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Abstract: Fatty acid-binding proteins (Fabps) make up a family of widely distributed cytoplasmic
lipid-binding proteins. The small intestine contains three predominant Fabp species, Fabp1, Fabp2,
and Fabp6. Our previous studies showed that Fabp2 and Fabp6 gene-disrupted mice exhibited
sexually dimorphic phenotypes. In this study, we carried out a systematic comparative analysis of
the small intestinal transcriptomes of 10 week-old wild-type (WT) and Fabp gene-disrupted male
and female mice. We found that the small intestinal transcriptome of male and female mice showed
key differences in the gene expression profiles that affect major biological processes. The deletion
of specific Fabp genes induced unique and sex-specific changes in the gene expression program,
although some differentially expressed genes in certain genotypes were common to both sexes.
Functional annotation and interaction network analyses revealed that the number and type of affected
pathways, as well as the sets of interacting nodes in each of the Fabp genotypes, are partitioned by
sex. To our knowledge, this is the first time that sex differences were identified and categorized at the
transcriptome level in mice lacking different intestinal Fabps. The distinctive transcriptome profiles of
WT male and female small intestine may predetermine the nature of transcriptional reprogramming
that manifests as sexually dimorphic responses to the ablation of intestinal Fabp genes.

Keywords: sex differences; transcriptome; fatty acid-binding proteins; Fabp; microarray analysis;
nutrient metabolism; small intestine

1. Introduction

Fatty acid-binding proteins (Fabps) are highly abundant cytoplasmic proteins that are found in
several mammalian tissues [1]. The function of these proteins are not fully known but they are thought
to participate in the maintenance of intracellular lipid homeostasis [1,2]. The small intestine contains
three types of Fabps, namely Fabp1 [3,4], Fabp2 [5], and Fabp6 [6,7].

Fabp1 (also known as L-FABP) was first found in the liver [4] but is also present throughout the
small intestine with the highest abundance occurring in the proximal portion of the organ [8]. It can
bind fatty acids with a preference for unsaturated long-chain fatty acids as well as an assortment of
other hydrophobic molecules including bile acids and fibrates [9,10]. Studies have demonstrated a
direct interaction between Fabp1 and peroxisome proliferator-activated receptors (PPAR), suggesting
a role of Fabp1 in delivering PPAR ligands to the nucleus which in turn can lead to the expression
modulation of PPAR target genes [11,12]. Fabp1 gene ablation results in a variety of metabolic defects,
including dysregulated hepatic lipid metabolism [13,14] and gallstone susceptibility [15]. A T94A
variant of the human FABP1 gene has been found to be associated with reduced body weight as well
as altered glucose metabolic response to lipid challenge [16]. It can also influence the efficacy of
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lipid-lowering therapies [17]. Interestingly, the association between the T94A variant and increased
fasting triacylglycerols and low-density lipoprotein (LDL)-cholesterol levels was only observed in
females [18].

Fabp2 (also known as I-FABP) is restricted to the small intestine but distributed throughout the
organ with its maximum abundance occurring after the midpoint of the organ [8]. Fabp2 shows a
preference for saturated long chain fatty acids [9,10]. In vitro studies suggest that Fabp2 and Fabp1
enable the transfer of fatty acids from donor to acceptor membranes via different mechanisms: Fabp1
transfers fatty acids via an aqueous diffusion-mediated process whereas Fabp2 transfers fatty acids by
direct collisional interaction with membranes [19]. The deletion of the Fabp2 gene in mice did not
prevent dietary fat assimilation but influenced adiposity and glucose tolerance in a sex-dependent
manner [20,21]. Studies on humans have found a potential association between the A54T human
FABP2 gene variant and insulin resistance, obesity as well as dyslipidemias in specific sexes in certain
populations [22–25].

