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Abstract

Alzheimer’s disease (AD) is characterized by the abnormal proteolytic processing of amyloid

precursor protein, resulting in increased production of a self-aggregating form of beta amy-

loid (Aβ). Several lines of work on AD patients and transgenic mice with high Aβ levels

exhibit altered rhythmicity, aberrant neuronal network activity and hyperexcitability reflected

in clusters of hyperactive neurons, and spontaneous epileptic activity. Recent studies high-

light that abnormal accumulation of Aβ changes intrinsic properties of inhibitory neurons,

which is one of the main reasons underlying the impaired network activity. However, specific

cellular mechanisms leading to interneuronal dysfunction are not completely understood.

Using extended Hodgkin-Huxley (HH) formalism in conjunction with patch-clamp experi-

ments, we investigate the mechanisms leading to the impaired activity of interneurons. Our

detailed analysis indicates that increased Na+ leak explains several observations in inhibi-

tory neurons, including their failure to reliably produce action potentials, smaller action

potential amplitude, increased resting membrane potential, and higher membrane depolari-

zation in response to a range of stimuli in a model of APPSWE/PSEN1DeltaE9 (APdE9) AD

mice as compared to age-matched control mice. While increasing the conductance of hyper-

polarization activated cyclic nucleotide-gated (HCN) ion channel could account for most of

the observations, the extent of increase required to reproduce these observations render

such changes unrealistic. Furthermore, increasing the conductance of HCN does not

account for the observed changes in depolarizability of interneurons from APdE9 mice as

compared to those from NTG mice. None of the other pathways tested could lead to all

observations about interneuronal dysfunction. Thus we conclude that upregulated sodium

leak is the most likely source of impaired interneuronal function.

Introduction

Alzheimer’s disease (AD) is a fatal neurodegenerative disease that leads to cognitive, memory,

and behavioral impairments followed by progressive cell death. The symptoms of AD include

the extracellular deposition of beta amyloid (Aβ) plaques and intracellular neurofibrillary tan-

gles—aggregates of microtubule-associated protein τ [1]. According to the amyloid hypothesis,
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the accumulation of Aβ oligomers or plaques due to the imbalance between synthesis and

clearance as a result of abnormal processing of amyloid precursor protein (APP) is the driving

force for AD pathogenesis [2]. While the exact mechanisms are not entirely known, extensive

research suggests the accumulation of Aβ as a critical contributor to the development of early

cognitive dysfunctions, such as memory loss, seen in the early stages of AD [3].

Pathological levels of Aβ have been linked to the disruption of synaptic function and the

mechanisms responsible for learning and memory. For example, the acute application of Aβ
oligomers has been correlated with a decline in long term potentiation [4–7], enhanced synap-

tic depression [8–10], and cognitive impairments [11, 12]. Details about the effects of excessive

Aβ levels on the neuronal networks and as a result the impairment of their function are slowly

emerging. Neurons located near Aβ plaques are shown to have enhanced neural activity that

may result from a decrease in synaptic inhibition [13]. Transgenic animal lines exhibit sponta-

neous epileptiform activity [14, 15] and the incidences of epileptic seizures are also increased

in AD patients [15, 16]. Similarly, the sleep/wake cycle is markedly disrupted with an increase

in wakefulness associated with a decrease in the slow oscillation responsible for non-rapid eye

movement sleep rhythms [17, 18]. Gamma [12] as well as beta rhythms [19] are also altered in

AD. Despite strong evidence in favor of impaired neuronal network activity, the mechanism

leading to such network behavior is incompletely understood [20].

Several studies have attributed the altered neuronal network activity to the dysfunction of

inhibitory neurons. The application of γ-aminobutyric acid type A (GABAA) agonist diazepam

markedly reduced the activity of hyperactive neurons near Aβ plaques suggesting that an

impaired synaptic inhibition rather than intrinsic firing of excitatory neurons underlies the

hyperactivity [13]. Due to their key role in gamma rhythm, Verret et al [12] investigated par-

valbumin inhibitory neurons (PV) in detail and found that the impairment of these cells leads

to the observed spontaneous epileptiform activity, hypersynchrony, and reduced gamma oscil-

latory activity in human APP (hAPP) transgenic mice and AD patients. In line with these

observations we recently reported the failure of inhibitory neurons to reliably fire action

potentials leading to hippocampal dysfunction and profound disruptions in dentate gyrus

(DG) circuit activity in APPSWE/PSEN1DeltaE9 (APdE9) aged mouse model of AD [10]. All

these observations highlight the importance of the aberrant inhibitory neurons’ activity in the

early stages of AD and beg the key question: how do the pathological levels of Aβ oligomers

mediate the impairment of inhibitory neurons?

In this study, we use an augmented Hodgkin-Huxley formalism incorporating dynamic

ion concentrations inside and outside the inhibitory neuron in conjunction with patch-

clamp experiments to identify the pathways leading to impaired inhibitory neuronal activity

in the hippocampus of aged mice model of AD. Our previous observations show that inhibi-

tory neurons from APdE9 mice cannot reliably fire action potentials and have higher resting

membrane potentials as compared to those from non-transgenic (NTG) mice. Therefore, we

use the number of spikes in response to 500 ms long stimulus and the value of the resting

membrane potential as initial criteria for investigating the mechanism responsible for aber-

rant interneuronal activity. Elevating the conductance of sodium leak channels (GL
Na) two to

five fold and hyperpolarization activated h-channel ten to hundred fold as compared to

interneurons from NTG mice results in the observed number of spikes and resting mem-

brane potential in interneurons from transgenic mice. No other pathways included in our

model lead to the observations in both the number of spikes and resting membrane potential.

