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Abstract The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in

stressful healthcare burdens and global health crises. Developing an effective measure to protect people

from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2

(ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry

of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular

vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with

engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line
erting enzyme 2; BSA, bovine albumin; EVs, extracellular vesicles; FBS, fetal bovine serum; NTA, nanoparticle

gel electrophoresis; RIPA, radio immunoprecipitation assay; RLU, relative luminescence units; S protein, spike

M, transmission electron microscope; WB, western blot.
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Neutralization
 with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demon-

strated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein

(S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly,

the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into

the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect

from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug devel-

opment.

ª 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19) infection
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has posed significant threats to international
health and the economy. As of July 30, 2021, there were
197,295,441 cases and 4,212,931 deaths from the COVID-19
pandemic1. In addition, there are increasing reports of various
sequelae from the SARS-CoV-2 infection, and the sequela rate is
high in the infected patients discharged after hospitalization2,3.
Considering the limited availability and accessibility of COVID-
19 vaccination, as well as the increasing incidence of immune
escape after vaccination, the development of anti-SARS-CoV-2
therapeutics is still a pressing need for the world. However,
there are currently no specific antiviral drugs for SARS-CoV-2
despite great effort and input from the scientific community.
For example, an initial randomized, double-blinded trial of
Remdesivir in China showed no substantial benefit to patients4.
Several repurposed drugs (e.g., chloroquine and anti-IL 6) have
been evaluated in clinical trials, ending with little therapeutic
benefit5,6.

The viral structural S proteins in SARS-CoV-2, which form a
characteristic crown on the virion surface, govern the entry of
coronavirus into host cells7. The interaction between angiotensin-
converting enzyme 2 (ACE2) in the host cells and S proteins of
SARS-CoV-2 is the essential mechanism for infection, and ACE2
serves as a major entry receptor for mediating the entry of SARS-
CoV-2 into host cells8,9. Further down, ACE2 was seen to be
upregulated in COVID-19 patients, and therefore, the blockage of
ACE2 and the S protein is considered a target for drug design10,11.
For instance, a recent study demonstrated that human recombinant
soluble ACE2 (hrsACE2) protein can inhibit SARS-CoV-2 entry
into host cells12. However, recombinant ACE2 exhibits a fast
clearance rate, with a dose-independent terminal half-life of only
10 h reported in clinical pharmacokinetic studies13. The short half-
life could be a huge barrier to practical use.

Extracellular vesicles (EVs) are defined as cell-derived vesicles
averaging 100 nm in diameter14,15, and also referred to as the
natural “Trojan horses” for drug delivery and therapy16,17. Clinical
trials based on EVs have shown positive results in various dis-
eases18. Because of the great promise of EVs in serving as a
carrier for biomacromolecules, big pharma companies have
invested heavily in the R&D of EVs19. In this study, EVs with
genetically engineered embedded human ACE2 (termed EVs-
ACE2) were used as antagonists against the S proteins, thereby
neutralizing the S-pseudovirus and inhibiting its entry into the host
cells (Fig. 1A).
2. Materials and methods

2.1. Animals

The BALB/c mice (female, 6e8 weeks) were procured from
Shanghai Laboratory Animal Center (SLAC) Co., Ltd. (Shanghai,
China). The mice had free access to water and food during the
experimental period. All animal experiment procedures,
complying with the animal experiment guidelines, have been
approved by the Institutional Animal Care and Use Committee
(IACUC) of Shanghai Institute of Materia Medica, Chinese
Academy of Sciences, China.
2.2. Materials

Anti-ACE2 antibody and anti-SARS-CoV-2 spike glycoprotein
antibody (Abcam, Cambridge, UK); Plasmid Mini, Midi and Maxi
Kits (Qiagen, Hilden, Germany); Firefly Luciferase Reporter
Assay Kit (Meilunbio, Dalian, China); Human recombinant ACE2
protein (Sino Biological, Beijing, China); Hoechst 33342 (Mei-
lunbio, Dalian, China).