Fabp6 (also known as ILBP and I-BABP) is abundant in the distal region of the small intestine
and displays a clear preference for bile acids although it is capable of binding fatty acids at lower
affinity [8,9,26]. The targeted disruption of the Fabp6 gene in mice demonstrated that Fabp6 is important
in the intracellular transport of bile acids in enterocytes and the maintenance of the bile acid pool
in the enterohepatic circulation [27]. Interestingly, Fabp6 is also found in the ovaries but not in the
testes, and female mice lacking Fabp6 display a reduced ovulation rate compared to female wild-type
(WT) mice [28]. Moreover, Fabp6 was found to be associated with the function of farnesoid X receptor
(FXR) [29,30], suggesting a potential role of Fabp6 in modulating the activity of FXR in the nucleus.
In humans, the T79M variant of human FABP6 is associated with some protective effect on type 2
diabetes in obese subjects [31].

The targeted ablation of Fabp1, Fabp2, or Fabp6 genes have all resulted in sexually dimorphic
phenotypes [14,20,21,27,32]. Here, we compared the transcriptomes of small intestines from mice
lacking either Fabp2 or Fabp6, or both of these Fabps to gain a comprehensive insight into the changes
in the gene expression programs that occur in both sexes following the loss of these Fabps.

2. Materials and Methods

2.1. Mice

Mice (n = 5 per cage) were housed in a temperature-controlled specific-pathogen-free facility
and fed a standard lab diet (Purina 5001). Fabp2–/– [21] and Fabp6–/– [27] mice were maintained on
the C57BL/6J background, which included one cross with a male C57BL/6J mouse, and interbred to
generate the Fabp2–/–;Fabp6–/– line. The use of mice was approved by the institutional animal welfare
and policy committees in accordance with the policies of the Canadian Council on Animal Care (McGill
University AUP5350; this project was initiated at the University of Alberta under Animal Protocol 270).

2.2. Preparation of RNA and Hybridization to DNA Microarray

The small intestine, starting from the base of the stomach and ending just before the cecum, was
excised from fasted 10-week old mice littermates and then flushed with ice-cold saline prior to tissue
homogenization. RNA was extracted from homogenates using Trizol (Invitrogen) and assessed for
integrity (RIN > 7) prior to use in microarray analysis. The total RNA sample from 4 mice of each sex
(male or female) and genotype (wild-type C57BL/6J, Fabp2–/–, Fabp6–/–, Fabp2–/–;Fabp6–/–) was analyzed
as 2 biological replicates (RNA from 2 mice were pooled and sequenced as 1 sample). Fluorescently
labeled cDNA probes generated from RNA samples were hybridized to Affymetrix 430A and 430B
chips (total of 32, 16 per chip type) and processed as specified by the manufacturer.
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2.3. Analysis of DNA Microarray Data

2.3.1. Processing of Raw DNA Microarray Data

The microarray data were processed and analyzed using the R statistical environment and
Bioconductor software [33] as illustrated in Supplementary Figure S1. Raw intensities from each gene
chip were transformed to a log2 scale and quantile normalized using the Robust Multichip Average
(RMA) algorithm with background correction [34]. The quality assessments were done by comparing
the intensity between the biological replicates (See Supplementary Figure S2) and technical replicates
(See Supplementary Figure S3). Boxplots were also used to evaluate the data quality across the chips
(See Supplementary Figure S4). To improve the statistical power, the data were filtered based on their
inter-quartile range and Entrez annotations [35]. The limFit function (limma package) [36] was applied
to fit data into linear models to identify the genes with a differential expression between the male
and female of the same genotypes and also between each of the Fabp gene-disrupted genotypes and
wild-type mice of the same sex. The genes were screened with volcano plots (Supplementary Figure S5)
generated using the EnhancedVolcano R package [37]. Genes with a false discovery rate <0.2 and an
absolute log2 fold change > 0.5 were considered statistically significantly different. The Venn diagram
plots were generated using the BioVenn website to present common and sex-specific differentially
expressed (DE) genes induced by the deletion of Fabp genes [38]. See Supplementary Figure S1 for a
more detailed description of the workflow and software resources used in the analyses.