However, there is strong experimental evidence in favor of a reduced density of voltage gated

sodium channels (VGSCs) in tissues from hAPP transgenic mice and AD patients [12]. We

therefore included a detailed analysis of the effect of changes in the VGSCs conductance
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(GF
Na) on the behavior of interneurons. While changing GF

Na results in the observed number

of spikes and other behaviors, it fails to reproduce the higher resting membrane potential in

interneurons from APdE9 mice model. Our detailed analysis taking into account several

other observations implicates the upregulated sodium leak as the most likely source of

impaired interneuronal function.

Materials and Methods

Experimental methods

Animals: Full details of the experimental procedures and protocols are given in [10]. Briefly,

studies were performed on 12-16 month old female mice with mutant human APdE9 and age-

matched NTG siblings. These animals are significantly impaired in spatial memory perfor-

mance by 12 months in the absence of cell death.

Ethics Statement: This study was carried out in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

The protocol (Permit Number: 08-035) was approved by the University of Houston’s Interna-

tional Animal Care and Use Committee.

Entorhinal cortical-hippocampal slice preparation: The mice were anaesthetized with isoflur-

ane and decapitated, and the brains were rapidly excised and placed in oxygenated (95% O2-

5% CO2), ice-cold dissection buffer solution containing (in mM) 212.7 sucrose, 2.5 KCl, 1.25

NaH2PO4, 3 MgSO4, 10 MgCl2, 0.5 CaCl2, 26 NaHCO3, and 10 dextrose. Hippocampal ento-

rhinal cortical slices (350mm) were prepared using a Vibratome (Technical Products Interna-

tional) and preincubated for 0.5 h in normal artificial cerebrospinal fluid (ACSF; pH 7.3,

30uC) containing (in mM): 130 NaCl, 1.2 MgSO4, 3.5 KCl, 1.2 CaCl2, 10 glucose, 2.5

NaH2PO4, and 24 NaHCO3 aerated with 95%O2-5%CO2.

Whole-cell recordings in the aged dentate gyrus interneurons: To study individual inhibitory

neuron activity, we performed whole-cell recordings in the inhibitory cells of the dentate gyrus

molecular layer. Inhibitory neurons were visualized and initially identified based on the loca-

tion and shape of their somatas using infrared optics. For the whole cell current-clamp record-

ings, micropipettes (4 -7 MO) contained: 116 mM K-gluconate, 6 mM KCl, 0.5 mM EGTA, 20

mM HEPES, 10 mM phosphocreatine, 0.3 mM NaGTP, 2 mM NaCl, 4 mM MgATP, and 0.3%

neurobiotin (pH 7.25, 295 milli-osmolar). All electrical recordings were performed using

MCC 700 amplifiers (Axon Instruments). Whole-cell data were low-pass filtered at 4 kHz and

digitized at 10 kHz (Digidata; pCLAMP; Molecular Devices). Passive and active neuronal

membrane properties were studied using incremental hyperpolarizing and depolarizing cur-

rent injections. To elicit spiking activity, depolarizing square wave current pulses incremented

by 20 pA were injected into the somas for 500 ms.

Computational methods

Membrane potential dyanmics. The model scheme used in this paper expands on the Hodgen-

Huxley formalism and is based on our previous work [21–24] (Fig 1). The change in the mem-

brane potential (Vm) with respect to time is given by contributions from active and passive

membrane currents (Im), applied stimulus (Istim), and ion transport through Na+/K+ exchange

pumps (Ipump) consuming 1 ATP to extrude three Na+ and bring in two K+ ions.

C
dVm
dt
¼ Im þ Istim þ Ipump=g: ð1Þ

Im is given by contributions from total K+ current (IK), total Na+ current (INa),
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hyperpolarization activated current (Ih), Cl− leak current (ILCl), and voltage-gated Ca2+ current

(ICa). That is,

Im ¼ � ðIK þ INa þ Ih þ I
L
Cl þ ICaÞ ð2Þ

where

IK ¼ IDRK þ I
M
K þ I

A
K þ I

L
K þ I

Ca
K

INa ¼ IFNa þ I
L
Na

ð3Þ

Fig 1. Schematic of the model showing the movement of ions between the neuron, extracellular space, and glia. The gray arrows

represent movement of ions between these three spaces due to voltage and ligand-gated channels and the red arrows indicate the current

through Na+/K+ pumps.

doi:10.1371/journal.pone.0168800.g001
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The factor γ = S/(Fvi) is used to convert current unit (μA/cm2) into concentration unit (mM/

s), where S, vi, and F are the surface area of the cell, intracellular volume, and Faraday constant.

We used a spherical cell with a radius of 6μm. K+ currents include delayed rectified (IDRK ), non-

inactivating M (IMK ), rapidly inactivating A (IAK ), Ca2+ gated (ICaK ), and leak (ILK) currents. The

Na+ currents include transient fast (IFNa) and leak (ILNa) currents. The different K+ currents are

given as

IDRK ¼ GFKn
4ðVm � VKÞ

IMK ¼ GMK zðVm � VKÞ

IAK ¼ GAKa
3
1
bðVm � VKÞ

ICaK ¼ GCaK c
2ðVm � VKÞ

ILK ¼ GLKðVm � VKÞ:

ð4Þ

The two Na+ currents are

IFNa ¼ GFNam
3
1
hðVm � VNaÞ

ILNa ¼ GLNaðVm � VNaÞ:
ð5Þ

In addition to K+ and Na+ currents, we have Ih, ILCl, and ICa, which are given as

Ih ¼ GhrðVm � VhÞ

ILCl ¼ G
L
ClðVm � VClÞ

ICa ¼ GCas2ðVm � VCaÞ:

ð6Þ

Gx represents the maximum conductance of a given channel x.