2.3. Preparation of the EVs-ACE2

Prior to cell culture, FBS (fetal bovine serum) was centrifuged at
100,000�g (CP100NX ultracentrifuge, Hitachi, Tokyo, Japan) for
2 h to deplete the serum-derived extracellular vesicles (EVs-free
FBS). HEK293T and HEK293T-ACE2 (stable transfection) cells,
utilized for extracellular vesicle production, were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) with 10% EVs-free
FBS for 48 h. Briefly, the EVs were isolated from the cell culture
medium according to the method from a previous report20. After
three centrifugations (300�g 10 min, 2000�g 10 min, and
10,000�g 30 min) using the Heraeus Multifuge X1R (Thermo-
Fisher, Osterode am Harz, Germany), the pellets, including cells,
dead cells, cell debris, and large vesicles, were discarded. The
supernatant was ultracentrifuged at 100,000�g for 70 min at 4 �C
using the CP100NX ultracentrifuge (Hitachi). The EVs thus ob-
tained were then resuspended using PBS and ultracentrifuged
again at 100,000�g for 70 min (Hitachi). The purified EVs were
collected for the subsequent experiments.

2.4. Characterization of the EVs

A nanoparticle tracking analysis (NTA) was performed using a
Nanosight NS300 instrument (Malvern Instruments,

http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1 (A) Schematic mechanism of EVs-ACE2 inhibiting SARS-CoV-2 infection. The EVs-ACE2 were derived from the engineered

HEK293T cells with stable ACE2 expression. EVs-ACE2 can competitively bind with the viruses via ACE2/Seprotein interaction, thus blocking

the virus to enter the host cells. (B) Size distributions of EVs-ACE2 measured by NTA. (C) Size distributions of EVs-control. (D) The median

diameters of the EVs. (E) TEM images of EVs-ACE2. Scale bar Z 50 nm. (F) ACE2 expression in EVs-ACE2 and EVs-Control. (G) The

colloidal stability of the EVs. Data are presented as mean � SD (n Z 3); ns, no significance.
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Worcestershire, UK). For transmission electron microscopy
(TEM), the EVs were dropped onto the grids for 1 min, contrasted
with 1% uranyl acetate, and dried. The micrographs were captured
under a Talos L120C TEM (Thermo Scientific, Waltham, MA,
USA) at 120 kV. For the WB analysis, the EVs were lysed with a
radioimmunoprecipitation assay buffer (RIPA) containing a pro-
tease inhibitor cocktail (100:1, v/v, SigmaeAldrich, St. Louis,
MO, USA). The samples of EVs were analyzed using SDS-PAGE
(Bio-Rad, Hercules, CA, USA) following a standard procedure.
The blots were probed with antibodies specific to ACE2 (Rabbit,
Abcam, Cambridge, UK). The bands were visualized on the
ChemiDoc MP Imaging System (Bio-Rad, Hercules, CA, USA).
The freshly isolated EVs were stored at 4 �C in an EVs-free
culture medium and the particle size changes in the test time
frame were measured using NTA. The ACE2 expression in EVs-
ACE2 was determined by SDS-PAGE and Coomassie brilliant
blue method using human ACE2 protein (Sino Biological, Beijing,
China) as a standard. During the quantification procedure, a
standard protein human ACE2 was separately loaded in 0.025, 0.5,
0.75, 1.0, and 1.5 mg to five lanes. The standard protein was used
to give a standard curve of known concentration. The whole EVs-
ACE2 lysate (2 and 5 mg of total protein amount) was also



1526 Canhao Wu et al.
separately loaded to two lanes on the same gel. The content of
ACE2 in each sample lane was then quantified using ImageJ
software (National Institutes of Health, Bethesda, MD, USA).

