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Atrial fibrillation (AF) is the most common arrhythmia that requires medical attention, and
its incidence is increasing. Current ion channel blockade therapies and catheter ablation
have significant limitations in treatment of AF, mainly because they do not address the
underlying pathophysiology of the disease. Oxidative stress has been implicated as a
major underlying pathology that promotes AF; however, conventional antioxidants have
not shown impressive therapeutic effects. A more careful design of antioxidant therapies
and better selection of patients likely are required to treat effectively AF with antioxidant
agents. Current evidence suggest inhibition of prominent cardiac sources of reactive
oxygen species (ROS) such as nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase and targeting subcellular compartments with the highest levels of ROS may prove
to be effective therapies for AF. Increased serum markers of oxidative stress may be an
important guide in selecting the AF patients who will most likely respond to antioxidant
therapy.
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INTRODUCTION
Atrial fibrillation (AF), which affects approximately 2.5 million
individuals in the United States, is the most common arrhythmia
that requires medical treatment. The incidence of AF is increas-
ing with the increase in the elderly population. The incidence of
AF increases with age from less than 0.5 per 1000 person-years in
individuals younger than 50 years to approximately 10 per 1000
person-years in those older than 70 years (Krahn et al., 1995).
Miyasaka and colleagues estimated that 15.9 million people in the
United States will have AF by 2050 (Miyasaka et al., 2006). The
most serious adverse effects of AF are increased risk of stroke and
peripheral embolization caused by thrombus formation mainly
in the left atrial appendage (LAA). The incidence of stroke after a
diagnosis of AF is 1–5% annually, depending on the patient’s age
and the presence of other risk factors.

The pathophysiology of AF is not completely understood.
Reentrant circuits and ectopic activities particularly around the
muscular sleeves of the pulmonary veins have been identified
as potential electrophysiological mechanisms of AF (Jais et al.,
1997; Van Wagoner, 2007; Iwasaki et al., 2011); however, these
arrhythmias are probably the final representations of the underly-
ing pathophysiological events in AF. Targeting the focal activities
and reentry circuits without addressing the underlying patholo-
gies, for example as catheter ablation therapy does, is likely to have
constrained success because of this. Current antiarrhythmic drugs
that usually block one or a few ion channels in cardiomyocytes are
not highly effective in the treatment of AF, and they have shown
serious adverse effects (Gjesdal, 2009). A better understanding
of the pathophysiologic events upstream to reentry, focal activity
and ionic current abnormalities are required to identify effective
therapeutic targets.

Excess reactive oxygen species (ROS) have been implicated in
pathogenesis of AF by affecting ion channels and propagation
of the action potential. Nevertheless, oxidative stress biology is
complex, and general radical scavengers have not shown impres-
sive therapeutic effects in clinical trials (Sesso et al., 2008; Van
Wagoner, 2008). This review will consider this paradox in further
detail.

LIMITATIONS OF CURRENT THERAPIES
Several limitations can be mentioned for the current available
therapies for AF. The underlying reason for most of these short-
comings lies in the fact that the current therapies do not address
the underlying pathophysiology of AF.

LIMITATIONS OF ION CHANNEL BLOCKADE
Current antiarrhythmic medications usually target one or a few
ion channels and almost always block these channels. Table 1
summarizes the most common adverse effects of the antiarrhyth-
mic drugs that are commonly used in the management of AF, and
Table 2 provides a summary of most important clinical studies
on proarrhythmic effects of antiarrhythmic drugs. Proarrhythmia
is an adverse effect of all current antiarrhythmic agents, which
suggests that proarrhythmia is an adverse effect of the current
pharmacological approach rather than a side effect of a few of
those drugs. The Cardiac Arrhythmia Suppression Trial (CAST)
was a landmark clinical trial in which class IC antiarrhythmic
agents were used to suppress premature ventricular contractions
(PVCs) after myocardial infarction (MI) to reduce the risk of
ventricular arrhythmias (CAST Investigators, 1989). The study
rationale was that PVCs are associated with a higher rate of
sudden arrhythmic death, and antiarrhythmic agents effectively
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Table 1 | The most common adverse effects of frequently used antiarrhythmic drugs in the management of atrial fibrillation.

Class Drug Adverse effects** * * * *       

IA Quinidine • Nausea, vomiting, diarrhea, abdominal pain
• Tinnitus, hearing and visual disturbances, altered mental status
• Thrombocytopenia, hemolytic anemia, anaphylaxis
• Hypotension, QRS prolongation, syncope, torsades de pointes, QT prolongation

Procainamide • Rash, myalgia, vasculitis
• Fever, agranulocytosis
• Drug-induced lupus
• Hypotension, QT prolongation, torsades de pointes, bradyarrhythmia

Disopyramide • Urinary retention, constipation, glaucoma, xerostomia
• Negative inotropy
• QT prolongation, torsades de points

IB Mexiletine • Tremor, anxiety, dysarthria, dizziness, diplopia, nystagmus
• Nausea, vomiting, gastrointestinal disturbance
• Hypotension, bradyarrhythmia

IC Flecainide • Negative inotropy, bradyarrhythmia
• Decreases pacing threshold
• Altered mental status, irritability

Propafenone • Dizziness, blurred vision
• Bronchospasm
• Bradyarrhythmia, heart failure exacerbation
• Decreases pacing threshold

II Beta Blockers • Hypotension, bradyarrhythmia, heart failure exacerbation
• Bronchospasm
• Depression
• Sexual dysfunction

III Amiodarone • Pulmonary fibrosis
• Abnormal liver function tests
• Abnormal thyroid function
• Bradyarrhythmia, heart failure exacerbation
• Tremor
• Photosensitivity
• Corneal deposits

Dronedarone • Nausea, vomiting, diarrhea, and gastrointestinal disturbance
• Asthenic condition
• Bradycardia
• Skin rash
• Liver injury
• Increase cardiovascular mortality in patients with NYHA class IV or recent decompensated heart failure
• Increase risk of cardiovascular mortality, development of heart failure and stroke in permanent atrial fibrillation
• QT prolongation
• Hypokalemia and hypomagnesaemia with potassium-depleting diuretics

Sotalol • Bradyarrhythmia, torsades de pointes

IV Calcium Channel
Blocker (Verapamil)

• Hypotension, bradyarrhythmia

∗A common adverse effect of all the above antiarrhythmic medications is proarrhythmia.

suppress PVCs. Nevertheless, treatment with an antiarrhythmic
drug in the CAST trial was associated with a higher cardiovas-
cular mortality rate. The treatment strategy in CAST involved
simply suppressing focal activity and blocking the sodium chan-
nel. Later, it was found that sodium channels are down-regulated
in patients with heart failure (Santana et al., 2005), and therefore
further blockade of those channels may promote arrhythmia.