The activation and inactivation variables a, n, z, b, c, m, r, and s represent the fraction of

open or closed channels of different types and are modeled by the rate equations of the form

dq
dt
¼
ðq1 � qÞ

tq
; q ¼ n; z; b; h; s; r; c: ð7Þ

Where q1 represents the steady state value of the gating variable q, and is of the form

q1 ¼
1

1þ e� ðVm � yÞ=s
: ð8Þ

The values for (θ, σ) in mV are (-30.0, 9.5), (-39.0, 5.0), (-80.0, 6.0), (-50.0, 20.0), (-30.0, 9.5),

(-53.0, -7.0), (-84.0, 10.2), and (-20.0, 10.0) for q1 = n1, z1, b1, a1,m1, h1, r1, and s1
respectively. τq represents the time constant of a given gate q. Since channels responsible for

ICaK are both voltage and ligand gating, the form of its equilibrium value is slightly different and

is given as

c1 ¼
1

1þ 0:03

48:0ð½Ca2þ�iÞ
2

; ð9Þ

where [Ca2+]i is the intracellular Ca2+ concentration. Time constants for different gating
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variables are given as,

tn ¼ 0:37þ 1:85
1

1þ eðVmþ27:0Þ=15:0

tc ¼
0:2148

48:0c2 þ 0:03

tz ¼ 75:0

tb ¼ 15:0

th ¼ 0:37þ 2:78
1

1þ eðVmþ40:5Þ=6:0

tr ¼
1:0

e� 14:59� 0:086Vm þ e� 1:87þ0:0701Vm

ts ¼ 1:0

ð10Þ

We assume that the activation of fast Na+ and K+ A channel is rapid enough so that the instan-

taneous values ofm and a gates can be used. The reversal potential for Na+ (VNa), K+ (VK), h

(Vh), Cl− (VCl), and Ca2+ (VCa) currents are given by the Nernst equations

VNa ¼ 26:64ln
½Naþ�o
½Naþ�i

� �

VK ¼ 26:64ln
½Kþ�o
½Kþ�i

� �

Vh ¼ 26:64ln
0:2½Naþ�o þ ½K

þ�o
0:2½Naþ�i þ ½Kþ�i

� �

VCl ¼ � 26:64ln
½Cl� �o
½Cl� �i

� �

VCa ¼
26:64

2
ln
½Ca2þ�o
½Ca2þ�i

� �

ð11Þ

Where [�]i and [�]o represent the concentration of a given ion species in the intra- and extracel-

lular space respectively. The minus sign when computing the Cl− reversal potential is due to its

negative charge.

Ion concentration dynamics. In addition to membrane potential and different currents, we

also keep track of various ion concentrations inside and outside of the interneuron (Fig 1).

The change in [K+]o is a function of IK, Ipump, uptake by glia surrounding the neuron (Iglia),
and diffusion between the neuron and bath perfusate (Idiff). The evolution of [Na+]i, is con-

trolled by INa and Ipump. Finally, the change in [Ca2+]i is a function of ICa and a second term

that accounts for the uptake of Ca2+ and its gradual return to equilibrium value, [Ca+2]1 =

50.0 nM.

d½Kþ�o
dt

¼
1

t
ðgbIK � 2bgIpump � Iglia � Idiff Þ

d½Naþ�i
dt

¼
1

t
ð� gINa � 3gIpumpÞ

d½Ca2þ�i
dt

¼
1

t
� gICa þ

½Ca2þ�
1
� ½Ca2þ�i

tCa

� �

ð12Þ

β in the above equations is the ratio of intracellular to extracellular volume, β = vi/vo, and τ =

1000 is used to convert seconds to milliseconds. While the change in [Ca2+]i is described by
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the equation above, [Ca2+]o is fixed at 1.2 mM. [K+]i and [Na+]o are linked to [Na+]i as previ-

ously described [21, 23, 25, 26].

½Kþ�i ¼ 140:0þ ð18:0 � ½Naþ�iÞ

½Naþ�o ¼ 144:0þ bð½Naþ�i � 18:0Þ
ð13Þ

The change in intracellular and extracellular volume is negligible and is omitted from the

model. [Cl−]i and [Cl−]o are given by the conservation of charge inside and outside the cell

respectively [23, 25, 26].

½Cl� �i ¼ ½Na
þ�i þ ½K

þ�i þ 2:0½Ca2þ�i � 150:0

½Cl� �o ¼ ½Na
þ�o þ ½K

þ�o þ 2:0½Ca2þ�o
ð14Þ

The number 150 in the above equation represents the concentration of impermeable cations.

The functions describing Ipump, Iglia, and Idiff are adopted from Cressman et al. [21], and are

given as

Ipump ¼
r

1:0þ eð25:0� ½Naþ�i=3Þ

1

1:0þ eð5:5� ½Kþ�oÞ

Iglia ¼
Gglia

1:0þ eðð18:0� ½Kþ�oÞ=2:5Þ

Idiff ¼ �kð½Kþ�o � ½K
þ�bathÞ

ð15Þ

where ρ, Gglia, �k, and [K+]bath represent maximum Na+/K+ pump strength, maximum glial K+

uptake, K+ diffusion coefficient, and K+ concentration in the bath perfusate respectively. All

other parameters not explicitly stated in this section are given in Table 1.

Numerical Methods. The rate equations are solved in fortran 90 using the 4th order Runge-

Kutta method, with a time step of 0.01 ms. The analysis and statistics of experimental data is

performed in matlab. Codes reproducing key results are available upon request from authors.

Table 1. Values and description of different parameters used in the model.