2.5. Production of the SARS-CoV-2 S-pseudovirus

To generate the SARS-CoV-2 S-pseudovirus, the HEK293T cells
were co-transfected with pNL4-3.Luc.R-E, nCOV.his-SPIKE-FL,
and a Golgi location pTagRFP plasmid using the transfection re-
agent PEI25k. The HEK293T cells were seeded in the 12-well
plates at a density of 5 � 105 cells per well and cultured for
20 h. The cells per well were treated with the PEI25k/plasmids
complex (1.3:1, w/w), including 1 mg pNL4-3.Luc.R-E, 0.5 mg
pTagRFP, and a varying dose of nCOV.his-SPIKE-FL (0.25, 0.33,
0.5, or 0.75 mg) in a fresh DMEM medium without FBS for 4 h at
37 �C, and then replaced with a fresh medium with 10%
FBS21e23. Two days post-transfection, the supernatant containing
the SARS-CoV-2 S-pseudovirus were harvested and filtered
through a membrane with 0.45-mm pore size. Subsequently, to
investigate the best proportion of the three plasmids for the
pseudovirus preparation, the HEK293T-ACE2 cells with a density
of 5 � 105 cells/well were seeded in 12-well plates. After 24 h, the
cells were incubated for 12 h with the pseudovirus produced by
the different ratios of pNL4-3.Luc.R-E, nCOV.his-SPIKE-FL, and
pTagRFP. The cells were then washed with PBS three times and
then used for the fluorescent imaging (CARL ZEISS, Oberkochen,
Germany).

2.6. Characterization of the S-pseudovirus

The level of the S protein was analyzed using a WB analysis with
Anti-SARS-CoV-2 spike glycoprotein antibody (Abcam), ac-
cording to a standard procedure. The total protein concentration
was measured using a standard BCA method. The median size and
size distribution of the S-pseudovirus were analyzed using NTA.

2.7. WB analysis of ACE2 expression in various cell lines

The cells were seeded in 12-well plates at a density of
5 � 105 cells per well and incubated for 24 h. The cells were then
collected and the levels of ACE2 analyzed by WB with anti-ACE2
antibody (Abcam), according to a standard procedure. The total
protein concentration was measured using a standard BCA
method.

2.8. Inhibition of viral attachment by EVs-ACE2

To investigate the inhibition of pseudovirus attachment by EVs-
ACE2, the cells were seeded in the 24-well plates at a density of
2.5 � 105 cells per well. After 24 h culture, the S-pseudovirus
(5 � 107 particles per well) were incubated with EVs-ACE2 or
EVs-Control at 37 �C for 4 h (the ratio of pseudovirus and EVs
was 1:5, based on the NTA particle quantity), followed by culture
with different cells for 12 h. Cell nuclei were then stained with
Hoechst 33342 for 5 min, and thoroughly washed with PBS three
times to perform the fluorescent imaging (CARL ZEISS). For the
quantitative measurements, the cells were digested, collected, and
then analyzed using a flow cytometer (NovoCyte, Agilent, Santa
Clara, USA). The S-pseudovirus without EV-pretreatment was
used as a control.
2.9. Inhibition of viral infection by EVs-ACE2

To investigate the inhibition effect on pseudovirus infection by
EVs-ACE2, the S-pseudovirus were also pretreated with the EVs-
ACE2 4 h prior to adding to the cells. After 48 h of co-incubation,
the cells were harvested and treated with 200 mL of the RIPA lysis
buffer. After centrifugation at 12,000�g for 20 min (Heraeus
Multifuge X1R, ThermoFisher), the luciferase activity of the su-
pernatants was detected using the Luciferase Assay Kit (Mei-
lunbio, Dalian, China), and the luminescence was measured using
the EnSpire Multimode Plate Reader (PerkinElmer, Waltham,
USA). The luminescence was normalized to the protein concen-
tration of each sample, which was measured using a BCA
Microplate Protein Assay Kit (Beyotime, Shanghai, China).
Additionally, the quantification of luciferase expression in the
transfected cells was determined by quantitative real-time poly-
merase chain reaction PCR (qRT-PCR). Total RNA was isolated
from cells with Trizol (Tiangen, Beijing, China). The reverse
transcription was finished with the iScriptTM gDNA Clear cDNA
Synthesis Kit (Bio-Rad, Hercules, CA, USA). And, the real-time
PCR was finished by using multiple kits (SYBR Premix Ex
TaqTM, RR036A, Takara Bio, Kusatsu, Japan). Furthermore, qRT-
PCR reactions were finished in an ABI 7500FAST Sequence
Detector System (ABI, Foster City, CA, USA). The luciferase
forward and reverse primers were 50-AATGTCCGTTCGGTTGG-
CAG-30 and 50-GGCTGCGAAATGCCCATACT-30, respectively.
And the actin (the loading control) forward and reverse primers
were 50-GGTCATCACTATTGGCAACG-30 and 50- ACGGATGT-
CAACGTCACACT-30, respectively.

