt angle resolution U. When the camera magnification is fixed,
the larger Z1 corresponds to larger angle resolution U in situations (a) and (b). However,
usually the distance between the sensor plane and object is fixed, but the defocusing
degree can be adjusted by changing the focal length. When the adjusted parameter is the
defocusing degree, the rule is different in the two situations. If the camera is focused on
the plane behind the object, as in situation (a), a greater distance Z1 means a shorter object
distance Z2, that is, a smaller magnification factor M and a higher angle resolution U. For
situation (b), a greater distance Z1 corresponds to a greater magnification factor M, so the
variation of Z1

M cannot be judge directly, causing non-determinacy of the angle resolution
change. Thus, a reasonable defocusing degree that determines the relative distances
between the object, the focal plane, and the sensor plane can be obtained according to
speckle size requirement imaged to the sensor plane and a sufficient tilt angle resolution
requirement.

3. Laser Speckle Pattern Quality Assessment

An effective speckle pattern quality assessment criterion is a prerequisite to ensure
correlation tracking. In general, correlation calculation error consists of random error and
interpolation bias. Random error highly depends on image noise, which is related to the
gray scale of the image. For zero- and first-order shape functions, Pan et al. [34] pointed
out that the random error Std is defined as follows:

Std =
σ√

∑N
i=−N ∑N

j=−N
(gx[i,j])

2+(gy[i,j])
2

2

(5)

where N is half of the size of the subset, σ is the standard deviation of the image noise.
gx[i, j] and gy[i, j] are the x- and y-directional gray derivatives at point [i, j], respectively. Su
et al. [44] introduced interpolation bias kernel to characterize the frequency response of the
interpolation bias, and interpolation bias kernel was defined as

E
(
vx, vy

)
= (vx − 1)ϕ

(
vx − 1, vy

)
− (vx + 1)ϕ

(
vx + 1, vy

)
+ϕ

(
vx, vy

)
(vx+

1, vy) +ϕ
(
vx, vy

)(
vx − 1, vy

) (6)

where ϕ
(
vx, vy

)
represents interpolation function (cubic BSpline) at frequency

(
vx, vy

)
.

The result curve of interpolation bias kernel verified that high-frequency components are
the major source of interpolation bias.

As for sprayed speckle patterns assessment, MIG and MIOSD are the most commonly
used. MIG is defined as

MIG =
∑W

i=1 ∑H
j=1

√
gx(x)ij

2 + gy(x)ij
2

W×H
(7)
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MIOSD is defined as:

MIOSD =
∑W

i=1 ∑H
j=1

√
gxx(x)ij

2 + gyy(x)ij
2

W×H
(8)

where gx(x)ij and gy(x)ij are the x- and y-directional gray derivatives at position xij, respec-
tively. gxx(x)ij and gyy(x)ij are the x- and y-directional intensity of the second derivatives at
position xij, respectively. W and H represent the pixel width and pixel height, respectively.

The MIG and MIOSD are defined according to gray gradient, which are supposed to
assess random error sufficiently. However, the other component interpolation bias is not
only related to the gray gradient. Typically, MIG should be large and continue increasing
as the speckle particle size decreases, but this does not mean the smallest speckle particle
size is optimal. Based on the rich research in the DIC field, the optimal speckle size is
3–5 pixels [41–44]. If the speckle size is too small, it leads to image under-sampling, which
causes a large interpolation bias. If the speckle size is too large, the details of the image are
not rich enough, and the contrast is poor, resulting in a large random error.

Considering high-frequency components are the major source of interpolation bias, we
present a new concept called the zero spectrum ratio (ZSR) to quantize frequency spectrum
component. The ZSR is defined as

ZSR =
max[FFT(g)]
sum[FFT(g)]

(9)

where FFT(f) represents the Fourier transform of the speckle pattern, and max[FFT(g)] and
sum[FFT(g)] are the maximum and sum of the frequency spectrum, respectively. The value
of ZSR represents the proportion of the zero-order spectrum, which is designed to be
related to interpolation bias.