Parameter Units Description

ρ 28.09 mmol/s maximum Na+/K+ pump strength

Gglia 66.67 mmol/s maximum glia uptake

C 1.0 μF/cm2 Membrane capacitance

γ 1.86 mmol/(cm�μA) Conversion factor

β 7.0 ratio of intra to extracellular volume

GL
Cl

0.02 mS/cm2 Conductance of leak chloride current

GF
Na

24.0 mS/cm2 Maximal conductance of fast sodium

GCa 0.08 mS/cm2 Maximal conductance of Calcium current

Gh 0.05 mS/cm2 Maximal conductance of h-current

GDR
K

3.0 mS/cm2 Maximal conductance of potassium current

GL
K

0.02 mS/cm2 Conductance of leak potassium current

GA
K

0.25 mS/cm2 Maximal Conductance of A-current

GM
K

1.0 mS/cm2 Maximal Conductance of M-current

GCa
K

0.55 mS/cm2 Maximal Conductance of calcium gated potassium current

GL
Na

0.07 mS/cm2 Conductance of leak sodium current

doi:10.1371/journal.pone.0168800.t001
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Results

Experimental Observations

Whole cell recordings in inhibitory neurons from NTG mice display reliable action potential

spiking in response to 500 ms stimulus (Fig 2a). Interneurons from APdE9 mice on the other

hand are unable to reliably fire action potentials in response to external stimulus (Fig 2b).

Interneurons from APdE9 mice show more than 10-fold decrease (depending on stimulus

strength) in spiking frequency compared to NTG mice of the same age in response to an exter-

nal stimulus (Fig 2c). Under resting conditions, interneurons from APdE9 mice are signifi-

cantly depolarized as compared to NTG mice (resting membrane potential of -77 mV in NTG

mice versus -56 mV in APdE9 mice) (Fig 2d).

In addition to having smaller frequency and higher resting membrane potential, interneu-

rons from APdE9 mice exhibit action potentials with significantly lower amplitude. At lower

stimulation strengths we observe an almost 20 mV decrease in the action potential amplitude

Fig 2. Interneurons from APdE9 mice have impaired spiking ability and higher resting membrane potential as compared to those from NTG

mice. Membrane potential in response to an external stimulus of 80 pA (black) observed in interneurons from NTG mice (a) and APdE9 mice (b).

Comparison of the number of spikes (c) and mean resting membrane potential (d) in response to 500 ms stimulus of various strengths in interneurons

from NTG (squares) and APdE9 mice (triangles). The symbols represent average values from multiple trials. Error bars represent the root mean

squared error.

doi:10.1371/journal.pone.0168800.g002
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(taken in reference to the resting membrane potential) in interneurons from APdE9 mice as

compared to those from NTG mice (Fig 3a). The disparity between spiking amplitudes

decreases as the applied stimulus increases, eventually converging to almost the same value of

78 mV at Istim = 280 pA.

To quantify the depolarizability of the cell we record the maximum value of the membrane

potential excluding the spikes during the last 200 ms time window of the 500 ms over which

the stimulus is applied. In both APdE9 and NTG mice, the depolarization of the inhibitory

neurons on average increases linearly with the stimulus strength for weaker stimulus that is

below the threshold for the cell to spike (Fig 3b). The zero stimulus strength in Fig 3b repre-

sents the threshold value that is required to result in cell spiking. The depolarization begins to

Fig 3. Interneurons from APdE9 mice have smaller mean amplitude, are more depolarized in response to external stimulation, and have

different action potential initiation dynamics as compared to interneurons from NTG mice. Mean action potential amplitude (a) and maximum

membrane potential during the last 200 ms window of the 500 ms long stimulus after removing the spikes (b) as functions of stimulus strength in

interneurons from NTG (squares) and APdE9 (triangles) mice. Action potential in interneurons from NTG mice exhibit rapid onset as compared to

those from APdE9 mice. (c) Phase plots showing the derivative of membrane potential as a function of instantaneous membrane potential during

action potential in interneurons from NTG (blue) and APdE9 mice (red) observed experimentally. (d) The same phase plots as in (c) but on finer scale

to highlight the reduced variability and slow onset of action potentials in interneurons from APdE9 mice as compared to those from NTG mice. Error

bars in panels (a) and (b) represent the root mean squared error.

doi:10.1371/journal.pone.0168800.g003
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plateau as we increase stimulus strength above the threshold for cell spiking. At negative stim-

ulation strength (-60 pA) interneurons from APdE9 mice exhibit a hyperpolarization of -70

mV as compared to -90 mV in cells from NTG mice. The difference in depolarizability is more

pronounced at lower stimulation strengths, and decreases gradually with increasing external

stimulus. However, APdE9 mice consistently are more depolarized.

In addition to the differences highlighted above, action potential initiation in interneu-

rons in NTG and APdE9 mice are significantly different. To gain deep insights into the dif-

ferences in action potential initiation, we quantitatively characterize the dynamics of action

potential initiation, which yields important information concerning VGSC activity [27]. We

found that action potential initiation in interneurons from NTG mice is characterized by

abrupt onset and an upstroke which is much steeper as compared to interneurons from

APdE9 mice. This behavior is more clear in the phase plots that graph the rate of change of

membrane potential (dVm/dt) versus the instantaneous membrane potential and is mani-

fested as almost vertical take-off at the action potential initiation (Fig 3c and 3d). While, the

initial kink in the phase plot is similar in the two cases, the rise in dVm/dt in case of interneu-

rons from APdE9 mice is biphasic. The biphasic behavior in the initial rise of dVm/dt could

be due to decreased cooperativity in the gating of VGSCs [28] as a result of their decreased

expression or disrupted gating behavior. The biphasic behavior could also reflect structural

changes in interneurons in APdE9 mice (see also below). Another salient feature that is

apparent from the phase plots is that the action potential onset (the membrane potential at

which dVm/dt crosses 15mV/ms) [27] in interneurons from NTG mice varies significantly

more as compared to interneurons from APdE9 mice. Interneurons from APdE9 mice dis-

play a 5 mV range in onset variability, less than half when compared to interneurons from

NTG mice (12 mV) in response to the same range of external stimuli. The lack of cooperativ-

ity would also explain the reduced variability in action potential onset [27] in interneurons

from APdE9 mice. Furthermore, the action potential onset in interneurons from APdE9

mice is shifted to more negative membrane potential values as compared to interneurons

from NTG mice (Fig 3c and 3d). A complete understanding of the dramatic changes in the

action potential initiation and testing the prediction about the reduced cooperativity in the

gating of VGSCs warants future experiments.