2.10. In vivo inhibition test

The BALB/c mice were randomly divided into three groups. At
the beginning of the experiment, the mice were placed in an an-
imal anesthesia machine (E-ZSystem, Palmer, PA, USA) and 1%
isoflurane was used as an anesthetic. The mice received PBS (the
blank control), the DiO-labeled EVs-ACE2 (60 mg, calculated by
the total protein content), and an equal amount of the DiO-labeled
EVs-Control (the negative control) via intranasal administration.
Thirty minutes later, all of the mice were given 20 mL (12 mg,
calculated by the total protein content) of the S-pseudovirus.
Another 30 min later, they were sacrificed using a high dose of
isoflurane. The nasal mucosa tissues of the mice were dissected
and fixed with 4% paraformaldehyde for preparation of the cry-
osection slices with a thickness of 10 mm (CM1950, Leica, Solms,
Germany). The tissue slices were imaged using a fluorescence
microscope (Carl Zeiss, Dublin, CA, USA). The overlap propor-
tion was determined using ImageJ (NIH) by calculating Pearson’s
value. The nasal mucosa tissues were also used for preparing the
single-cell suspension for flow cytometry assay to detect the RFP
fluorescence signal. Additionally, the quantification of luciferase
expression in the nasal mucosa tissues was determined by qRT-
PCR. Total RNA was isolated from the nasal mucosa tissues
with Trizol (Tiangen). The reverse transcription was performed
using the iScriptTM gDNA Clear cDNA Synthesis Kit (Bio-Rad).

2.11. WB analysis of the nasal mucosa tissue

The dissected nasal mucosa tissues were used to verify whether
the native ACE2 protein was expressed. After they were cut into
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pieces, two mL of the cell lysate was added, and they were placed
on a shaker at 37 �C for digestion for 1 h. The lysate was then
filtered using nylon mesh to remove the residual tissue. The total
protein was determined using a BCA kit, and the samples were
processed by SDS-PAGE and transferred to nitrocellulose mem-
branes. The blots were probed with Anti-ACE2 and were visual-
ized using a ChemiDoc MP Imaging System (Bio-Rad).

2.12. In vivo preliminary safety studies

The EVs-ACE2 or EVs-Control (60 mg in 20 mL PBS) were
administered into the nasal cavity of the BALB/c mice, and the
blood was collected via the orbital vein three days later. The
serum was collected and analyzed using an automated hematology
analyzer (XT-2000i, Sysmex, Kobe, Japan) for the blood chem-
istry test, including alanine aminotransferase (ALT), total protein
(TP), albumin (ALB), urea nitrogen (Urea), creatinine (CRE),
calcium (Ca), phosphorus (P), potassium (K), and sodium (Na).

For the hematoxylin-eosin staining, the BALB/c mice were
randomly divided into three groups. The mice received PBS (the
blank control), EVs-ACE2 (60 mg), and the EVs-Control (60 mg)
via nasal administration. The animals were then humanely sacri-
ficed 72 h post-administration, and the major organs (heart, liver,
spleen, lung, and kidney) were collected and fixed using 4%
paraformaldehyde for histopathological examination.

2.13. Data analysis

Statistical analysis was performed using t-tests and one-way
analysis of variance (ANOVA). Data were expressed as
mean � standard deviation (SD). Statistically, significant differ-
ence was defined as *P < 0.05, **P < 0.01, and ***P < 0.001.