To take both the interpolation error and the random error into account, we propose to
combine these two indexes. Because laser speckles have a more uniform distribution of
speckle particles and a smaller difference of the gray standard deviation between individual
speckle particles, we first analyze the speckle particle size and speckle density effects on
the MIG and the ZSR. A speckle density of 100% means that adjacent speckle particles are
in contact with each other.

As shown in Figure 2, we simulated two series of speckle patterns. In series (a),
the speckle size increased from 2 to 14 pixels, and the speckle density remained at 50%.
In series (b), the speckle size was unchanged, but the speckle density decreased from
80% to 20%. Although real speckle patterns for surfaces could have significantly different
appearances [45], this simple model was used to illustrate the proposed quality assessment
criterion, then real experiment speckle patterns were applied to ensure its validation.
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Figure 3a,b give the results of the speckle pattern series (a) and (b), respectively.
We found that the values of MIG and ZSR undergo opposite changes with the speckle size
increasing or the speckle density decreasing. We propose a new assessment criterion: the
speckle pattern quality is higher when the normalized MIG and normalized ZSR are closer
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to the same value, which can also be understood as finding the intersection of the MIG
and ZSR curves. Thus, neither MIG nor ZSR is too big, balancing the interpolation bias
and random error. Based on this idea, a new parameter combining the MIG and the ZSR,
named CMZ, is defined as

CMZ =
∣∣MIG′ − ZSR′

∣∣ (10)

MIG′ =


1 If MIG > 35

MIG−5
30 If 5 < MIG < 35

0 If MIG < 5
(11)

ZSR′ =


1 If ZSR > 0.08

ZSR−0.01
0.07 If 0.01 < ZSR < 0.08

0 If ZSR < 0.01
(12)

where MIG′ and ZSR′ are the normalized MIG and normalized ZSR, respectively. The ranges
of MIG and ZSR need to be determined in advance. Considering the limiting case, the den-
sity and the size of speckle were set to be 100% and 1 pixel, respectively, and the corre-
sponding MIG was 35. Thus, we set the MIG range to be 0–35, ignoring the exceeding part.
Similarly, in the limiting case where the densities were set to be 20% and 85%, the corre-
sponding ZSR values were 0.0817 and 0.011, respectively, where the size of speckle was
2 pixels. Thus, we set the ZSR range to be 0.01–0.08. We concluded that the quality of the
speckle pattern was higher when CMZ was closer to zero.
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Figure 3. Assessment results of speckle patterns with (a) different speckle sizes and (b) different
speckle densities.

4. Experimental Verification
4.1. CMZ Assessment Criterion

To verify the effectiveness of the proposed assessment criterion based on the CMZ,
experimental speckle patterns at different defocusing degrees, exposure times, and surface
roughness were evaluated, and results were compared with the MIG and the MIOSD.
As shown in Figure 4a, the object was irradiated by a laser beam, and then the surface
of the object formed bright spots and dark spots due to coherent subwaves interference.
The defocused speckle pattern was captured by a charge-coupled device (CCD) camera
and analyzed by the computer. Figure 4b shows the experimental setup. The laser power
of the He-Ne laser was 20 mW, and the wavelength was 632.8 nm. Defocusing degree
related to speckle particle size was controlled by focal length. Exposure time related to gray
contrast was adjusted through camera software. In order to ensure different roughness at
different measurement locations, uniform white paint was sprayed on the surface of the
specimen, and then sandpaper was used to polish different parts in different degrees.
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Figure 4. Experimental setup: (a) schematic of the experimental setup and (b) physical diagram of
experimental setup.

The quality of the speckle pattern can be affected by factors: the defocusing degree,
the camera exposure time, and the measurement location. The defocusing degree and the
camera exposure time are related to speckle particle size and gray contrast, respectively,
and the different measurement locations are due to the roughness difference.