Computational Results

In the following we will vary different parameters in the model as compared to the parameters

set giving the observed behavior in interneurons from NTG mice to search for the pathways

that would lead to the two observations: the increase in resting membrane potential and

the reduced number of spikes in response to a 500 ms stimulus of different strengths in inhibi-

tory neurons from APdE9 mice as compared to those from NTG mice (see Table 2). The

parameters leading to these two trends will be further investigated for other experimental

observations.

Increasing GLNa two to five-fold as compared to the value used for interneurons from NTG

mice leads to a similar behavior as observed in interneurons from APdE9 mice. Representative

time traces for interneurons from NTG and APdE9 mice are shown in Fig 4. A four-fold

increase in GLNa is required for the resting membrane potential to be consistent with interneu-

rons from APdE9 mice (Fig 5a). While a five-fold increase leads to the same number of spikes

on average in inhibitory neurons from APdE9 mice (Fig 5b). In case of Gh on the other hand, a

10-fold and 130-fold change respectively is necessary to reproduce the observed resting mem-

brane potential (Fig 5c) and number of spikes (Fig 5d) in inhibitory neurons from APdE9

mice. Thus a much higher change in Gh is required to reproduce the observed behaviors. We
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remark that the number of spikes over the 500 ms duration of stimulus increases proportionally

to the stimulus strength for the most part both experimentally and theoretically. The decline in

the number of spikes in interneurons from NTG mice at larger stimulation is due to the fact

that in one trial the number of spikes is three times smaller than other control data, which has a

noticeable effect on the average values. While decreasing GF
Na causes a decrease in the number

of spikes (Fig 6b), it has negligible effect on the resting membrane potential (Fig 6a).

In addition to decreased number of spikes and higher resting membrane potential, we

observe a significant decrease in the average amplitude of all action potentials in inhibitory

neurons from APdE9 mice as compared to those from NTG mice (Fig 7). The model agrees

closely with the experimental observations and predicts a two-fold increase in GLNa (Fig 7a) and

ten-fold increase in Gh (Fig 7b) in interneurons from APdE9 mice as compared to those from

NTG mice. Decreasing GFNa from 24.0 mS/cm2 (the value giving the same number of spikes in

the interneurons from NTG mice) to 16.0 mS/cm2 (the value giving the same number of spikes

in the interneurons from APdE9 mice) reproduces the observed average amplitude of all

action potentials in the series (Fig 7c).

In line with observations, depolarization linearly increases for a stimulus of -100 to 0 pA in

the model and plateaus once the spiking ensues from above Istim = 0 pA (Fig 8). However, the

depolarization in the model plateaus more rapidly as compared to the experiment (Fig 8a and

8b). Our recent modeling study shows that the extent by which a cell can depolarize is signifi-

cantly affected by the ratio of cell packing in the tissue [23, 26], something not incorporated in

the current model. Nevertheless, the model closely reproduces the ratio of the depolarization

between inhibitory neurons from NTG and APdE9 mice where a 130-fold and 2-fold increase

in Gh and GL
Na respectively results in the correct ratio (Fig 8c and 8d). It is important to notice

that increasing GL
Na by 2-fold as compared to the control value results in the depolarization

ratio that agrees well with experimental results for a wide range of stimulus strength. In case of

Gh on the other hand, the model exhibits a significantly higher ratio than experiment for lower

stimulus strength.

The model fails to reproduce the observed differences in the action potential onset in cells

from NTG and APdE9 mice (Fig 9a and 9b). Increasing GL
Na (Fig 9c and 9d) and Gh (Fig 9e

and 9f) both cause a shift in the action potential onset towards less negative membrane

Table 2. The effect of changing the peak conductance of different channels on the spiking ability

defined as the number of spikes over a 500ms duration and resting membrane potential of the neuron

as compared to the control cell.

Conductance Spiking RMP

experimental decrease increase

Ca1 no change no change

GL
Cl

increase decrease

GA
K

decrease decrease

GM
K

decrease decrease

GCa no change decrease

Gh decrease increase

GDR
K

no change increase

GL
K

decrease decrease

GL
Na

decrease increase

GCa
K

no change no change

GF
Na

decrease no change

doi:10.1371/journal.pone.0168800.t002
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potential values. We observe a similar rightward shift in action potential onset when GFNa is

decreased (Fig 9e and 9f). Although not significant, both GL
Na and Gh give the right trend in the

variability in the action potential onset (not shown). That is, the range of membrane potential

at which the action potential ensues narrows as we increase GLNa and Gh. Decreasing GNa on the

other hand leads to a wider range of membrane potential values at the action potential onset,

which is not consistent with experimental data (Fig 9a and 9b). Consistent with observations,

increasing GLNa and Gh decrease the steepness in the action potential onset. Decreasing GFNa
does not change the slope significantly, inconsistent with experimental results.