2.3.2. Gene Annotation and Functional Enrichment Analysis

The murine gene ID conversion and functional annotation of identified sex-biased genes and DE
genes were done using DAVID Bioinformatics Resources (version 6.8) [39] with the default setting.
The gene ontology (GO) terms in the biological process (BP) domains were extracted. The chromosomal
locations of DE genes were determined from the Mouse Genome Database [40]. To display the metabolic
patterns comprehensively, the relevant biological processes were grouped into four categories of interest
in this study, namely lipid metabolism, carbohydrate metabolism, protein metabolism and sterol
metabolism (complete lists are shown in Supplementary Table S2), and the number of unique DE genes
in each category for each sex and genotype were counted and presented.

2.3.3. Protein–Protein Interaction Network Analysis

In order to reveal sexually dimorphic protein interaction patterns, the corresponding proteins of
the DE genes that were affected by the disruption of Fabp genes in each sex were used as seed proteins
to identify the interacting proteins based on the literature-curated interactions in the NetworkAnalyst’s
protein–protein interaction database (accessed on May 2020) [41]. Generic protein–protein interaction
analysis was conducted using the International Molecular Exchange consortium (IMEx) interactome
database using the default setting. The seed proteins were selected by the NetworkAnalyst algorithm
based on the submitted gene lists. Subsequently, these seed proteins were used as the starting points to
predict the functional protein network.

2.3.4. Availability of DNA Microarray Data

The NCBI GEO accession number for the microarray data used in this study is GSE128862.

3. Results

3.1. Gene Expression Patterns in Male and Female Murine Small Intestine Are Distinct

To address the difference in the gene expression in the small intestine between male and female
mice with or without Fabps, transcriptome profiling was performed using microarrays in our study
(see Supplementary Figure S1 for the description of the analysis workflow). Sex-biased genes were
identified in all genotypes (Figure 1a). A total of 67 sex-biased genes were found in the WT mice.
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This number was reduced in the Fabp2–/– and Fabp2–/–;Fabp6–/– mice whereas the Fabp6 gene deletion
increased the number of sex-biased genes (Figure 1a), suggesting that the deletion of the Fabp2 gene or
both Fabp2 and Fabp6 genes made the intestinal gene expression of males and females more similar,
while the disruption of the Fabp6 gene increased the sexual dimorphism at the transcriptome level.
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Figure 1. Sex-biased genes and functional annotation (gene ontology: biological process, GO: BP).
(a) Comparison of the number of sex-biased genes identified in wild-type (WT), Fabp2–/–, Fabp6–/–,
and Fabp2–/–;Fabp6–/– mice. (b) The number of male- and female-biased genes in the small intestinal
transcriptome across all genotypes. (c) Comparison of the biological processes enriched (p-value < 0.05)
using sex-biased genes. The numbers of genes involved in each biological process are represented by
the green color, darker shades indicate a greater number of genes. See Supplementary Table S1 for a
complete list of sex-biased genes.

The genes that were identified as sex-biased were then further classified as either female-biased
or male-biased. The results show that the number of female-biased genes, the sex-biased genes that
have higher expression in females, is greater than male-biased ones in WT mice (Figure 1b), and this
is consistent with previous findings [42,43]. The deletion of Fabp genes increased the proportion
of male-biased genes, which might play roles in determining the male-specific phenotypes in Fabp
gene-disrupted mice. In addition, most of the sex-biased genes reside on autosomal chromosomes
(See Supplementary Figure S6).

The gene ontology-enriched analysis was applied to identify the biological pathways involving
sex-biased genes. Many of the genes that show sexually dimorphic expression in WT small intestine are
involved in nutrient and drug metabolism (Figure 1c), which is in accordance with other studies [44,45].
Some of the sexually dimorphic pathways in the small intestine that pre-existed in WT male and female
mice were retained in mice lacking only one Fabp, i.e., either Fabp2 or Fabp6, whereas two pathways
remained identifiable when mice were lacking both Fabps (Figure 1c). In general, the deletion of Fabp6
resulted in a greater number of sex dimorphic pathways compared to Fabp2, while the deletion of both
Fabps resulted in the least number of sexually dimorphic pathways.