3. Results

3.1. Characterization of EVs-ACE2

The engineered 293T cells with stable expression of full-length
human ACE2 (HEK293T-ACE2) were constructed using a lenti-
virus. The 293T cells are an experimentally amenable, homoge-
nous cell line that is routinely used in cell engineering24 and as
exosome donors and packaging cells25,26. Moreover, the EVs
derived from 293T cells have been demonstrated to be immuno-
logically inert27,28. The EVs-ACE2 were purified from the cell
culture supernatants using differential ultracentrifugation. Mean-
while, the EVs derived from the HEK293T control cells without
ACE2 transfection (termed EVs-Control) were also prepared. The
median particle diameter of the EVs-ACE2 was 58.5 nm, and that
of the EVs-Control was 68.2 nm (Fig. 1BeD), determined by
NTA. Transmission electronic microscopy showed the
morphology of the EVs-ACE2 with a double-layer membrane
(Fig. 1E).

The ACE2 expression on the EVs-ACE2 was confirmed by
Western blot (WB) analysis (Fig. 1F). The quantitative analysis of
ACE2 expression in EVs-ACE2 was determined by SDS-PAGE
with Coomassie Brilliant Blue staining, using human ACE2 as
the standard protein (Fig. 3B), and the ACE2 expression in EVs-
ACE2 is 35 mg/mg total proteins (Fig. 3B). Furthermore, the
stability of the resuspended EVs after ultracentrifugation was
evaluated by NTA, and the EVs remained stable in the test time
frame (Fig. 1G).
3.2. Characterization of SARS-CoV-2 S-pseudovirus

S-protein pseudovirus was generated by using a lentivirus-based
pseudoviral system co-packing pNL4-3.Luc.R-E, nCOV.his-
SPIKE-FL, and pTagt RFP. The transfection efficiency of the
pseudovirus was reflected by the S-protein expression, which
showed a high level by the WB analysis (Fig. 2A). The particle
size of the S-pseudovirus is shown in Fig. 2B. Because pseudo-
viral particles could bind together, they showed different peaks.
For the pTagRFP-labeled S-protein pseudovirus, the fluorescence
intensity served as an indicator of the ability of the pseudovirus to
enter the cells. According to the results (Fig. 2C), a packing ratio
of 1:0.5 (w/w) between pNL4-3.Luc.R-E, nCOV.his-SPIKE-FL
was optimal for preparing the pseudovirus.

S-pseudovirus provides a useful model to safely study SARS-
CoV-2 with benefits of non-replicability and tractability21e23. The
one created in our study is characterized by three major functional
components, namely, the viral envelope full-length S protein, a
tracer protein red fluorescence protein (RFP), and a reporter
luciferase gene. Thus, the infection process of the S-pseudovirus
can be indicated by the RFP signal and luciferase activity.
3.3. Blockage of pseudovirus attachment onto the cells

The first step for a virus to infect a host cell is attachment onto the
cell membrane via the viral receptors. In SARS-CoV-2, the S2
subunit of the S protein is highly conserved, and the S protein
binds to the ACE2 receptor29. In order to investigate the cell entry
of S-pseudovirus, several ACE2þ cell lines were applied. WB
analysis showed that HeLa and HEK293T-ACE2 cells had a high
level of ACE2 expression. HCT116 and PC3 cells had a moderate
expression level, and SW620 and A549 cells had a minimal level
of ACE2 expression (Fig. 3A). It was revealed that the cell entry
efficiency was closely associated with the ACE2 expression level;
for example, the cell entry efficiency of the S-pseudovirus was
high in the HeLa and HEK293T-ACE2 cells but low in the SW620
and A549 cells. Importantly, the treatment with EVs-ACE2
resulted in the inhibition of the S-pseudovirus to enter the cells,
which was reflected by the significant reduction of the
pseudovirus-labeled fluorescence (Fig. 3C and D). These results
demonstrated that EVs-ACE2 efficiently blocked the entry of S-
pseudovirus into the cells.
3.4. Blockage of pseudovirus infection