Fig 4. Membrane potential time traces from model inhibitory neurons. Panel (a) shows time trace from the model replicating interneurons from

NTG mice usingGLNa ¼ 0:007 mS/cm2 and (b) replicates APdE9 mice usingGLNa ¼ 0:028 mS/cm2. Istim = 80 pA was used in these simulations. All other

parameters are as given in the text.

doi:10.1371/journal.pone.0168800.g004
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We remark that in general the action potential onset predicted by the model is significantly

slower than observed experimentally, particularly in interneurons from NTG mice. Similarly,

the range of onset potential is narrower as compared to observations in NTG mice. The model

also fails to reproduce the biphasic nature of the action potential observed in interneurons

from APdE9 mice. As pointed out by Naundorf et al [27], models with noncooparative VGSCs

are not equipped to replicate the rapid action potential onset and large variability in onset

potentials. Replicating both these features simultaneously in interneurons from NTG requires

strongly cooperative activation, voltage-dependent inactivation from closed states, and slow

recovery from inactivation of VGSCs. As pointed out above, the biphasic nature and reduced

variability of action potential onset observed in interneurons from APdE9 mice could also be

explained by the reduced cooperativity of VGSCs gating as compared to cells from NTG mice.

The multi-compartmental nature of the cell could also lead to biphasic behavior of action

potential where the sharp kink results from the axon’s initial segment and the subsequent

slower phase is caused by somadendritic compartment [29, 30]. Thus, the switching of action

potential onset from being monophasic in NTG mice to biphasic in APdE9 mice could be due

to the changes in the morphology or spatial distributions of ion channels in interneurons from

brain with AD. Investigating such structural and anatomical changes require spatially explicit

models, which is beyond the scope of this study. Nevertheless, the model presented in this

paper explains all other observations about the interneurons from both NTG and APdE9 mice.

Fig 5. Comparison of resting membrane potential and number of spikes in response to 500 ms stimulus of various strengths in

interneurons from NTG and APdE9 mice. Resting membrane potential as a function ofGLNa (a) and number of spikes in response to 500 ms of

varying stimulus strength for differentGLNa values (b) from the model (lines) are compared to the experiment results (symbols). Panels (c) and (d) are

the same as (a) and (b) respectively but with varying Gh values. The position of the blue symbol in panels (a) and (c) is adjusted along horizontal axis so

that the correspondingGLNa and Gh values reflect these conductances in interneurons from NTG mice.

doi:10.1371/journal.pone.0168800.g005
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The model also qualitatively exhibits trends that are consistent with the observed changes in

the action potential initiation in interneurons form APdE9 mice when GLNa or Gh is increased.

Discussion

There is strong evidence supporting the theory that the cognitive decline in AD is caused by

the dysrhythmic behavior in inhibitory neurons associated with Aβ toxicity [10, 12, 31, 32].

The exact mechanism by which Aβ creates these adverse neuronal defects is not known with

any certainty due to the plethora of cellular abnormalities that this protein promotes, such as

forming cation-permeable pores in the plasma membrane [33–37], altering channel activity

[12, 38, 39], and affecting synaptic signaling [20]. Using Hodgkin-Huxley formalism in con-

junction with dynamic ion concentrations, we have reproduced many experimentally observed

changes in the behavior of inhibitory neurons from APdE9 mice including the inability to reli-

ably spike, higher resting membrane potential, enhanced depolarizability in response to

applied stimulus, and smaller mean action potential amplitude as compared to those from

NTG mice. We found that increasing sodium leak and conductance of HCN channels as com-

pared to control values leads to interneuronal characteristics similar to those observed in

APdE9 mice. Moreover, while a less than two-fold decrease in GFNa led to the observed number

of spikes and mean amplitude of action potentials in interneurons from APdE9 mice, it failed

Fig 6. DecreasingGF
Na leads to smaller number of spikes but does not change the resting membrane potential. Resting membrane potential as

a function ofGFNa (a) and number of spikes in response to 500 ms stimulus of varying strengths and differentGFNa values (b). Symbols and lines have the

same meaning as in Fig (5a) and (5b) respectively except hereGFNa is varied instead ofGLNa.

doi:10.1371/journal.pone.0168800.g006
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to show the observed trend in the resting membrane potential. None of the other pathways

examined lead to the observed interneuronal spiking behavior and resting membrane potential

(Table 2). Therefore, we focus our discussion on HCN channels, VGSCs, and Na+ leak.

There seems to be a strong correlation between elevated levels of Aβ and the activity of

HCN channels. A recent experimental study reported significant decrease in the excitability of

Aβ-treated pyramidal cells from CA1 region of Hippocampus that was attributed to upregu-

lated Ih current [38]. Saito et al on the other hand observed a significant reduction in HCN

channel level in the temporal lobe of cynomolgus monkeys during aging and the temporal

lobe of sporadic AD patients. The authors speculated that the reduction in the expression of

HCN channels may contribute to increased Aβ levels [40]. Although contrasting, these studies

point towards a strong correlation between Ih current and neuronal excitability in the presence

of excessive Aβ levels. Thus understanding the implications of altered HCN channel activity is

an important aspect of elucidating the underlying mechanisms in AD. Increasing the conduc-

tance of HCN channels leads to several observations in the inhibitory neurons from APdE9

mice including reduced excitability in line with the observations in [38]. Nevertheless, a more

than hundred-fold increase in the conductance of HCN channels is required to reproduce the

Fig 7. Interneurons from NTG mice exhibit action potentials with significantly higher mean amplitude as a function of stimulus strength as

compared to those from APdE9 mice. Change in mean amplitude of all spikes in the time trace as a function of stimulus strength as we varyGLNa (a),

Gh (b), andGFNa (c). Symbols and lines represent experimental and theoretical values respectively. Squares and triangles are for interneurons from

NTG and APdE9 mice respectively. Error bars represent the root mean squared error.

doi:10.1371/journal.pone.0168800.g007
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observed behavior in the interneurons from APdE9 mice—significantly larger than the two to

three-fold upregulation at the physiological membrane potential values observed in [38]. We

render such dramatic increase unrealistic. Moreover, increasing the conductance of HCN does

not account for the observed changes in depolarizability of interneurons from APdE9 mice as

compared to those from NTG mice. Thus we conclude that although it might play some role, it

is unlikely that the increase in the conductance of HCN channels is the sole cause of all obser-

vations in our experiments.