Thus, pre-existing differences in the gene expression program, as illustrated in the small intestinal
transcriptome of WT male and female mice, may predetermine the intestinal gene expression program
in response to the disruption of specific intestinal Fabp genes.
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3.2. Genomic Responses to Ablation of Specific Fabp Genes Are Sexually Dimorphic

We further evaluated the genomic responses to Fabp2 and/or Fabp6 gene disruption in male and
female mice. DE genes were identified by comparing the transcript abundance between WT and
Fabp gene-disrupted mice of each sex. In general, less than 50% of DE genes induced by Fabp gene
ablations are shared by male and female mice (Figure 2, top, overlap of red and blue circles). Many
of the shared DE genes (Figure 2, bottom, gene list) had distinct alterations in male and female mice.
Some shared genes altered the gene expression in the opposite direction in males and females in
response to the same Fabp gene disruption, such as Cyp2c55 in Fabp2–/– mice and Psat1 in Fabp6–/– mice.
Notably, the numbers of DE genes identified in the small intestine of Fabp2–/–;Fabp6–/– mice were much
higher than the single Fabp gene-disrupted mice in the same sex. Fabp2–/–;Fabp6–/– mice also have
different sets and total number of DE genes compared to either single Fabp gene disruption regardless
of the sex (See Supplementary Figure S7), implying a greater effect of the combined Fabp2 and Fabp6
deficiency on the overall gene expression program in the small intestine. Moreover, like sex-biased
genes (See Supplementary Figure S6), most of the DE genes identified also reside on autosomal
chromosomes (See Supplementary Figure S8).
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Figure 2. The comparison of the differentially expressed (DE) genes in different Fabp gene-disrupted
male and female mice. The Venn Diagram of the common and sex-specific DE genes induced by the
deletion of Fabp genes (top). The heatmap comparing the altered expression of the common DE genes
shared by males and females (bottom). See Supplementary Table S1 for a complete list of DE genes.

To gain insight into the metabolic pathways differentially affected in males and females by Fabp
gene ablations, gene ontology analysis using DE genes grouped by sex for each genotype was carried
out. The top 10 biological processes having a p-value < 0.05 are shown in Table 1. Two groups of
biological processes, namely metabolism-related and immune-related processes, comprise the major
proportion of affected processes. Specifically, DE genes influenced by Fabp2 or Fabp6 gene single
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deletions are involved in metabolism-related biological processes, whereas combined Fabp2 and Fabp6
gene deletions mainly influenced immune-related biological processes. Furthermore, the males and
females displayed distinct alterations of biological processes in response to the same Fabp gene ablation,
which is concordant with previously reported changes observed in Fabp2 gene-disrupted mice [46].

Table 1. Gene ontology analysis for the DE genes induced in different genotypes. The top 10 biological
processes that are enriched in each genotype are shown, as are the number of genes that fall within
each process (count) and the p-values obtained.

Fabp2–/– (M) Count p-Value Fabp2–/– (F) Count p-Value

GO:0055114~oxidation-reduction process 22 6.42 × 10−8 GO:0006749~glutathione metabolic process 5 6.03 × 10−4

GO:0006629~lipid metabolic process 17 6.02 × 10−7 GO:0006805~xenobiotic metabolic process 4 8.68 × 10−4

GO:0032922~circadian regulation of gene
expression 7 7.89 × 10−6 GO:0008152~metabolic process 12 0.001148

GO:0008202~steroid metabolic process 7 4.98 × 10−5 GO:0042130~negative regulation of T cell
proliferation 4 0.003863

GO:0048511~rhythmic process 8 6.51 × 10−5 GO:0035458~cellular response to interferon-β 4 0.004144

GO:0006631~fatty acid metabolic process 8 2.24 × 10−4 GO:0035729~cellular response to hepatocyte
growth factor stimulus 3 0.00693

GO:0006805~xenobiotic metabolic process 4 8.33 × 10−4 GO:0055085~transmembrane transport 9 0.00846

