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Abstract

The study aimed to develop machine learning models that have strong prediction power and

interpretability for diagnosis of glaucoma based on retinal nerve fiber layer (RNFL) thickness

and visual field (VF). We collected various candidate features from the examination of retinal

nerve fiber layer (RNFL) thickness and visual field (VF). We also developed synthesized

features from original features. We then selected the best features proper for classification

(diagnosis) through feature evaluation. We used 100 cases of data as a test dataset and

399 cases of data as a training and validation dataset. To develop the glaucoma prediction

model, we considered four machine learning algorithms: C5.0, random forest (RF), support

vector machine (SVM), and k-nearest neighbor (KNN). We repeatedly composed a learning

model using the training dataset and evaluated it by using the validation dataset. Finally, we

got the best learning model that produces the highest validation accuracy. We analyzed

quality of the models using several measures. The random forest model shows best perfor-

mance and C5.0, SVM, and KNN models show similar accuracy. In the random forest

model, the classification accuracy is 0.98, sensitivity is 0.983, specificity is 0.975, and AUC

is 0.979. The developed prediction models show high accuracy, sensitivity, specificity, and

AUC in classifying among glaucoma and healthy eyes. It will be used for predicting glau-

coma against unknown examination records. Clinicians may reference the prediction results

and be able to make better decisions. We may combine multiple learning models to increase

prediction accuracy. The C5.0 model includes decision rules for prediction. It can be used to

explain the reasons for specific predictions.

Introduction

Glaucoma is characterized by dysfunction and loss of retinal ganglion cells (RGCs), with

resulting structural changes to the optic nerve head, retinal nerve fiber layer (RNFL) thickness,

and ganglion cell and inner plexiform layers as well as loss of the visual field [1].
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The diagnosis of glaucoma in its early stages is challenging. Misdiagnosis can lead to failure

to identify individuals with the condition during its early stages until significant functional

loss has occurred. Thus, early detection of glaucoma allows for early treatment to delay vision

loss [2,3]. Diagnosing glaucoma is problematic, especially when it is in the earliest stage of

glaucoma. Diagnosis of glaucoma in myopic eyes and patients with brain diseases such as

brain tumor is known to be difficult due to those eye’s characteristic disc shape and visual field

defect. A more effective glaucoma-detection machine learning model would be very helpful to

clinicians.

The classification scheme in machine learning is suitable for diagnosis glaucoma. Chan et al

[4] tested various classification algorithms based on the examination of visual fields. Gold-

baum et al [5] also compared machine learning classifiers and suggested a mixture of of Gauss-

ian as the best classifier. Bizios et al [6] tested the artificial neural network (ANN) and support

vector machine (SVM) based on RNFL thickness parameters. Barella et al [7] investigated the

diagnostic accuracy of machine learning classifiers (MLCs) and random forest (RF) using

RNFL and optic nerve data. They got 0.877 of area under the ROC value using RF. Recently,

Silva et al [8] tested almost all of the classifiers using Spectral Domain optical coherence

tomography (OCT) and standard automated perimetry. They got 0.946 as the best aROC value

using RF. Previous studies show that SVM and RF have good prediction power. The trade-off

between prediction power and interpretability is one of the well-known issues in machine

learning. The black box models such as SVM and deep learning algorithm show good predic-

tion power. However, it is difficult to understand why the model gives the prediction result.

Therefore, they are not entirely suitable for medical diagnosis because clinicians want to know

both the prediction and the reason for the prediction. Decision tree models [9] such as C5.0

[10,11] show good interpretability and poor prediction power. Logistic Regression and Naïve

Bayes are algorithms used for probabilistic classification [12]. iDHS-EL [13] and iRSpot-EL

[14] are predictors developed for identifying the location of DNase I Hypersensitive Sites

(DHSs) and DNA recombination spots in human genomes. The goal of this study is to develop

a machine learning model that has strong prediction power for diagnosis of glaucoma. To

achieve the goal, we developed good features from examination data for prediction, and we

tested C5.0, RF, SVM, and k-nearest neighbor (KNN) algorithms. We describe details in the

next section.