Deficits in VGSCs Nav 1.1 are observed in inhibitory neurons from both AD patients and

different animal models of AD. Decreased levels of active Nav 1.1 proteins are believed to be

the result of increased β-secretase 1 (BACE1) activity, the protein responsible for the cleavage

of APP leading to Aβ production as well as the cleavage of the β2-subunit of VGSCs, resulting

in decreased migration of Nav 1.1 proteins from the intracellular space to the cell membrane

[41]. BACE1 levels are elevated in AD patients, and thus it is likely that in addition to promot-

ing increased levels of Aβ, it may also be responsible for the deficit in active Nav 1.1 proteins

Fig 8. Interneurons from APdE9 mice are more depolarized in response to external stimulation as compared to interneurons from NTG

mice. Membrane potential of interneurons during the last 200 ms window of the 500 ms long stimulus after removing the spikes in interneurons from

the model as we change Gh (a) andGLNa (b) (lines). Observed values for interneurons from NTG (squares) and APdE9 mice (triangles) are shown for

comparison. (c) and (d) are from the same simulations as (a) and (b) respectively except that here we show the ratio of depolarization in interneurons

from NTG mice to those from APdE9 mice as a function of stimulus strength (lines and symbols are from the model and experiment respectively).

doi:10.1371/journal.pone.0168800.g008
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located in the cell membrane [41, 42]. In experiments performed by Verret et al [42] hAPPJ20

mice with decreased levels of the Nav 1.1 protein were observed to exhibit abnormal gamma

rhythm, which were closely related to aberrant interneuronal spiking. In addition, in situ
hybridization measurements support a strong colocalization of Nav 1.1 mRNA to PV neurons,

making network hypersynchrony the likely result of abnormal Nav 1.1 expression in inhibitory

neurons [12]. Thus there is an abundance of experimental data supporting the hypothesis that

abnormal VGSCs cause aberrant neuronal activity in APP and APdE9 mice as well as AD

patients [12, 41, 43]. Nevertheless, our results lead us to the conclusion that it is not the only

cause of the interneuronal dysfunction. While, nearly halving the maximum conductance of

VGSCs resulted in several observations, it failed to capture the increase in the resting mem-

brane potential in the interneurons from APdE9 mice as compared to those from NTG mice.

Furthermore, decreasing GFNa led to more variability in the action potential onset values and

had no effect on the initial slope of the phase plot. Both these observations are in contradiction

to the observed behavior in interneurons from APdE9 mice. Thus, although deficits in VGSCs

lead to the smaller mean action potentials and reduced number of spikes, in line with our

observations and experiments in [12], they are not the sole cause of the spectrum of aberrant

behaviors seen in our experiments.

We suspect that increased Na+ leak is the major cause of aberrant neuronal behavior in the

interneurons from APdE9 mice as it reproduces all observations in our experiments. This

Fig 9. Action potential in interneurons from NTG mice exhibit rapid onset as compared to those from APdE9 mice. (a) Phase plots showing

the derivative of membrane potential as a function of instantaneous membrane potential during action potential spike in interneurons from NTG mice

(blue) and APdE9 mice (red) observed experimentally are reproduced from Fig 3(c) for comparison. Phase plots given by the model atGLNa ¼ 0:007 mS/

cm2 (blue) andGLNa ¼ 0:028 mS/cm2 (red) (c), Gh = 0.05 mS/cm2 (blue) and Gh = 6.5 mS/cm2 (red) (e), andGFNa ¼ 24 mS/cm2 (blue) andGFNa ¼ 16 mS/

cm2 (red) (g) mimicking interneurons from NTG and APdE9 mice respectively. Panels (b), (d), (f), and (h) are extended views of (a), (c), and (e), and (h)

respectively.

doi:10.1371/journal.pone.0168800.g009
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enhanced leakage may be due to amyloid pores observed in lipid bilayers exposed to abnormal

levels of Aβ. Aβ has been known to form cation-permeable pores in lipid bilayers [33–35], cor-

tical neurons [44], and membranes of other cells [36, 37, 45–47]. Although we are not aware of

any evidence showing the formation of Aβ pores in in vivo studies, electron microscopy reveals

Aβ pore-like structures in cell membranes of post mortem brains of AD patients, but not in

control patients [48].

These pores have very high conductance, ranging from 400pS to 4000 pS, allowing large

amounts of cations to leak through the membrane [33, 37]. We mimic these pores by increas-

ing the leakage of different cations. While increasing K+ leak and cytosolic Ca2+ does not lead

to the observed behavior, higher Na+ leak does reproduce all observations in the interneurons

from APdE9 mice. Thus, although most experimental studies focus on the leakage of Ca2+ into

the cell [34–37], our results suggests that other cations flux through these pores, particularly

Na+ plays a significant role in interneuronal dysfunction.

Physiologically, decreased neuronal spiking due to elevated Na+ leak could be attributed to

a depolarizing shift in the action potential threshold. The threshold for neuronal spiking

requires contributions from both non-linear (voltage gated Na+ and K+ channels) and linear

currents (Na+ and K+ leak channels). The addition of these linear currents to the non-linear

ones creates an unstable equilibrium point, which results in the spiking threshold we observe

during neuronal spiking. Thus a larger contribution from the sodium leak current could shift

the spiking threshold value, making it difficult for the the neuron to spike. The decreased

amplitude of spiking may be explained by reduced VNa caused by increased Na+ leakage,

resulting in a smaller action potential during sodium channel activation. In addition to the

effects on action potential amplitude and reliability, a more depolarized resting membrane

potential could be accounted for by an increased leakage of Na+ from the extracellular space

into the cell, resulting in decreased ionic charge difference, which then causes the resting

membrane potential to become more depolarized.