GO:0006694~steroid biosynthetic process 5 0.001392 GO:0017144~drug metabolic process 3 0.008746

GO:0007623~circadian rhythm 6 0.001573 GO:0032922~circadian regulation of gene
expression 4 0.012478

GO:0006641~triglyceride metabolic process 4 0.003454 GO:0006807~nitrogen compound metabolic
process 3 0.012935

Fabp6–/– (M) Fabp6–/– (F)

GO:0045944~positive regulation of
transcription from RNA polymerase II

promoter
14 0.002734 GO:0006915~apoptotic process 10 0.001953

GO:0006814~sodium ion transport 5 0.004634 GO:0045779~negative regulation of bone
resorption 3 0.002748

GO:0048511~rhythmic process 5 0.0051837 GO:0006397~mRNA processing 7 0.005133

GO:0006351~transcription,
DNA-templated 20 0.005575 GO:0008652~cellular amino acid biosynthetic

process 3 0.006677

GO:0033137~negative regulation of
peptidyl-serine phosphorylation 3 0.008042 GO:0033137~negative regulation of

peptidyl-serine phosphorylation 3 0.006677

GO:0008652~cellular amino acid
biosynthetic process 3 0.008042 GO:0006094~gluconeogenesis 3 0.00721

GO:0051726~regulation of cell cycle 4 0.023003 GO:0061430~bone trabecula morphogenesis 2 0.014694

GO:0035020~regulation of Rac protein
signal transduction 2 0.032085 GO:0051726~regulation of cell cycle 4 0.017872

GO:0006915~apoptotic process 8 0.03525 GO:0006564~L-serine biosynthetic process 2 0.019545

GO:0006810~transport 17 0.035583
GO:0045944~positive regulation of

transcription from RNA polymerase II
promoter

11 0.024183

Fabp2–/–;Fabp6–/– (M) Fabp2–/–;Fabp6–/– (F)

GO:0002376~immune system process 26 5.43 × 10−9
GO:0019886~antigen processing and

presentation of exogenous peptide antigen
via MHC class II

6 9.87 × 10−8

GO:0034341~response to interferon-γ 8 1.55 × 10−7 GO:0002376~immune system process 17 3.32 × 10−7

GO:0019882~antigen processing and
presentation 10 2.21 × 10−7 GO:0019882~antigen processing and

presentation 8 4.85 × 10−7

GO:0055114~oxidation-reduction process 32 2.85 × 10−7 GO:0034341~response to interferon-γ 6 2.97 × 10−6

GO:0035458~cellular response to
interferon-β 9 2.95 × 10−7 GO:0035458~cellular response to interferon-β 6 3.04 × 10−5

GO:0042572~retinol metabolic process 7 2.00 × 10−6 GO:0006955~immune response 12 3.31 × 10−5

GO:0019886~antigen processing and
presentation of exogenous peptide antigen

via MHC class II
6 2.08 × 10−6

GO:0002504~antigen processing and
presentation of peptide or polysaccharide

antigen via MHC class II
4 5.60 × 10−5

GO:0006955~immune response 17 1.23 × 10−5 GO:0042130~negative regulation of T cell
proliferation 5 4.31 × 10−4

GO:0007584~response to nutrient 9 2.63 × 10−5 GO:0060337~type I interferon signaling
pathway 3 0.001154

GO:0006629~lipid metabolic process 22 2.64 × 10−5 GO:0031175~neuron projection development 7 0.00154
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Together, the data show that Fabp gene deletions, either separately or combined, resulted in the
sex-specific modification of gene expression in the small intestine. The identity of genes with altered
expression in Fabp2–/– and Fabp6–/– mice are different from those in Fabp2–/–;Fabp6–/– mice, suggesting
that the biological processes that are affected when both Fabp2 and Fabp6 genes are missing are different
from those when only one of these genes is absent.