During speckle pattern acquisition, the defocusing degree was adjusted gradually, and
the exposure time of the camera was then slightly adjusted around the value 8000 to retain
the gray contrast. Twenty-eight speckle patterns (Group A: A1–A28, size: 256 × 256 pixels)
with increasing speckle sizes were obtained, which are partially shown in Figure 5. In order
to obtain deformed images with 0–1 pixel translation, sub-pixel shifted operation along
the x-direction in the Fourier domain [34] was done. The step of translation was set to be
0.1 pixels. Decorrelation caused by big displacement or tilt should be avoided to ensure
the validation of correlation calculation. Based on the DIC algorithm described in [46], the
displacements of 81 points of each deformed image were calculated, and then the curves of
the mean bias errors and the standard deviations of the displacements were obtained.
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Figure 5. Speckle patterns collected at different defocusing degrees.

The average speckle size curve of the speckle pattern in group A is shown in Figure 6a.
Results curves of MIG, MIOSD, ZSR, and CMZ assessment criteria are shown in Figure 6b.
When sub-pixel translation is imposed to be 0.3 pixels, mean bias error curve of calculated
displacement with different CMZ values is shown in Figure 6c, and standard deviation
curve of calculated displacement with different CMZ values is shown in Figure 6d. The
MIG and MIOSD values decreased as the speckle size increased. Conversely, the ZSR
values increased as the speckle size increased. According to Figure 6b, the values of the
proposed CMZ assessment criterion decreased first and then increased. Based on our
research, the smaller the value of CMZ was, the higher the speckle pattern quality was.
Thus, speckle patterns A15–A20, whose CMZ values were less than 0.3, were superior to
the other patterns. As shown in Figure 6a, the speckle sizes of speckle patterns A15–A20
were between 3 and 5 pixels, which are consistent with the optimal speckle size during
the DIC calculation. Results of Figure 6c,d verified that quality of the speckle pattern was
higher when CMZ was closer to zero. Furthermore, standard deviation curve was relatively
flat when CMZ was small.
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Figure 6. Results of speckle patterns in group A: (a) speckle size curve, (b) assessment criteria,
(c) mean bias errors with different CMZ values, and (d) standard deviations with different CMZ
values.

The curves of the mean bias errors and standard deviations calculated with the subset
of 31 × 31 pixels are shown in Figure 7a,c, respectively. The curves of the mean bias
errors and standard deviations calculated with the subset of 61 × 61 pixels are shown in
Figure 7b,d, respectively. The mean bias errors and standard deviations both decreased
first and then increased, and the displacement calculation errors of pattern A19 were
the lowest. The results were consistent with the results predicted by the proposed CMZ
criterion. Furthermore, calculation with the subset of 61 × 61 pixels performed better.
Therefore, choosing a larger subset can improve the calculation accuracy.
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To obtain speckle patterns with different gray contrasts, the defocusing degree was
unchanged, and the exposure time of the camera was adjusted from 1000 to 16,000 gradually.
Sixteen speckle patterns (Group B: B1–B16) were obtained, which are partly shown in
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Figure 8, and then the same translation operation and displacement error calculation were
performed.
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Figure 8. Speckle patterns collected at different camera exposure times.

The result curves of different assessment criteria are shown in Figure 9a. The MIG
value increased and then decreased as the exposure time increased. According to the
greater MIG principle, speckle patterns B13–B15 had stronger abilities to resist noise, which
are supposed to have higher calculation accuracies. However, the proposed CMZ principle
considers that the qualities of speckle patterns B6–B10 were superior. The trend of MIG
and CMZ both indicate that the speckle pattern quality will decline when overexposure
or underexposure because of decline of gray contrast. Mean bias error curve and stan-
dard deviation curve of calculated displacement with different CMZ values are drawn in
Figure 9b,c, respectively. Mean bias error increased when CMZ value increased. Standard
deviation and CMZ value also showed synchronous growth.
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Figure 9. (a) Results of speckle patterns in group B: (a) assessment criteria, (b) mean bias errors with
different CMZ values, and (c) standard deviations with different CMZ values.