Materials and methods

Procedure

We used three kinds of examination records to develop the learning model: RNFL thickness,

visual field (VF) test parameters, and general ophthalmic examination. The records contained

glaucoma cases and healthy controls. We extracted as many features (data attributes) as possi-

ble from the examination record. All the features were arranged as a data table form except

missing values. We performed t-tests to evaluate each feature in the data table, and select suit-

able features for classifying healthy controls and glaucoma.

We divided the base dataset into a test dataset (100 cases) and another dataset (399 cases).

Another dataset was used for developing the learning model. We used 80% of it for model

training and 20% of it for validation of the model. After finding the best learning model, we

evaluated the model using the test dataset.

To develop the learning (glaucoma prediction) model, we considered four machine learn-

ing algorithms: C5.0, RF, SVM, and KNN. We repeatedly composed a learning model using

training dataset and evaluated it by validation dataset, and a model which showed the best vali-

dation accuracy was chosen as the best learning model.

Machine learning models for diagnosis of glaucoma
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After building the best learning models upon four algorithms, we evaluated the models in

various ways. The classification accuracy, sensitivity, specificity, and likelihood ratios were

compared. Receiver operating characteristics, (ROC) curves and areas under the curve (AUC)

value were also analyzed. In the case of the C5.0 model, this includes a decision tree to predict

glaucoma. We analyzed the clinical meanings of the decision rules in the tree. All procedure

was implemented by R (http://www.r-project.org) and its supported packages.

Participants

The medical records of patients who underwent optical coherence tomography (OCT) and VF

examinations at Dankook University Hospital and Gyeongsang National University Hospital

between January 2012 and November 2015 were reviewed. To conduct the study, all the

patients underwent comprehensive ophthalmological examinations, which included slit-lamp

biomicroscopy, best corrected visual acuity (BCVAC), refractive error examination, central

corneal thickness (CCT) measurement, Goldmann applanation tonometry, dilated fundus

examination, and fundus and red-free fundus photography (Canon, Tokyo, Japan). An auto-

mated VF test was conducted using the 30–2 program Swedish interactive threshold algorithm

standard on a Humphrey 740 visual field analyzer (Carl Zeiss Meditec Inc., Dublin, CA). The

spectral-domain OCT (SD OCT) images, obtained using the Spectralis1 (Heidelberg Engi-

neering GmbH, Heidelberg, Germany) platform, were used to measure the peripapillary

RNFL thickness. This study was approved by the Dankook University Hospital Institutional

Review Board, Korea (ID# DKUH 2016-11-011). Informed consent of participants was waived

by the Dankook University Hospital Institutional Review Board. This research follows the

tenets of the Declaration of Helsinki.

In total, 297 cases of eyes (of patients) with glaucoma (POAG or NTG) and 202 cases of

eyes (of patients) without glaucoma were included. The inclusion criteria for glaucomatous

eyes were: best-corrected visual acuity of 20/40 or better; normal anterior segment on a slit-

lamp examination; and diagnosis of glaucoma by the principal investigator or co-investigator.

The glaucoma diagnosis was based on characteristic glaucomatous structural change to the

optic disc accompanied by glaucomatous visual field defects. The criteria for a glaucomatous

visual field defect were: glaucoma hemifield test [15] outside the normal limit, pattern standard

deviation with a P value <5%, or a cluster of<3 points in the pattern deviation plot in a single

hemifield (superior or inferior) with a P value of<5%, one of which must have a P value of

<1%. Any one of the preceding criteria, if repeatable, was considered sufficient evidence of a

glaucomatous visual field defect.