3.3. Predicted Nutrient Metabolism Processes in the Small Intestine of Fabp Gene Ablated Mice Are Sex Biased

Since the small intestine is the frontline for nutrient acquisition, transport, metabolism, as well as
signaling, and where sex differences are also known to be pre-existing [47–50], we asked whether the
genes involved in nutrient metabolism were influenced differently in male and female mice by the
loss of specific Fabps. The affected biological process (GO:BP) identified was categorized according to
macromolecule/macronutrient metabolism (carbohydrate, protein and lipid metabolism) and sterol/bile
acid metabolism, and then the number of unique DE genes belonging to these categories was stratified
according to genotype and sex. As shown in Figure 3, Fabp2–/– and Fabp2–/–;Fabp6–/– mice displayed
similar metabolism patterns partitioned by sex. Specifically, all four categories of metabolism were
affected more in males than in females, and the lipid and protein metabolism were influenced the most
in both sexes. However, this pattern was not evident in the Fabp6–/– mice, where the total numbers of
DE genes involved in macronutrient metabolism were similar in male and female mice. In these mice,
protein metabolism was influenced the most in males while lipid metabolism was greatly influenced in
females. Surprisingly, only a few genes involved in sterol/bile acid metabolism were identified in both
male and female Fabp6–/– mice (Figure 3). For Fabp2–/–;Fabp6–/– mice, there was a substantially higher
number of DE genes involved in macronutrient and sterol metabolism compared to mice with single
Fabp gene disruption.
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The biological processes that comprise the nutrient metabolism categories are listed in the Supplementary
Table S2.

We used the interaction network analysis to gain insight into the possible functions of DE genes
based on the predicted interactions among their encoded proteins. Generally, males and females had
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very different network patterns in response to same Fabp gene ablation, suggesting sex-dependent
biological responses, even though some nodes of the networks are shared (Figure 4). Specifically,
the first-order networks of Fabp6–/– and Fabp2–/–;Fabp6–/– males contain more seed proteins, which
are starting-point proteins extracted by the NetworkAnalyst to build networks, than females (28 for
Fabp6–/– and 90 for Fabp2–/–; Fabp6–/– males; 24 for Fabp6–/– and 66 for Fabp2–/–;Fabp6–/– females) whereas
the network of Fabp2–/– males contains fewer seed proteins (25 for Fabp2–/– males and 33 for Fabp2–/–

females) (Figure 4). When comparing the nodes that have more than one interacting protein, all mice
(all genotypes, both sexes) have one node in common, forkhead box P3 (Foxp3), whereas only male
mice share NF-KB (Nfkb1) and Sirtuin-1 (Sirt1). Interestingly, when both Fabp2 and Fabp6 are missing,
Nfkb1, but not Sirt1, appear only in the network map of female mice. Fabp2–/–;Fabp6–/– mice have a
greater number of nodes in both sexes than the combined number of nodes in Fabp2–/– and Fabp6–/–

mice, suggesting that a larger and more complex interaction network was affected when both Fabp2
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the seed proteins are shown. Proteins represented in grey are known to directly interact with the seed
proteins. The nodes are listed in the Supplementary Table S3.

4. Discussion

The existence of sexual dimorphism in lipid metabolism in the intestine has been described in
both humans and mice [45,51,52]. As the most abundant cytoplasmic proteins that play pivotal roles in
lipid metabolism in the small intestine, intestinal Fabps have been shown to exhibit sexually dimorphic
expression in the small intestine of mice [20,27]. As for human intestinal FABPs [53], less is known
about sex differences in the expression of their genes owing to the difficulty in obtaining samples for
study. The targeted disruption of intestinal Fabp genes in mice also results in sexually dimorphic
effects. The ablation of the Fabp2 gene causes a much larger degree of metabolic disturbance in male
Fabp2–/– mice than female Fabp2–/– mice [21,54]. Similarly, the ablation of the Fabp6 gene induced
differential alterations in male and female mice regarding bile acid metabolism [27]. The whole-body
deficiency of the Fabp1 has also been shown to induce sexually dimorphic phenotypes [32,55] but since
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the Fabp1 gene is expressed in many tissues, particularly in the liver, the metabolic consequences of
intestine-specific deficiency of Fabp1 is not readily apparent from currently available Fabp1–/– mouse
models. It is clear from available studies that the ablation of genes encoding intestinal Fabps impacts on
the expression of genes in a variety of tissues, in addition to the small intestine, and alter whole-body
metabolism in a sex-dimorphic manner [27,54,55].