The curves of the mean bias errors and standard deviations calculated with the subset
of 31 × 31 pixels are shown in Figure 10a,c, respectively. The curves of the mean bias
errors and standard deviations calculated with the subset of 61 × 61 pixels are shown in
Figure 10b,d, respectively. The mean bias errors and standard deviation both decreased first
and then increased, which verified that the contrast of speckle patterns will be reduced due
to overexposure or underexposure, causing decline of speckle pattern quality. According
to displacement calculation errors, pattern B6–B10 perform better, which was closer to the
result predicted by the proposed criterion CMZ. Similarly, calculation with the subset of
61 × 61 pixels performed better.
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To further evaluate the proposed CMZ assessment criterion, we changed the meas-
urement locations to acquire speckle patterns C1–C25 with nearly the same gray contrasts 
and speckle sizes but different speckle particle location distributions due to the object sur-
face roughness, as partially shown in Figure 11. The mean bias error and standard devia-
tion curves calculated with the subset of 31 × 31 pixels are shown in Figure 12a,b, respec-
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culation results presented in Figure 12. Thus, the surface roughness of the object has little 
effect on its speckle pattern quality. High laser speckle pattern quality depends on suitable 
speckle size and gray contrast, which can be controlled by defocus degree and exposure 
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Figure 10. (a) Mean bias errors and (b) standard deviations of of speckle patterns displacements in
group B calculated with the subset of 31 × 31 pixels. (c) Mean bias errors and (d) standard deviations
of speckle patterns displacements in group B calculated with the subset of 61 × 61 pixels.

To further evaluate the proposed CMZ assessment criterion, we changed the measure-
ment locations to acquire speckle patterns C1–C25 with nearly the same gray contrasts and
speckle sizes but different speckle particle location distributions due to the object surface
roughness, as partially shown in Figure 11. The mean bias error and standard deviation
curves calculated with the subset of 31 × 31 pixels are shown in Figure 12a,b, respectively,
and those calculated with the subset of 61 × 61 pixels are shown in Figure 12c,d, respec-
tively. The results of different speckle patterns were similar, and no trend was evident.

The results for different assessment criteria are shown in Figure 13. The MIG, MIOSD,
ZSR, and CMZ values all remained stable, which is consistent with the displacement
calculation results presented in Figure 12. Thus, the surface roughness of the object has
little effect on its speckle pattern quality. High laser speckle pattern quality depends on
suitable speckle size and gray contrast, which can be controlled by defocus degree and
exposure time and so on. When the gray contrast is unchanged and the speckle size keeps
within a suitable range, the displacement calculation accuracy of the laser speckle pattern
remains stable with different speckle particle distributions.
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4.2. Rotation Experiment 
Considering the vibration information is obtained from tilt angle, rotation experi-

ments were first designed to test angle calculation accuracy and further verify the pro-
posed quality assessment. Besides, different relative distances between the object, the fo-
cal plane, and the sensor plane were adopted, which corresponded to different defocusing 
degree, so as to illustrate the relationship between defocusing degree and the angle reso-
lution. The schematic diagram of the rotation experiment is shown in Figure 4a. A square 
measured plate was placed on a rotary platform, and the position accuracy was 2′. The 
plate was irradiated by a laser beam, and then the defocused speckle pattern was acquired 
by a CCD camera. The laser power of He-Ne laser was 20 mW, and the wavelength was 
632.8 nm. We conducted four experiments. In two, the measured object was placed behind 
the focal plane, and in the other two, the measured object was placed in front of the focal 
plane, as shown in Figure 14a,c. In the two experiments with the object in front (shown in 
Figure 14b we changed the focal plane by adjusting the focal length slightly and keeping the 
other parameters fixed. In the two experiments with the object behind (shown in Figure 14d, 
only the location of the object changed. Based on the optimal speckle size determined by 
experience, the relative distances were first determined according to Equation (3) to en-
sure that the speckle sizes were all around 5 pixels. Next, the exposure time of the camera 
was adjusted to ensure a low CMZ value, because a low CMZ value corresponds to a high 
quality of the speckle pattern. The four speckle patterns given in Figure 15 are from the 
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4.2. Rotation Experiment