Targeting ion channels as a therapeutic strategy carries the
disadvantage of a narrow therapeutic index in which both low

and high currents can cause arrhythmia. In addition, AF affects
more than one ion current and blockade of one current may even
potentiate the current imbalance toward arrhythmia.

LIMITATIONS OF CATHETER ABLATION
Catheter ablation uses tissue destruction to block the propagation
of the focal activity or to disrupt reentrant circuits. Catheter abla-
tion has achieved considerable success in treating certain types of
arrhythmia. Catheter ablation is an anatomically fixed treatment
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Table 2 | Clinical studies on the proarrhythmia of antiarrhythmic drugs.

The Vaughn Williams class of

antiarrhythmic

Clinical Studies on the proarrhythmic effects

Class IA (Quinidine, procainamide,
and disopyramide)

– A meta-analysis of six clinical studies showed that using quinidine for atrial fibrillation management is associ-
ated with more than 3 times higher mortality (2.9% vs. 0.8%, the quinidine-treated and no quinidine patients
respectively, p < 0.05) (Coplen et al., 1990).
– A meta-analysis of four clinical trials showed that quinidine was associated with significantly higher arrhyth-
mia and sudden arrhythmic death than flecainide, mexiletine, and propafenone with 11 sudden cardiac deaths
among 506 patients who were treated with quinidine (Morganroth and Goin, 1991).

Class IB (Lidocaine, tocainide,
mexilitine, and diphenylhydantoin)

– A small study of patients with Wolff-Parkinson-White and atrial fibrillation suggested that lidocaine may
increase pre-excitation and ventricular rate in atrial fibrillation (Akhtar et al., 1981).

Class IC (Flecainide, propafenone,
and moricizine)

– The landmark study, the Cardiac Arrhythmia Suppression Trial, showed that total and cardiovascular mortality
increases with the use of these drugs in patients after myocardial infarction despite suppression of premature
ventricular beats (CAST Investigators, 1989).
– The Cardiac Arrest Study Hamburg (CASH) showed that using propafenone in patients after a sudden cardiac
arrest is associated with significantly higher mortality compared to using beta blocker or amiodarone (Siebels
et al., 1993).

Class III (Amiodarone, sotalol,
bretylium, dofetilide, azimilide, and
ibutilide)

– Although these drugs and particularly amiodarone are effective in acute treatment of sudden cardiac death
several large clinical trials have shown no survival benefit from using these drugs compared to placebo proba-
bly because of their proarrhythmic effect in long term use. The European Myocardial Infarct Amiodarone Trial
(EMIAT) revealed that amiodarone in patients after myocardial infarction with left ventricular ejection fraction <

40% has no survival benefit compared to placebo (Julian et al., 1997). Survival Trial of Antiarrhythmic Therapy
in Congestive Heart Failure, a double blind randomized clinical trial in the United States that studied 674 symp-
tomatic heart failure patients with ejection fraction < 40% and at least 10 premature ventricular beats per hour
did not show any survival benefit for amiodarone compared to placebo (Singh et al., 1995). A Canadian study
similarly showed no benefit from amiodarone in prevention of sudden cardiac death (Cairns et al., 1997). Use
of d-sotalol in patients with MI may be associated with increased mortality (Waldo et al., 1996).

that may be the best choice for patients with an anatomically
fixed substrate. For example, a bypass tract between the atria and
the ventricles can be treated effectively with catheter ablation.
Nevertheless, AF is often a complex arrhythmia with widespread
and dynamic substrates. Thus, a line of ablation that cuts the
current reentrant circuit may not be an effective treatment for
future AF, since the substrate of arrhythmia may change loca-
tion over time. The necessity to continue anticoagulation for
prevention of stroke after catheter ablation of AF suggests the
lack of complete suppression of AF by this treatment. In addi-
tion, the ablation-generated fibrotic scar tissue may provide an
arrhythmogenic substrate and the procedure is associated with
some immediate and long term complications (Maan et al.,
2011).

ROS AND THEIR CARDIAC SOURCES
REACTIVE OXYGEN SPECIES
The term ROS refers to a class of low molecular weight molecules
that are partially reduced derivatives of molecular oxygen. ROS
are wide range of molecules that include the superoxide radical
anion (O•−

2 ); hydrogen peroxide (H2O2); the hydroxyl radical
(OH•+ OH−); peroxynitrite (ONOO−), which is the prod-
uct of the diffusion-controlled reaction between •NO and O•−

2 ;
and the derived radicals •NO2 and CO•−

3 . Low levels of ROS
are necessary to mediate physiologic responses and to main-
tain homeostasis through the regulation of signal transduction
events. Nevertheless, when cellular levels of ROS exceed the cell’s
ability to reduce excess free radicals, oxidative stress develops.
The physiological concentration of ROS molecules may vary

under different conditions and in different cellular compart-
ments. In addition, methods of ROS measurement have certain
limitations (Tarpey and Fridovich, 2001). It is generally thought
that the intracellular concentration of superoxide rarely exceeds
1 nM (Brawn and Fridovich, 1980; Tarpey et al., 2004), and the
normal physiological concentration of H2O2 is less than 15 μM
(Tarpey and Fridovich, 2001; Kulagina and Michael, 2003; Liu
et al., 2004; Tarpey et al., 2004). How much ROS increase in differ-
ent pathological conditions may greatly vary; however, the known
physiological range of ROS can provide a general guide to use rel-
evant ROS concentrations and avoid extremely high levels of ROS
in experimental studies.