The sex dimorphic transcriptome is determined by many factors. Despite the males and females
sharing a common autosomal genome, it is estimated that the sex-biased expression of genes in specific
tissues ranges from less than 1% to 30%, depending on the sequencing techniques and statistical cut-offs
used in the analyses [56,57]. Indeed, sex-dependent gene expression patterns are evident in the brain,
liver, muscle, adipose tissue, and intestines of mice [43,58,59]. Sex differences in the transcriptome
of a specific tissue are likely framed by the combined effects of biological sex as dictated by sex
chromosomes, sex hormones or the sex-specific modification of the epigenome [60,61]. For example,
substantial sex-biased gene expression is clearly evident in the small intestine of prepubescent mice
and even as early as during embryo development [43,62]. In our study, nearly all the of DE genes
detected in the intestinal transcriptome of all Fabp gene-disrupted genotypes were resident on
autosomal chromosomes and very few were involved in sex hormonal-related processes. Moreover,
protein–protein interaction analysis revealed that the major networks involving the DE genes in the
majority of Fabp gene-disrupted genotypes included transcriptional signaling processes related to
PPAR and FXR. It has been shown that PPAR and FXR themselves manifest a sexually dimorphic
expression [63–65]. Given the fact that Fabps share the many ligands with these nuclear receptors,
the loss of specific Fabps could further alter the ability of these transcription factors to regulate gene
expression in a sex-dependent manner. All these findings might suggest the existence of sex-biased
regulatory networks, which are constructed by proteins and RNAs with sex-biased abundance,
including Fabps. Such networks, in turn, influence the internal availability of bioactive substrates such
as nutrients and xenobiotics. Consequently, biological sex modifies the physiological responses to
extrinsic interventions and differentiates the onset, development, and outcome of diseases in males
and females [44,66].

This study provides insights into the potential biological roles and functional relationships of the
intestinal Fabps. It was previously suggested that multiple Fabps in the small intestine might share
some functions to ensure fatty acid and bile acid metabolism [20]. Fabp1 and Fabp2 show preference
for binding fatty acids whereas Fabp6 prefers bile acids [9,26]. On the other hand, Fabp1 and Fabp6 can
bind bile acids and fatty acids, respectively, at lower affinities [8,26]. Indeed, we found that mice lacking
both Fabp2 and Fabp6 were viable. Interestingly, the network analysis revealed the loss of both Fabps
affected a much larger number of processes in male mice than in female mice, similar to Fabp2–/– mice.
Future studies will uncover how these changes manifest at the organismal level. In addition, different
regions of the small intestine have specialized metabolic and immune functions [67,68]. It would also
be interesting to determine the nature of the changes in the gene expression program at these regions
of the small intestine in males and females.

It should be noted that the findings of our analyses are applicable to a population of mice with the
same age, fed the standard murine laboratory diet and housed under standard vivarium environmental
conditions. Thus, our study does not inform on how the gene expression programs of male and
female small intestine might evolve as a function of aging, in response to specific dietary challenges,
changes in environmental conditions, nor does it provide information on changes in protein abundance
or activity. Nevertheless, our findings provide a reference point for future studies to understand
how biological sex impacts on the genomic responses associated with metabolic pathways involved
in nutrient processing by the intestines, overall nutrient metabolism and susceptibility to various
diet-induced metabolic diseases.

In conclusion, our study shows that sex is an important determinant of the intestinal transcriptome.
Moreover, the pre-existing differences between males and females may govern the distinct alterations
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of the intestinal gene expression program manifested by males and females in response to the targeted
inactivation of genes encoding the intestinal Fabps.
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