Considering the vibration information is obtained from tilt angle, rotation experiments
were first designed to test angle calculation accuracy and further verify the proposed quality
assessment. Besides, different relative distances between the object, the focal plane, and
the sensor plane were adopted, which corresponded to different defocusing degree, so
as to illustrate the relationship between defocusing degree and the angle resolution. The
schematic diagram of the rotation experiment is shown in Figure 4a. A square measured
plate was placed on a rotary platform, and the position accuracy was 2′. The plate was
irradiated by a laser beam, and then the defocused speckle pattern was acquired by a CCD
camera. The laser power of He-Ne laser was 20 mW, and the wavelength was 632.8 nm.
We conducted four experiments. In two, the measured object was placed behind the focal
plane, and in the other two, the measured object was placed in front of the focal plane, as
shown in Figure 14a,c. In the two experiments with the object in front (shown in Figure 14b
we changed the focal plane by adjusting the focal length slightly and keeping the other
parameters fixed. In the two experiments with the object behind (shown in Figure 14d,
only the location of the object changed. Based on the optimal speckle size determined by
experience, the relative distances were first determined according to Equation (3) to ensure
that the speckle sizes were all around 5 pixels. Next, the exposure time of the camera was
adjusted to ensure a low CMZ value, because a low CMZ value corresponds to a high
quality of the speckle pattern. The four speckle patterns given in Figure 15 are from the
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four different experiments. The speckle sizes and CMZ values of these speckle patterns
were also calculated and are shown. The CMZ value of the third experiment was highest
due to its low gray contrast. The CCD camera was a CP70 1HS M/C (Optronis, Germany).
The physical size of the CCD sensor was 17.536 × 11.782 mm, and the size of the acquired
speckle pattern was 1280 × 860 pixels.
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Figure 15. Four speckle patterns from the different experiments, their speckle sizes, and their
CMZ values.

As shown in Figure 16, we used an object with a known size, such as a wire or wafer,
to find the focal plane where the acquired image was clearest. The camera magnification
factor was calculated through the real width of the wire or wafer and its corresponding pixel
width. The rotation angle resolution, which was defined as the calculated displacement at
the focal plane when rotating 1′, could be obtained through the magnification factor and the
distance between the object and the focal plane. In the four experiments, we adjusted the
rotation angle to acquire different speckle patterns, and then displacement fields containing
100 calculated points at the focal plane were calculated by normal DIC algorithm. Mean
displacement of each speckle pattern was eventually converted to the measured angle
using Equation (4). The range of the rotation angle was 4’–20’, and the step of rotation was
set to be 2’.
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Figure 16. Physical diagram of focal plane determination in (a) the first two experiments and (b) the
last two experiments.

The measurement parameters and calculated angle resolutions are shown in Table 1.
Comparing experiments 1 and 2, we found that when the distance between the sensor
plane and object was fixed and the object was placed between the focal and sensor planes,
the larger Z1 corresponded to a larger angle resolution. According to experiments 3 and
4, when the magnification was fixed, Z1 was larger, and the angle resolution was higher.
Thus, the results are consistent with the analysis based on Equation (1).

Table 1. Comparison of measurement parameters and calculated angle resolutions.