Most ROS react with multiple biomolecules (proteins,
deoxyribonucleic acid, ribonucleic acid, and lipids) and cause the
loss of enzyme function, breaks in DNA strands, DNA mutations,
lipid peroxidation, and cellular death. Protein cross-links, frag-
mentation, hydroxylation, nitration, halogenation, carboxylation,
and reactive aldehyde formation are common outcomes of the
interaction of proteins with various oxidants. Most of the ROS
effects on proteins are irreversible and result in loss of function
of those proteins, which eventually are degraded and removed by
proteasomes (Levine, 2002). An aggressive ROS molecule such as
hydroxyl radical can modify most amino acids (Halliwell et al.,
1987); however, some amino acids such as cysteine, methionine,
proline, arginine, tyrosine, and tryptophan have generally higher
susceptibility to ROS modifications.

One important way in which ROS exert their effect is by
modifying the thiol group of proteins (cysteine amino acid
contains thiol groups; Chen et al., 2003) often times interfering
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with signal transduction cascades what leads to low pKa thiol
phosphatase inhibition with consequent augmentation of kinase
activity (Sommer et al., 2002; Connor et al., 2005). In addi-
tion to direct oxidation of thiol groups of proteins, ROS can
oxidize low molecular weight biomolecules such as glutathione
generating secondary oxidative products that then may react with
protein thiols (Eaton, 2006). Methionine residues can be oxi-
dized to methionine-S-sulfoxides and methionine-R-sulfoxides,
which may be a reversible process; however, further oxidation of
methionine residues to methionine-S-sulfone seems to be irre-
versible (Weissbach et al., 2002). An additional effect of ROS on
amino acids is reactive aldehyde formation. It has been shown
that ROS (and particularly HOCl) oxidize almost all amino
acids commonly found in the plasma to a corresponding family
of aldehydes in high yield (Hazen et al., 1998a,b). The reac-
tive aldehydes have been shown to mediate the effect of ROS
in cardiovascular disorders such as atherosclerosis and in dia-
betes (Uchida, 2000). Carbonylation of proline, lysine, threonine,
and arginine is another important protein modification by ROS
(Levine, 2002). In failing explanted human hearts, an increase
in the carbonylation of actin and tropomyosin, and an increase
in the dimerization and nitrosation of tropomyosin have been
reported as evidence of the oxidative modifications of impor-
tant cardiac proteins (Canton et al., 2011). Table 3 summarizes
some of the important modifications of amino acids by oxidative
stress.

ROS reactions can also lead to the formation of lipid hydroper-
oxides, which are oxygenated products of the primordial lipid
radical. Lipid peroxidation is self-perpetuating and thus ampli-
fies several-fold the initial damage of ROS-induced oxidation.
The accumulation of reactive lipid peroxides and lipid-derived
aldehydes also contributes to oxidant-mediated signaling and
cell damage. DNA is a frequent target of ROS. The most com-
mon ROS-induced modifications to DNA include single-strand
breaks. Double-strand breaks are potentially hazardous to cells
and are repaired via two main pathways: homologous recombi-
nation and nonhomologous end-joining. In addition to strand

breakage, hydroxylation, adduct formation, and the nitration of
bases can damage the DNA. Repair mechanisms exist that are
largely dependent on base excision, replacement, and relegation
(Riis and Poulsen, 2005).

CARDIAC SOURCES OF ROS
Of the numerous cellular sources of ROS generation, mito-
chondria, the enzyme nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase, and uncoupled NOS are considered
the major ROS production systems in the human heart. Those
sources of cardiac ROS are interrelated and often activation
of one results in activation of the others (Doughan et al.,
2008; Zinkevich and Gutterman, 2011; Figure 1). For example,
mitochondrial function differentially modulates NADPH oxi-
dase expression and activity (Wosniak et al., 2009; Kuroda et al.,
2010).

In mitochondria, when electrons flow from nicotinamide
adenine dinucleotide (NADH) and flavin adenine dinucleotide
to molecular oxygen via complex shuttle mechanisms, partially
reduced semiquinone intermediates are produced and can react
directly with O2 to produce O•–

2 . The coenzyme Q semiquinone
is believed to be the major point of electron leakage in mitochon-
dria.

The NAD(P)H oxidase is an enzyme that uses NAD(P)H to
reduce molecular oxygen and produces large amounts of super-
oxide radicals. ROS are generated as a primary product of the
NAD(P)H oxidase system, rather than a byproduct as they are
in the mitochondrial system. Although NAD(P)H oxidase activ-
ity was first described in macrophages, a number of NAD(P)H
oxidase isoforms (the Nox family) have been discovered in vari-
ety of nonphagocytic cells and Nox1, Nox2, and Nox4 have
been detected in the heart. Nox activity is regulated in part by
angiotensin II (Sorescu et al., 2002).

Uncoupled or dysfunctional nitric oxide synthases (NOSs)
are other important sources of ROS. There are three major iso-
forms of NOS enzymes: inducible NOS (iNOS), endothelial NOS
(eNOS), and neuronal NOS (nNOS). Their basic function is

Table 3 | Some important amino acid modifications by reactive oxygen/nitrogen species.