The infection efficiency was performed by titrating the S-pseu-
dovirus. After transfection, the co-packed pNL4-3.Luc.RE
expressed luciferase. Therefore, luminescence intensity was a
transfection indicator. The results showed that the HeLa, HCT116,
and PC3 cells were more effectively transduced by the S-pseu-
dovirus than the SW620 and A549 cells, and the highest trans-
duction efficiency (approximately 2 � 106 RLU) was observed in
the HeLa cells with the highest ACE2 expression, 20-fold higher
than the SW620 or A549 cells with the low ACE2 expression
(Fig. 3E). However, the infection efficiency in the cells was
decreased by EVs-ACE2 treatment, and Fig. 3E shows that EVs-
ACE2 treatment reduces 96% luciferase activity compared to the
control group. It was demonstrated that the EVs-ACE2 signifi-
cantly blocked the S-pseudovirus infection in the HeLa, HT116,
and PC3 cells with high ACE2 expression. The results suggest that
the entry and infection of SARS-CoV-2 were blocked by



Figure 2 Characterization of the S-pseudovirus. (A) S-protein expression in the S-pseudovirus and EVs. (B) Size distributions of S-pseudovirus

determined by NTA. (C) The S-pseudovirus prepared with a packing ratio of pNL4-3.Luc.RE and nCOV.his-spike-FL of 1:0.5 (w/w) had the

highest efficiency of cell entry. Scale bar Z 100 mm.
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administering EVs-ACE2 to neutralize the virus. This was also
verified by qRT-PCR (Fig. 3F).

3.5. Blockage against S-pseudovirus in the nasal epithelium

In symptomatic and asymptomatic patients, nasal swabs typically
have been found to have a higher viral load of SARS-CoV-2 than
throat swabs do30. Notably, nasal epithelial cells, containing
goblet cells and ciliated cells, show high expression of ACE2. This
indicates that the nasal cavity is the primary portal and incubator
for SARS-CoV-2 to enter the human body31. The ACE2 protein
was highly expressed in the nasal epithelium of the mice
(Fig. 4A). The S-pseudovirus (red) was successfully captured by
the EVs-ACE2 (green) that were intranasally pre-administered to
the mice, reflected by the major overlap of the fluorescence of red
and green. By contrast, in the EVs-Control group, there was much
less overlap of the fluorescence (Fig. 4C). The overlap proportion
was reflected in the Pearson’s value: 0.59 (EVs-ACE2 group) vs.
0.04 (EVs-Control group) (Fig. 4B). In the qRT-PCR assay, we
obtained the same conclusions (Fig. 4D).

Furthermore, the epithelium tissues were processed for flow
cytometry analysis, which showed that the S-pseudovirus positive
rates in the non-treatment and EVs-Control groups were more than
100 times higher than the EVs-ACE2 group (16.2% and 13.1% vs.
0.13%, Fig. 4E).

There are olfactory epithelium and respiratory epithelium in
the nasal cavity. Although they have a different biological func-
tion, both of them overexpress ACE232e34. As a whole, the results
show an effective blockage against S-pseudovirus by treatment
with ACE2-expressing EVs.
3.6. Preliminary safety evaluation

After intranasal administration of EVs-ACE2, a blood chemistry
test was conducted three days later. The results showed no obvious
changes, and all remained at the baseline levels (Fig. 5B). The
histopathological analysis also reveals that there was no evidence
of lesion or tissue damage (Fig. 5A).

4. Discussion

Neutralization strategy plays an important role in antivirus ther-
apy. For example, monoclonal antibodies35,36, antisera37, and re-
combinant human ACE2 protein38 have also been investigated for
neutralization treatment. Among them, the recombinant human
ACE2 has been considered a promising therapeutic agent against
COVID-1939. However, due to its short half-life, the therapeutic
success has been limited. To address this issue, the use of nano-
carriers to deliver ACE2 protein was developed to neutralize
SARS-CoV-240. In this work, we proposed ACE2-expressing EVs
as a means for preventing healthy individuals.