Exclusion criteria were as follows in addition to those who do not met the inclusion criteria:

history of ocular inflammation or trauma; and the presence of concurrent retinal disease (i.e.,

vascular disorder or macular degeneration), optic nerve disease other than glaucoma, or a

brain disorder that could influence the visual field results.

The inclusion criteria for normal eyes were a best-corrected visual acuity of 20/40, normal

anterior segment on a slit-lamp examination, no RNFL defects in red-free fundus photo-

graphs, no visual field defects, and an intraocular pressure�21 mmHg. Table 1 summarizes

the characteristics of the participants.

Feature selection and dataset preparation

Table 2 summarizes the basic features that we extracted from the examination records for the

glaucoma and healthy controls. To select good features for building the learning model, firstly

we removed the features that contained missing values in over 50% of whole cases. We then
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performed t-tests against the rest of the features to see the class separability of the features. As

a result, the features 2–8, 10–12 were selected.

To increase the quality of the training dataset, we made a synthesized feature. The feature

RNFL4.mean reflects the average value of RNFL SUP, INF, and TMP. Because the four RNFL

features contain partial information about RNFL, and we need to reflect whole RNFL, we

tested every combination of the four RNFL features and SUP-INF-TMP combination showed

best performance.

The final step of feature selection was to sort good features from candidates’ features. We

performed a classification test on every combination of the feature subset of candidates’ fea-

tures using the C5.0 algorithm. Table 3 summarizes the final features from the feature selection

process. Fig 1 shows a box plot for the features. All features show a large difference of median

value between glaucoma and healthy controls. Fig 2 shows the PCA plot for the prepared data-

set. In the plot, each point means a case in the dataset. Generally, the glaucoma cases are well

separated from healthy control cases. Some cases are located in border areas or opposite areas.

The goal of the learning model may be to correctly predict the cases. The right plot of Fig 2

shows the relationship between distribution of cases and features. In the glaucoma group,

PSD, GHT, ocular_pressure, and age have high values whereas MD and RNFL4_mean
have low values. In the case of cornea_thickness, the healthy control group has a little bit

higher value than glaucoma group.

Table 1. Characteristics of the participants.

Normal group Glaucoma group Total p-value*

Number of participants 60 110 170 -

Gender (male/female) 32/28 70/40 170 0.2515

Age¶ (mean ± SD) 45.8±16.08 61.86±13.91 - 5.086 ×10−10

Number of eyes 164 168 332 -

Number of cases 202 297 499 -

SD = standard deviation

*Comparison between glaucoma and normal groups (unpaired t-test for Age and chi-square test for Gender).
¶ The ages of the participants chosen for the research ranged from 13 years to 90 years, with a mean age of 56.36 years.

https://doi.org/10.1371/journal.pone.0177726.t001

Table 2. List of basic features from the examination data. We extracted them from examination records

for glaucoma and healthy controls.

No Feature Source

1 gender General exam.

2 age General exam.

3 ocular pressure General exam.

4 cornea thickness General exam.

5 RNFL SUP RNFL

6 RNFL NAS RNFL

7 RNFL INF RNFL

8 RNFL TMP RNFL

9 VFI VF

10 MD VF

11 PSD VF

12 GHT VF

https://doi.org/10.1371/journal.pone.0177726.t002
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Learning model evaluation criteria

The accuracy, sensitivity, specificity, likelihood ratio, and ROC/AUC have been widely used as

criteria for evaluating a diagnosis model [16]. The following terms are fundamental to under-

standing the utility of them:

1. True positive (TP): the patient has a disease and the prediction is positive.

2. False positive (FP): the patient does not have a disease but the prediction is positive.

3. True negative (TN): the patient does not have a disease and the prediction is negative

Table 3. Final features list for building the training model. We removed the features that contained many

missing values. We then performed t-tests against the rest of the features to see class separability of the fea-

tures. The feature RNFL4.mean reflects mean of SUP-INF-TMP combination.