Modification Reaction description Most commonly affected amino acids

Thiol modification (Barford,
2004)

It results in formation of sulfenic acids, intra- and intermolecular
disulfides, cyclic sulfenamides, glutathionylation, sulfenyl-amide
linkages, and S-nitrosation. Some of the reactions are reversible

Cysteine

Methionine oxidation
(Stadtman et al., 2003)

Similar to cysteine, methionine has sulfur in its structure. Its oxidation
by ROS results in formation of methionine sulfoxide. The reaction is
reversible by methionine sulfoxide reductases. Further oxidation to
methionine-S-sulfone may not be reversible

Methionine

Nitrosylation (Alvarez and
Radi, 2003)

Addition of nitrosyl group to the protein. S-nitrosation refers to the
reaction with cysteine and methionine

Cysteine, methionine, tyrosine, trypto-
phan, phenylalanine, histidine

Carbonylation (Wong et al.,
2010)

Introducing the carbonyl group to the amino acid. May be reversible
by a decarbonylation process. Carbonyl groups may form cross linkage
with lysine residue of another protein. Detection of carbonylated
proteins is an important method for detection of the ROS effect

Proline, arginine, lysine, threonine

Reactive aldehyde formation
(Hazen et al., 1998a,b)

ROS (particularly HOCl) can virtually affect all amino acids to form
reactive aldehydes. Generally irreversible

Most amino acids
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FIGURE 1 | Schema for the treatment of AF by reducing ROS.

Mitochondria, NADPH oxidase and uncoupled NOS are probably
the most important cardiac sources of excess ROS. There are positive
feedbacks among these sources in a way that activation of one results in
increased activity and ROS production of the others. A variety of ROS
molecules are produced as a result of activation of those sources of
cardiac ROS which then oxidize proteins and lipids resulting in arrhythmia in
several ways. Three main therapeutic strategies to prevent ROS induced

arrhythmia are targeting the main cardiac sources of ROS, neutralizing
ROS molecules, and searching for the key molecules that mediate the
arrhythmogenic effects of ROS. AF, atrial fibrillation; CaMKII,
Ca2+ /calmodulin-dependent protein kinases II; CX43, connexin43; NADPH,
nicotinamide adenine dinucleotide phosphate; NCX, Na+/Ca2+ exchanger;
NOS, nitric oxide synthase; PLB, phospholamban; ROS, reactive oxygen
species; RYR, ryanodine receptor, SERCA, sarco/endoplasmic reticulum
Ca2+ -ATPase.

oxidizing the terminal guanidine nitrogen atom of L-arginine by
using electrons from NADPH to produce NO., as shown below:

2L-arginine + 4O2 + 3NADPH + 3H+ => 2L-citrulline

+ 2 NO• + 3NADP+ + 4H2O

NO• increases the cGMP level. It reversibly binds to and
inhibits complex IV in mitochondria (Brown and Cooper, 1994),
and it may nitrosate some thiols (Stamler and Hausladen, 1998).
The oxidation of NO• leads to the formation of •NO2, which is
also involved in redox signaling and direct tissue damage. NO•
signaling is diverse. One important interaction is the reaction
of NO• with superoxide, the product of which is peroxynitrite
(ONOO−/ONOOH). The formation of ONOO−/ONOOH can
directly or via the depletion of tetrahydrobiopterin (BH4) lead

to NOS uncoupling, which further reduces NO• production.
Increased superoxide production has been shown to reduce NO•
signaling with detrimental effects on endothelial cell homeostasis
(Freeman et al., 1995).

In addition to mitochondria, NAD(P)H oxidase, and NOS sys-
tems, there are other sources of ROS (e.g., peroxidases, xanthine
oxidase, and aldehyde oxidase), the roles of which in car-
diac oxidative stress are less well-documented than these three
sources.

ROS IN ATRIAL FIBRILLATION
AF is associated with several clinical risk factors including some
cardiac and respiratory disorders, aging, and surgeries. Table 4
shows the main clinical risk factors of AF. An elevated level of ROS
has been linked with increasing age, heart failure, diabetes melli-
tus, coronary artery disease, obesity, and alcohol intoxication, all
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conditions associated with AF (Sovari and Dudley, 2010). In addi-
tion, multiple studies have shown an increase in markers of oxida-
tive stress in humans with AF. The activity of myofibrillar creatine
kinase (MM-CK), which is redox sensitive, can be used as an
indirect marker of oxidative stress (Mihm et al., 2001). MM-CK
activity is decreased, and immunodetectable 3-nitrotyrosine, a
marker for the presence of peroxynitrite, is increased in right
atrial appendage (RAA) of patients with AF compared to those
in normal sinus rhythm (Mihm et al., 2001). Moreover, coronary
artery bypass surgery, a procedure that is associated with AF in
a considerable percentage of patients, is linked with an increase
in oxidized glutathione and lipid peroxidation (De Vecchi et al.,
1998). Derivatives of reactive oxidative metabolites (DROMs)
and ratios of oxidized to reduced glutathione [E(h) GSH] and
cysteine [E(h) CySH] that quantify oxidative stress in patients are
increased in patients with AF (Neuman et al., 2007). The increase
in the odds ratios for AF for an elevated E(h) GSH, E(h) CySH,
or DROMs are 6.1 (95% CI, 1.3–28.3; P = 0.02), 13.6 (95% CI,
2.5–74.1; P = 0.01), and 15.9 (95% CI, 1.7–153.9; P = 0.02),
respectively (Neuman et al., 2007).

Kim and colleagues measured NAD(P)H-stimulated superox-
ide production in RAA, and plasma markers of lipid and protein
oxidation (thiorbabituric acid-reactive substances, 8-isoprostane,

Table 4 | Main clinical risk factors of atrial fibrillation and their

association with oxidative stress.