Engineered EVs have been actively explored as potent thera-
peutic candidates. Via cell engineering technology, it is feasible to
prepare EVs bearing various types of functional proteins, with
extra advantages of non-toxicity and good biocompatibility and
stability in biofluids (e.g., plasma)41. Till July 2021, more than
200 clinical trials involving EVs-related treatments and diagnoses
of different diseases have been registered at https://clinicaltrials.
gov/.

EVs bearing decoy receptors that competitively bind with the
target receptors as a potential treatment has been proposed in

https://clinicaltrials.gov/
https://clinicaltrials.gov/


Figure 3 The EVs-ACE2 inhibited the pseudoviral infections in vivo. (A) The ACE2 levels in various cell lines. (B) Coomassie brilliant blue

method: a standard protein human ACE2 was separately loaded in 0.025, 0.5, 0.75, 1.0, 1.5 mg to five lanes (lane 1e5); the whole EVs-ACE2

lysate was also separately loaded in amounts of 2.0 or 5.0 mg (total proteins) to two lanes (lane 6&7). (C) EVs-ACE2 inhibited the cell entry of S-

pseudovirus. Scale bars Z 100 mm. (D) Flow cytometry assay results of (C). (E) EVs-ACE2 inhibited the infection of S-pseudovirus; RLU

detected at 48 h after pseudoviral inoculation; scale bar Z 100 mm. (F) The luciferase expression levels were qualified by qRT-PCR assay. Data

are presented as mean � SD (n Z 3). **P < 0.01, ***P < 0.001, ****P < 0.0001; ns, no significance.

Neutralization of SARS-CoV-2 by Evs 1529
skeletal muscle pathophysiology42. It was proposed that ACE2-
expressing EVs that bind with SARS-Cov-2 could be a possible
therapy43, and subsequently, it was demonstrated by in vitro
tests44. In this study, EVs with decoy ACE2 were used as an
antagonist to neutralize SARS-CoV-2 pseudovirus via the ACE2/
Seprotein interaction. The EVs-ACE2 demonstrated the potent
ability to neutralize pseudovirus in both in vitro and in vivo
experiments. Specifically, we first showed that the intranasal
pretreatment with EVs-ACE2 can block the viruses to enter the
nasal epithelium, which typically serves as the primary portal for



Figure 4 In vivo neutralization test. (A) ACE2 expression in the murine nasal mucosa. (B) The quantitative analysis of the overlap proportion in

the images of (C) using ImageJ. (C) Fluorescence images of the nasal mucosa cryosection slices from the mice challenged by the S-pseudovirus

with the DiO-labeled EVs-ACE2/EVs-Control pretreatment. Scale bars Z 100 mm. (D) The luciferase expression levels of nasal mucosa cry-

osection tissues were qualified by qRT-PCR assay (nZ 3). (E) Flow cytometry assay of nasal mucosal tissues after S-pseudovirus challenge. Data

are presented as mean � SD (n Z 3). **P < 0.01, ns, no significance.
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SARS-CoV-2. Of note, 41% of the people with COVID-19 had
reported experiencing a loss of smell45. As nasal mucosa is a
front-line defense against respiratory infection in the human
body, the intranasal administration of therapeutics could be
promising in limiting the spread of COVID-19. Importantly,
intranasal dosing can be self-administrated and the formulation
is easy to be given intranasally. It should be mentioned that
physical protective equipment might not provide complete



Figure 5 (A) Hematoxylin and eosin staining of the sections from the major organs taken 3 days after nasal administration of the EVs. Scale

bars Z 50 mm. (B) Serum chemistry test. TP, total protein; ALB, albumin; ALT, alanine aminotransferase; Urea, urea nitrogen; CRE, creatinine;

Ca, calcium; P, phosphorus; K, potassium; and Na, sodium. Data are presented as mean � SD (n Z 3); ns, no significance.
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protection in the virus-rich indoor environments, as evidenced
by the frequently reported cases in medical centers and hospi-
tals. Therefore, to develop an intranasal medicine (e.g., EVs-
ACE2) that could provide additional protection is clinically
meaningful.

5. Conclusions

We reported a novel antivirus strategy where engineered EVs with
decoy receptors as a nanoplatform can act as a safe and effective
therapeutic avenue.
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