Experiment Object at Focus Plane
(Pixels/mm) M Z1

(mm)
Z2

(mm)
Angle Resolution
(Pixels/Minutes)

1 36 0.4932 324 150 3.393
2 32 0.4384 313 161 2.913
3 9 0.1233 730 1200 1.800
4 9 0.1233 754 1200 1.971

Notice: (1 pixels/minute = 1 pixels/ π
180×60 rad).

For all rotation angles, the real displacements at the focal plane are plotted as a line
and the calculated displacements are plotted as scatter points in Figure 17, and results of
the different experiments were all in good agreement. The angle resolution was considered
to be the slope of the best fit line to the scatter points.
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Table 2 gives the calculated slopes and errors. The calculated slopes were equal to the
desired angle resolution. The mean errors of the displacements were less than 0.04 pixels,
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verifying the effectiveness of the laser speckle correlation method and further verifying
the effectiveness of the CMZ speckle pattern quality criteria. Furthermore, the mean error
and standard deviation of third experiment were the highest, which was consistent with
the largest CMZ value of its speckle pattern. The mean errors of the rotation angle did not
exceed 0.02 min, but the error included correlation calculation errors and calculated errors
of the camera magnification.

Table 2. Comparison of error results from different experiments.

Experiment Calculated Slope
(Pixels/Minutes)

Displacement at Focus Plane (Pixels) Rotation Angle (Minutes)

Mean Error Standard Deviations Mean Error Standard Deviations

1 3.393 0.023 0.008 0.017 0.0064
2 2.913 0.030 0.012 0.017 0.0042
3 1.800 0.036 0.009 0.020 0.0053
4 1.971 0.021 0.011 0.006 0.0034

4.3. Vibration Experiment

Two real vibration experiments were conducted to further evaluate accuracy of the
laser speckle correlation method. Using the same measurement system, a vibrating beam
was used as the measured object. The vibration signal was passed through the signal
generator, to the amplifier, and finally to the cantilever beam. To ensure that the speckle
sizes were all around 5 pixels, the defocusing degree was determined using Equation (4),
and then the exposure time was adjusted to ensure a low CMZ value to acquire a speckle
pattern with a high quality. The size of the vibrating beam was 235 mm× 10 mm, as shown
in Figure 18. Eight points (A–H) were measured in turn, where the distance from point
A to the fixed end was 50 mm and the interval of the measurement points was 20 mm.
The first experiment is illustrated in Figure 19a. At a distance of 30 mm from the free
end, a simple harmonic excitation was applied to the cantilever beam with a frequency
of 10 Hz, which was close to the first-order natural frequency of the beam. In the second
experiment, which is shown in Figure 19c, the simple harmonic excitation was applied to
point B with a frequency of 30 Hz. One speckle pattern coming from each experiment and
the corresponding CMZ values are given in Figure 19b,d respectively. The laser power
of the He-Ne laser was 20 mW, and the wavelength was 632.8 nm. However, the size of
acquired speckle pattern was set to be 256 × 256 pixels to achieve a high sampling rate.
The sampling rate was 2000 Hz, and the sampling time was 0.5 s. Meanwhile, laser doppler
vibrometry (LDV) with a sampling rate of 40,000 Hz was used to collect the vibration
signals. Finally, the calculated results of the speckle correlation method were compared
with the signal processing results of the Doppler vibrator.
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Figures 20a and 21a show the frequency spectrum results from the two experiments 
obtained by the LDV, and Figures 20b and 21b show the frequency spectrum results from 
the two experiments calculated by the laser speckle correlation method. The focus of this 
study was the response frequency, so the pixel displacement was not translated into a 
physical displacement. The calculated response frequencies of the two methods were in 
good agreement, and response frequencies showed no obvious difference at different 
tested location. In the frequency spectrum of the first experiment, a primary energy peak 
at 10 Hz. Several secondary energy peaks were present at 20 Hz, 30 Hz, 40 Hz, and 50 Hz. 
The response frequency error of the laser speckle correlation method increased from 0.02 
Hz to 0.1 Hz. Similarly, the second experiment showed primary peak at 30 Hz. Secondary 
peaks happened at 90 and 150 Hz, respectively. The response frequency error of the pro-
posed method increased from 0.06 Hz to 0.3 Hz. 
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patterns in the first experiment. 
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its speckle size, and its CMZ value. (c) Physical diagram of the second experiment. (d) One speckle
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Figures 20a and 21a show the frequency spectrum results from the two experiments
obtained by the LDV, and Figures 20b and 21b show the frequency spectrum results from
the two experiments calculated by the laser speckle correlation method. The focus of this
study was the response frequency, so the pixel displacement was not translated into a
physical displacement. The calculated response frequencies of the two methods were in
good agreement, and response frequencies showed no obvious difference at different tested
location. In the frequency spectrum of the first experiment, a primary energy peak at 10 Hz.
Several secondary energy peaks were present at 20 Hz, 30 Hz, 40 Hz, and 50 Hz. The
response frequency error of the laser speckle correlation method increased from 0.02 Hz to
0.1 Hz. Similarly, the second experiment showed primary peak at 30 Hz. Secondary peaks
happened at 90 and 150 Hz, respectively. The response frequency error of the proposed
method increased from 0.06 Hz to 0.3 Hz.
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In order to further verify the quality assessment criterion, excitation signal frequency
was kept 30Hz, and defocusing degree was changed to acquire four groups of vibration
laser patterns with different CMZ value. Response frequencies at point G were calculated
and compared. Results were shown in Table 3.