Risk factors of atrial

fibrillation

Reference

CARDIAC DISEASES

Hypertension (De Champlain et al., 2004)

Coronary artery disease (Vassalle et al., 2004; Madamanchi
et al., 2005)

Cardiomyopathies and heart
failure

(Ide et al., 2000; Sam et al., 2005)

Valvular diseases (Liberman et al., 2008; Miller et al.,
2008)

PULMONARY DISEASES

Pulmonary embolism (Ovechkin et al., 2007)

Chronic obstructive pulmonary
disease

(Hattori et al., 1997)

Obstructive sleep apnea (Yamauchi et al., 2005)

Pneumonia (Duflo et al., 2002)

SURGERIES

CABG and valve surgeries (Milei et al., 2001)

Cardiac transplantation (Kofler et al., 2008)

OTHER DISEASES AND CONDITIONS

Aging (Kregel and Zhang, 2007)

Hyperthyroidism (Civelek et al., 2001)

Diabetes Mellitus and obesity (Li et al., 2008)

Autonomic dysfunction (Irigoyen et al., 2005)

Alcohol (Cederbaum, 2001)

From Sovari, A. A. and Dudley, S. C. (2010). “Atrial Fibrillation and oxidative

stress,” in Studies on Cardiovascular Disorders, Oxidative Stress in Applied Basic

Research and Clinical Practice, 1st Edn., eds H. Sauer and A. Shah (Humana

Press – Springer Science), 373–387; ISBN-13: 978-1607615996.

and protein carbonyls) in 170 patients undergoing coronary
artery bypass surgery. They found that NAD(P)H oxidase activ-
ity was the strongest independent predictor of postoperative AF
(odds ratio 2.41; 95% confidence interval 1.71–3.40, p < 0.0001;
Kim et al., 2008).

In addition, genetic studies have shown that the gene expres-
sion pattern of atrial tissue in patients with AF is associated with
oxidative stress. AF in human has been shown to be associated
with a significant reduction in the gene expression of antioxidant
genes as well as a significant increase in the gene expression of
five genes related to ROS, supporting a clear shift toward pro-
oxidation state in AF (Kim et al., 2003). The gene expression
of glutathione peroxidase-1 and heme oxygenase-2 are decreased
while the gene expression of flavin containing monooxygenase-1,
monoamine oxidase-B, uniquin specific protease-8, tyrosine-
related protein-1, and tyrosine 3-monooxygenase are increased
in atrial tissue of AF patients (Kim et al., 2003). For a more
complete list of gene expression and protein level changes of
pro-oxidant and antioxidant enzymes in AF patients please see
Table 5.

Recent studies on the effect of omega-3 fatty acids on ROS pro-
duction have produced conflicting results (Kowey et al., 2010; Liu
et al., 2011), and it was shown that some forms of polyunsaturated

Table 5 | Gene expression and protein level of pro-oxidants and

antioxidants in the right atrial appendage of AF patients compared to

patients in sinus rhythm.

Gene expression Protein level

PRO-OXIDANTS

Monoamine oxidase B (Kim et al.,
2003)

⇑⇑⇑

Flavin containing monooxygenase 1
(Kim et al., 2003)

⇑⇑⇑

Tyrosinase-related protein 1 (Kim
et al., 2003)

⇑⇑⇑ ⇑

Tyrosine 3-monooxygenase (Kim
et al., 2003)

⇑⇑ ⇑

Ubiquitin specific protease 8 (Kim
et al., 2003; Reilly et al., 2011b)

⇑⇑

NAD(P)H oxidase (Kim et al., 2003;
Reilly et al., 2011b)

⇑ ⇑

Cytochrome P 450 (Kim et al., 2003) ⇑
Xanthine oxidase (Kim et al., 2003) ⇑
ANTI-OXIDANTS

Peroxiredoxin 3 (Ohki et al., 2005) ⇓⇓⇓
Glutathione peroxidase 1 (Kim
et al., 2003)

⇓⇓⇓

Heme oxygenase (decycling) 2 (Kim
et al., 2003)

⇓ ⇓

Glutaredoxin (thioltansferrase) (Kim
et al., 2003)

⇓

Glutathione reductase (Kim et al.,
2003)

⇓

Superoxide dismutase (Kim et al.,
2003)

⇓

Catalase (Kim et al., 2003) ⇓
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fatty acids may even increase oxidative stress (Kimura et al., 2012),
which may provide an explanation for some of the associated
proarrhythmic effects that have been seen with omega-3 fatty
acids (Billman et al., 2011).

MECHANISMS OF ROS INDUCED ARRHYTHMIA
The data supporting the association of excess ROS with human
AF is in the form of increased oxidized glutathione, oxidized
cysteine, DROMs, superoxide, peroxynitrite, and NAD(P)H oxi-
dase. Therefore, these studies have not established conclusively
cause and effect nor have they provided mechanistic insight
(Carnes et al., 2007; Neuman et al., 2007; Antoniades et al., 2012).
Therefore, most of our knowledge about the possible mechanisms
by which excess ROS can induce arrhythmia is from experimen-
tal and isolated cellular studies, which may not be applicable in
clinical AF.

H2O2 prolongs the action potential duration (APD) and
induces triggered activity (TA) via early afterdepolarization
(EAD) and delayed afterdepolarization (DAD) mechanisms in
myocytes (Beresewicz and Horackova, 1991). Perfusion of H2O2

(0.1–1 mM) into fibrotic rat and rabbit hearts in the Langendorff
setting induces EADs, TAs, and subsequent arrhythmia (Morita
et al., 2009). One of the mechanisms of H2O2-induced APD
prolongation and EAD formation is by the development of
an enhanced late sodium (Na+) current (Song et al., 2006).
Treatment with H2O2 and angiotensin II enhance the late Na+
current but decreases the overall Na+ current in isolated myocytes
through the down-regulation of SCN5A transcription (Shang
et al., 2008). The antiarrhythmic effect of the late Na+ cur-
rent blocker, ranolazine supports a role for the late Na+ current
in mediating the genesis of EADs by oxidative stress (Morita
et al., 2011). Nevertheless, one should consider that ranolazine
has multiple other effects including its metabolic effects and
blockade of Ikr current and that the role of late Na+ cur-
rent in AF is not universally accepted (Schotten et al., 2010).
While increase in late Na+ current may result in arrhythmia
via an EAD mechanism, the reduction in total Na+ current
caused by ROS may cause a reduction in CV and provide a
substrate for reentry. We have shown that ROS can down-
regulate cardiac Na+ channels, and mitochondrial antioxidants
can reverse this effect (Liu et al., 2010). ROS also can directly
stimulate the L-type Ca2+ current, which results in abnormal
intracellular calcium cycling in myocytes and facilitates EADs
(Thomas et al., 1998). The studies on the net effect of ROS
on L-type Ca2+ current have shown conflicting results, how-
ever. For example, L-type Ca2+ was found to be decreased
in isolated atrial myocytes of patients with AF, probably via
S-nitrosation of the calcium channels, and the current was
restored to normal level by using N-acetylcysteine (Carnes et al.,
2007). Hydroxyl radicals increase the open probability of cardiac
ryanodine receptors, which control the Ca2+ release from the sar-
coplasmic reticulum (SR) to the cytoplasm (Anzai et al., 1998).
Excess ROS also increase Ito current probably via an increase in
expression of the regulatory β-subunit KChlP2 (Sridhar et al.,
2009).