This hypothesis is confirmed by the concentrations of various ions in our simulations mim-

icking interneurons from NTG (Fig 10) and APdE9 (Fig 11) mice. The increased Na+ leak

leads to significantly higher [Na+]i and lower [Na+]o in interneurons from APdE9 mice result-

ing in lower reversal potential for Na+ currents (VNa * 51 mV for NTG versus 37mV for

APdE9 mice). This will not only lead to smaller amplitude action potential but also signifi-

cantly reduce the driving force for Na+ currents, leaving the cell prone to spiking impairment.

Due to the electroneutrality constraint, the lower [Na+]o pulls down [Cl−]o. [Cl−]i on the other

hand does not change significantly as the increase in [Na+]i is compensated by the decrease in

[K+]i. The higher [Cl−]o results in more depolarized reversal potential for Cl− leak in interneu-

ron from APdE9 mice (VCl * -76 mV for NTG versus -68 mV for APdE9 mice). While [K+]i

drops by a few mM, the resulting changes in VK are not strong enough (VK * -102 mV for

NTG versus -101 mV for APdE9 mice) to make major contribution to the spiking behavior

and resting membrane potential of the cell. Vh on the other hand decreases from * -42 mV to

-48 mV as a result of changes in [Na+]i and [Na+]o. This will result in decreased driving force

for hyperpolarization-activated current, consistent with the reduced hyperpolarization in

response to negative stimulus shown in Fig 8. The decreased hyperpolarization drive together

with depolarized VCl will lead to higher resting membrane potential in interneurons from

APdE9 mice.

While we are unaware of any direct experimental evidence for disrupted Na+ concentra-

tions, higher resting [Ca2+]i has been observed in neurons from triple transgenic and APPSWE

mouse models of AD that exhibits accumulation of Aβ oligomers as compared to non-trans-

genic mice [49]. The fact that the resting [Ca2+]i returned to normal level in the absence of

extracellular Ca2+ and was not restored by blocking voltage gated Ca2+ channels indicates the
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possible contribution from influx through Aβ pores. Since Aβ pores are permeable to all cat-

ions [45], one can speculate that [Na+]i would also rise. Testing these predictions require

future experiments that are beyond the scope of this study.

We also remark that the open probability and permeability of Aβ pores show progressive

increase over time [36, 37]. Even the small pores at the early stage have the potential to upregu-

late the gating of several Ca2+ channels that could potentially disrupt synaptic function [36].

Big pores at the later stages would severely disrupt cell function due to their significantly

higher open probability and conductance. We expect our model to be relevant both at early

and later stage of AD. However, it remains to be investigated how the toxicity of pores changes

over time in vivo and how would they impair interneuronal function in time-dependent man-

ner as they evolve. The increased leak could also trigger synaptic homeostatic process and

other intrinsic changes in long term that would require future investigation.

Our model incorporates all key currents that are widely used while modeling inhibitory

neurons in the hippocampus (see for example, [50]). Nevertheless, we do not rule out the role

of pathways not included in the model in the interneuronal dysfunction. Particularly, our

model does not include synaptic conductances that are modulated by Aβ. For example, the

Fig 10. Long-term changes in concentrations of various ionic species in the model interneuron from NTG mice (GL
Na ¼ 0:007 mS/cm2) in

response to external stimulus during simulations shown in Fig 4a. (a) [Na+]i, (b) [Cl−]i, (c) [K+]o, (d) [Na+]o, (e) [Cl+]0, and (f) [K+]i. Inset shows

enhanced view of changes in ionic concentrations at the time of applied stimulus.

doi:10.1371/journal.pone.0168800.g010
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application of Aβ to hippocampus slices increases Ca2+ influx through N-Methyl-D-aspartic

acid receptor (NMDAR) [51]. Aβ also blocks α7 and α4β2 subunits of nicotinic acetylcholine

receptor (nAChR) in hippocampus and directly evokes sustained nAChR-mediated presynap-

tic [Ca2+]i increase [52]. Exposing neurons to Aβ enhances the expression of Gq proteins-cou-

pled metabotropic glutamate receptors that generate inositol 1,4,5-trisphosphate (IP3) [53]. IP3

and [Ca2+]i act as agonists for IP3 receptor channel that releases Ca2+ from the endoplasmic

reticulum to the cytoplasm. All these pathways are crucial for understanding the aberrant syn-

aptic signaling and network activity. We believe that our model provides a foundation for

building network models to investigate such impairments.

To summarize, our detailed analysis reveals that increased Na+ leak possibly through the

pores formed by Aβ in the plasma membrane leads to nearly all our observations about the

interneurons from APdE9 mice. While upregulation of Ih current leads to many observations,

we render the required changes in the conductance leading to the observation too high and

Fig 11. Long-term changes in concentrations of various ionic species in the model interneuron from APdE9 mice (GL
Na ¼ 0:028 mS/cm2) in

response to external stimulus during simulations shown in Fig 4a. (a) [Na+]i, (b) [Cl−]i, (c) [K+]o, (d) [Na+]o, (e) [Cl+]0, and (f) [K+]i. Inset shows

enhanced view of changes in ionic concentrations at the time of applied stimulus.

doi:10.1371/journal.pone.0168800.g011
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unrealistic. Similarly, the decreased conductance of VGSCs fails to reproduce the observed

depolarized resting membrane potential and cannot be the sole source of interneuronal dys-

function in AD. Our final conclusion is that while restoring the full interneuronal function in

AD might require a multifaceted approach, exploring Aβ pore blockers such as NA7 peptide

and Bexarotene could lead to promising outcome.
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