Table 3. Frequency results comparison of different pattern groups.

Patterns Group CMZ Value
Frequency (Hz)

Primary Energy Peak Secondary Energy Peak Secondary Energy Peak

1 0.06 30.01 90.07 150.09
2 0.12 30.03 90.11 150.17
3 0.29 30.06 90.18 150.30
4 0.45 30.19 90.35 150.75

From the results we can see, the frequency error increases with the CMZ value rising,
verifying the effectiveness of the proposed quality assessment criterion.

5. Conclusions

To balance the random error and the interpolation bias, a global assessment crite-
rion CMZ was proposed, which combined the MIG and the ZSR. A CMZ closer to zero
corresponded to a better quality of the speckle pattern and a smaller displacement error.
Considering that the laser speckle has a more uniform distribution of speckle particles, the
simulated speckle patterns with different speckle particle sizes and densities were used to
illustrate the determination of the CMZ criterion.

During the application of laser speckle correlation method, the main influencing
factors include defocusing degree, exposure time and measured location. Experimental
speckle patterns at different defocusing degrees, exposure times and measured locations
were analyzed, and the results validated the proposed assessment criterion using the CMZ.
Defocusing degree affects speckle particle size. The analysis results also further showed
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that the optimal speckle particle size was 3–5 pixels, and the contrast of the speckle patterns
was reduced due to the overexposure, causing a decline of the speckle pattern quality.
Thus, high quality speckle patterns can be guaranteed based on the CMZ criterion.

The resolution and accuracy of the laser speckle correlation method were found to
be related to the distances between the measurement planes. In the experimental setup
stage, a suitable defocusing degree can be determined based on the resolution requirement
and the optimal speckle size, and then other experimental parameters can be determined
according to the CMZ criterion. In rotation experiments, the comparison of the angle
resolution verified the relationship between the resolution and distance, and the accuracy
of the calculated displacement was consistent with the results predicted by the CMZ value.
The frequency spectrum results of the vibration experiments were in good agreement
with the LDV results, which simultaneously verified the effectiveness of the laser speckle
correlation method and the reliability of the experimental setup based on the proposed
CMZ rule. Thus, adopting this experimental setup method can ensure the resolution and
accuracy of the laser speckle correlation method and facilitate its widespread application.
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