A key factor in arrhythmogenesis is reduction of the repolar-
ization reserve. This refers to the balance of inward depolarizing

currents such as Na+ and Ca2+ and to the outward repolar-
izing currents such as potassium (K+) during the second and
third phases of the cardiac action potential. Decreasing the repo-
larization reserve occurs when the balance is shifted away from
repolarizing currents and results in a prolonged action potential
and increased the likelihood of EADs and TA. The repolariza-
tion reserve and the cytoplasmic Ca2+ level of cardiac myocytes
are affected by the rate of Ca2+ uptake by the SR. Exposure
to OH− significantly decreases SR Ca2+ uptake, which leads
to an increased Ca2+ level in myocytes during diastole (Morris
and Sulakhe, 1997). This short-term effect on Ca2+ transport
is likely because of the OH−-mediated peroxidation of lipid
membranes and protein sulfhydryl formation, which leads to an
indirect effect on the SR Ca2+ transporter (Morris and Sulakhe,
1997).

ROS also affect gap junctions. Gap junctions form con-
nections between cells through aggregation of connexin (Cx)
proteins into hemichannels that meet to form conductive chan-
nels at cardiomyocyte interactions. Ventricular gap junctions
are formed primarily from Cx43, however, a significant por-
tion of gap junctions in the atria are formed by Cx40. c-Src
is known to be activated by ROS. In an animal model of MI,
the up-regulation of c-Src tyrosine kinase and an increase in
the level of phosphorylated Tyr 416 c-Src (the active form of
c-Src) resulted in the down-regulation of connexin43 (Cx43)
via competition between phosphorylated c-Src and Cx43 for a
binding site at zonula occludens-1, an intercalated disk scaf-
folding protein (Kieken et al., 2009). Other mechanisms for
the reduction of Cx43 activity via the up-regulation of c-Src
have also been suggested. They include tyrosine phosphoryla-
tion of Cx43 by c-Src, which also impairs gap junction function
(Toyofuku et al., 1999). Inhibition of c-Src prevents Cx43 remod-
eling and ventricular arrhythmia caused by of angiotensin II
activation and oxidative stress (Iravanian et al., 2011; Sovari et al.,
2011b).

ROS PROMOTES OTHER ARRHYTHMOGENIC
PROCESSES
AF is multifactorial. Inflammation, myocardial fibrosis, and
oxidative stress are important pathologic events that promote AF
(Negi et al., 2010; Sovari and Dudley, 2010). Activated inflam-
matory cells such as monocytes, neutrophils, eosinophils, and
macrophages produce ROS and lysosomal hydrolytic enzymes at
sites of inflammation (Morel et al., 1991). Also, ROS enhance
the inflammatory response partially via the activation of signal-
ing events that mediate the expression of inflammatory genes
(Suzuki et al., 1997) in part through activation of nuclear factor-
kappa B (NF-κB; Kabe et al., 2005). NF-κB, a family of related
transcription factors that act as principal regulators of inflamma-
tion, are activated by various stimuli (such as ROS) after MI, in
ischemic states, and during reperfusion (Lu et al., 2004; Seddon
et al., 2007). We recently showed that the elevation of ROS levels
by angiotensin II can activate NF-κB; this in turn transcriptionally
downregulates Na+ currents (Shang et al., 2008). Nevertheless,
whether the cardiac Na+ current is actually decreased in AF is
controversial (Bosch et al., 1999; Sossalla et al., 2010; Schotten
et al., 2011).
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ROS enhance fibroblast proliferation and type I collagen
gene expression (Murrell et al., 1990). Antioxidant therapy
reduces fibrosis by decreasing the level of transforming growth
factor-β, which is the major cytokine that promotes car-
diac fibrosis (Koli et al., 2008; Cu et al., 2009). In addition,
Ca2+/calmodulin-dependent protein kinases II (CaMKII) has
been recently identified as one of the mediators of fibroblast pro-
liferation in response to angiotensin II (Bellocci et al., 2007).
Because CaMKII activity increases in the presence of oxida-
tive stress, CaMKII activation may be a pathway by which
oxidative stress stimulates fibroblast proliferation within the
myocardium.

Therefore, excess amount of ROS can promote AF by effects
on ion channels and by enhancing myocardial fibrosis. The level
of excess ROS may vary in different conditions and may be a factor
to determine the specific downstream effects of ROS; a matter that
requires more studies.

OXIDATIVE STRESS AND THROMBOEMBOLISM
Virchow’s triad of blood stasis, endothelial dysfunction, and a
hypercoagulable state are the main etiologic factors determining
thrombus formation. The presence of left atrial spontaneous echo
contrast and chamber enlargement, both of which are evidence
of blood flow stasis in patients with AF, are strongly associated
with an increased risk for cerebral ischemic events in this condi-
tion (Celermajer et al., 1994; Jones et al., 1996). The proclivity for
thrombus formation in the LAA, emphasizes the central role of
stasis in thromboembolism associated with AF. Oxidative stress
can potentially contribute to the risk of thrombus formation in
AF by causing endocardial dysfunction, and endocardial dysfunc-
tion has been demonstrated in AF. AF is associated with the
downregulation of NO• and the upregulation of superoxide pro-
duction in the left atrium (Radomski et al., 1987), which shifts the
endocardial balance toward thrombogenicity with overexpression
of the prothombotic protein, plasminogen activator inhibitor-1,
and increased expression of adhesion molecules on the endothe-
lial surface (Bouchie et al., 1998; Carnes et al., 2001; Cai et al.,
2002).

ANTIOXIDANT THERAPIES FOR ATRIAL FIBRILLATION
Antioxidant therapeutic agents for management of AF can be
designed against at least three categories of targets: (1) ROS
molecules, (2) the sources of ROS production, and (3) the key sig-
naling molecules that mediate the arrhythmogenic effect of ROS
(Sovari et al., 2011a; Figure 1).

One therapeutic approach for suppression of ROS is by using
oxygen-radical scavengers such as vitamin E, vitamin C, N-acetyl-
cysteine, ebselen, and tempol, which neutralize ROS molecules.
Administration of vitamin C may reduce the incidence of post-
operative AF (Carnes et al., 2001). Nevertheless, oxygen-radical
scavengers have failed to show an impressive therapeutic effect for
cardiovascular disorders in most clinical trials (Sesso et al., 2008;
Song et al., 2009). ROS usually are highly reactive molecules, and
conventional antioxidants may not be able to neutralize the ROS
molecules before they exert their effect on proteins and lipids.
In addition, ROS include a wide range of molecules, which may
be generated from other ROS in reactions that are catalyzed by

a wide range of enzymes. Table 5 reviews some of the known
changes in important pro-oxidant or antioxidant enzymes in AF.
Table 6 provides a review of some of the known downstream
arrhythmogenic effects of only a few of the most important ROS
molecules. A ROS scavenger may not effectively neutralize all ROS
molecules to prevent the arrhythmogenic downstream effects.
This may explain the lack of therapeutic effects of conventional
antioxidants.

A more effective therapeutic approach may involve inhibition
of the sources of excess cardiac ROS. NAD(P)H oxidase activ-
ity has been shown to increase in AF (Dudley et al., 2005). The
NAD(P)H oxidase is upregulated in early stages of AF but not
in chronic AF (Reilly et al., 2011a). Therefore, inhibition of the
NAD(P)H oxidase is most likely to be an effective treatment for
primary prevention of AF and for postoperative AF (Sovari et al.,
2008; Sovari, 2011). The association of NAD(P)H oxidase activ-
ity with development of postoperative AF supports the idea of
using NAD(P)H oxidase inhibitors for prevention of AF following
surgeries (Kim et al., 2008).

The effectiveness of NOS inhibitors such as NG-Nitro-L-
arginine methyl ester (L-NAME) in treating arrhythmias has
been tested in various experiments. In a model of occlusion-
reperfusion arrhythmia in cats, it was shown that repeated
injections of L-NAME decreased the incidence of occlusion
arrhythmias by 40%, eliminated reperfusion-induced ventricular
arrhythmias, and reduced the latency of occlusion arrhythmias
(Kukushkina et al., 1999). More studies are required to evaluate
the effect of NOS inhibitors on AF. One potential problem with
NOS inhibition is the simultaneous reduction of NO with inhi-
bition of ROS produced by uncoupled NOS. A more effective

Table 6 | A review of some of the known arrhythmogenic molecular

targets of ROS molecules.

ROS molecule Known arrhythmogenic targets

Superoxide CaMKII (Kawakami and Okabe, 1998; Erickson
et al., 2011), RyR (Kawakami and Okabe, 1998),
L-type Ca2+ channels (Di Wang et al., 1999),
SERCA (Tong et al., 2010), sodium channels (Tu
et al., 2012), c-Src (Pu et al., 1996), NCX (Blaustein
and Lederer, 1999)

Hydrogen peroxide CaMKII (Erickson et al., 2011), RyR (Shan et al.,
2010), L-type Ca2+ channels (Thomas et al., 1998),
SERCA (Dremina et al., 2007), sodium channels
(Ma et al., 2005), c-Src (Brumell et al., 1996;
Yoshizumi et al., 2000), NCX (Soliman et al., 2009)

Hydroxyl radical RyR (Anzai et al., 1998), SERCA (Morris and
Sulakhe, 1997), L-type Ca2+ channels (Shirotani
et al., 2001), NCX (Ziegelstein et al., 1992)

Peroxynitrite RyR (Fauconnier et al., 2010), SERCA (Adachi
et al., 2004), L-type Ca2+ channels (Mallet, 2005),
sodium channels (Gautier et al., 2008), NCX
(Chesnais et al., 1999)

CaMKII, Ca2+/calmodulin-dependent protein kinases II; NCX, Na+/Ca2+

exchanger; ROS, reactive oxygen species; RYR, ryanodine receptor; SERCA,

sarco/endoplasmic reticulum Ca2+-ATPase.

Frontiers in Physiology | Cardiac Electrophysiology August 2012 | Volume 3 | Article 311 | 8

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Cardiac_Electrophysiology
http://www.frontiersin.org/Cardiac_Electrophysiology/archive


Sovari and Dudley ROS and AF

way to prevent ROS production by uncoupled NOS may be
prevention of uncoupling by providing the required coenzyme,
tetrahydrobiopterin. In a canine model of nonischemic heart
failure with increased propensity to AF, treatment with tetrahy-
drobioptein and L-arginine prevented oxidative stress in the atrial
tissue (Nishijima et al., 2011).

Mitochondrial ROS seems like an attractive therapeutic target.
A large portion of cardiomyocytes are occupied by mitochondria,
and they are major sources of cardiac ROS (O’Rourke et al., 2005).
We tested the effect of seven different antioxidant therapies on
prevention of ventricular arrhythmia in an angiotensin II acti-
vation mouse model with increased levels of ROS (Sovari et al.,
2011c). ROS were highly compartmentalized in mitochondria
and a mitochondria-targeted antioxidant prevented spontaneous
and pacing induced ventricular arrhythmia. Whether this result
can be applied to AF remains to be tested.

When an antioxidant agent that inhibits sources of ROS is
designed, several important factors must be considered. Various
sources of ROS can be activated under different pathologic con-
ditions; therefore, an antioxidant against a specific source of ROS
may be effective in the prevention of arrhythmia only under cer-
tain conditions. In addition, because of positive feedback loops
among the sources of cardiac ROS, the simultaneous targeting of
several important sources of ROS may prove to be an effective
therapy.

A third therapeutic strategy may target signals that are down-
stream from ROS. For example, CaMKII inhibition may prevent
many of the ROS-mediated effects on Ca2+ and Na+ chan-
nels or on the promotion of the fibrosis that causes arrhythmia.
Ranolazine, a late Na+ current blocker, may inhibit some of the
arrhythmogenic effects of ROS. We showed that the inhibition
of c-Src tyrosine kinase prevents the effects of angiotensin II and
ROS on Cx43 remodeling (Sovari et al., 2010, 2011b), and c-Src is
activated by ROS (Sovari et al., 2011d). Thus c-Src may be another
example of antiarrhythmic therapeutic targets that are probably
downstream from oxidative stress.

In addition to the aforementioned three categories of antiox-
idant therapy, it is also possible to target the upstream patholo-
gies that result in activation of sources of ROS. For example,
angiotensin II is known to increase ROS production by acti-
vation of NAD(P)H oxidase and probably by increasing ROS
production in mitochondria (Iravanian et al., 2008; Dikalov,
2011; Sovari et al., 2011c; Jeong et al., 2012). Angiotensin convert-
ing enzyme (ACE) inhibitors and angiotensin receptor blockers
(ARBs) exert antioxidant and antiarrhythmic effect (Kober et al.,
1995; Schramm et al., 2012). Nevertheless, there are numerous
pathological insults that may activate sources of ROS such as
ischemia-reperfusion, inflammation, aging, diabetes, tachycardia,
mechanical stretch and sheer stress, and there are probably more
unknown causes of oxidative stress (Molyneux et al., 2002; Boldt
et al., 2003; De Champlain et al., 2004; Issac et al., 2007; Kregel
and Zhang, 2007; Li et al., 2008; Van Wagoner, 2008; Ahmed
et al., 2010; Morita et al., 2011; Sovari et al., 2012). Many of those
pathological processes are complex, and no effective therapy is
available for them. Moreover, some of the available therapies for
these upstream targets are not completely effective. For exam-
ple, ACE inhibitors and ARBs do not completely suppress the

elevated levels of angiotensin II (Jorde et al., 2000; van de Wal
et al., 2006).

An important consideration in the treatment of AF is early
intervention. In later stages of chronic AF, the disease may be
associated with multiple pathological processes, and some of the
remodeling may not be reversible. For example, ACE inhibitors
and ARBs are effective in primary prevention of AF; however, they
may not be effective in the management of chronic AF (Disertori
et al., 2009; Goette et al., 2012; Khatib et al., 2012). Similarly,
antioxidant therapy may be much more effective if it is applied
in early stages of AF and in primary prevention. Postoperative AF
is an example for opportunities to test the efficacy of an early
intervention. Statin drugs that exert some antioxidant activity
by Rac1-mediated suppression of NAD(P)H oxidase have been
shown to be effective in prevention of postoperative AF (Reilly
et al., 2011b; Antoniades et al., 2012).

While chronic AF with significant structural and electrical
remodeling of the heart is almost certainly a complex and mul-
tifactorial disease, the AF may be multifactorial from the onset.
For example, the cause of a new onset AF in an elderly patient
with diabetes and cardiomyopathy may be because of a combi-
nation of increased myocardial fibrosis, abnormal intracellular
Ca2+ handling, autonomic dysfunction, and multiple abnormal-
ities in ionic currents. Oxidative stress may be only one of the
underlying pathologies. Therefore, the best antioxidant therapy
may not completely prevent AF in all patients because, in some
AF patients, other arrhythmogenic processes independent from
oxidative stress exist.

Important guides in selecting those AF patients who will most
likely benefit from antioxidant therapy are markers of oxida-
tive stress. There are numerous serum markers of oxidative
stress available such as thiobarbituric acid-reacting substances,
superoxide dismutase and glutathione peroxidase activities
(Hartnett et al., 2000), thioredoxin, ischemia-modified albumin
(Lambrinoudaki et al., 2009), carotenoids, oxidized low density
lipoproteins, oxidized low density lipoprotein antibodies (Suzuki
et al., 2003), oxidized to reduced glutathione and cysteine, and
DROMs (Neuman et al., 2007; Shimano et al., 2009). Some of
these serum markers of oxidative stress have been shown to be ele-
vated in AF patients; however, however, more studies are required
to identify the best serum markers for patients at risk of AF and
for those AF patients who possibly will respond to antioxidant
treatment.

CONCLUSIONS AND FUTURE DIRECTIONS
Treatments that do not address the underlying pathophysiology
of AF are likely to have limits to their efficacy. There is con-
siderable evidence that oxidative stress has an important role
in genesis of AF. The pathological link remains to be proven,
however, and designing an effective antioxidant therapy requires
a better understanding of the complex biology of oxidative
stress.

Current evidence suggests that NAD(P)H oxidase inhibitors
may be effective in primary prevention of AF and in postoperative
AF. Mitochondria-targeted antioxidants may prove to be most
effective antioxidant therapeutic intervention in persistent AF.
Targeting important molecules downstream from ROS such
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as c-Src and CaMKII may provide additional antiarrhythmic
effect. Effective antioxidant therapy may also reduce the risk of
thromboembolism in patients with AF by improving endocardial
dysfunction.
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