No Feature

1 age

2 ocular pressure

3 cornea thickness

4 RNFL4.mean

5 GHT

6 MD

7 PSD

https://doi.org/10.1371/journal.pone.0177726.t003

Fig 1. Box plots for selected features (g: Glaucoma, h: Health control). All features show a large

difference of median values between glaucoma and healthy controls.

https://doi.org/10.1371/journal.pone.0177726.g001
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4. False negative (FN): the patient has a disease but the prediction is negative.

The accuracy of a diagnosis model refers to the ability of the model to correctly identify

those patients with the disease and without the disease:

Accuracy ¼
TPþ TN

TPþ FPþ TN þ FN

The sensitivity of a diagnosis model refers to the ability of the model to correctly identify

those patients with the disease:

Sensitivity ¼
TP

TPþ FN

The specificity of a diagnosis model refers to the ability of the test to correctly identify those

patients without the disease:

Specificity ¼
TN

FPþ TN

The likelihood ratio is defined as the ratio of expected test results in subjects with a certain

disease to the subjects without the disease.10 The Likelihood ratio for positive test results (LR+)

tells us how much more likely the positive test result is to occur in subjects with the disease

Fig 2. PCA plot for prepared dataset. Each point means a case in the dataset. Generally, the glaucoma cases are well separated

from the healthy control cases. Some cases are located in the border area or opposite area. Right plot shows relationship between

distribution of cases and features. In the glaucoma group, PSD, GHT, ocular_presure, and age have high values whereas MD and

RNFL4_mean have low values.

https://doi.org/10.1371/journal.pone.0177726.g002
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compared to those without the disease:

LRþ ¼
Sensitivity

1 � Specificity

The Likelihood ratio for negative test results (LR–) represents the ratio of the probability that

a negative result will occur in subjects with the disease to the probability that the same result

will occur in subjects without the disease:10

LR� ¼
1 � Sensitivity
Specificity

The receiver operating characteristic (ROC) plot expresses relationship between sensitivity

and 1 –Specificity. The closer the ROC curve is located to upper-left hand corner, the better

the model. The area under the curve (AUC) can have any value between 0 and 1 and it is a

good indicator of the goodness of the model.

Results

Classification test

Fig 3 depicts the classification testing procedure conducted using learning models. From the

classification test using the validation dataset, we recorded the statistics as shown in Table 4.

As can be seen, the RF model shows the best values on all evaluation criteria. Other models

show similar performance.

Fig 3. Classification test procedure using learning models.

https://doi.org/10.1371/journal.pone.0177726.g003

Table 4. Statistics of four learning models from classification tests. The RF model shows the best values on all evaluation criteria. Other models show

similar performance.

Accuracy Sensitivity Specificity LR+ LR-

RF 0.98 0.983 0.975 39.33 0.017

C5.0 0.97 0.983 0.95 19.67 0.018

SVM 0.97 0.983 0.95 19.67 0.018

KNN 0.97 0.967 0.975 38.67 0.034

https://doi.org/10.1371/journal.pone.0177726.t004
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In accuracy, the RF model has a 0.98 rate. The other three models have 0.97. All four models

have enough accuracy for medical application.

The Sensitivity of RF and C5.0 is 0.983. It means that the proposed three models exactly pre-

dict against glaucoma patients and their accuracy is 0.983. It also means that they show a very

small FN ratio. In the medical field, FN ratio is more important than FP ratio. Therefore, the

thrree models are suitable for diagnosis of glaucoma.

The Specificity of the RF and KNN is 0.975. It shows good prediction power against healthy

controls. LR+ is the best indicator for ruling in diagnosis. The higher the LR+, the more the

test is indicative of a disease. Good diagnostic tests have LR+> 10 and their positive result has

a significant contribution to the diagnosis [17]. The LR+ of the RF and KNN models shows

39.33 and 38.67, respectively, and C5.0 and SVM are also larger than 19. LR—is a good indica-

tor for ruling out the diagnosis. Good diagnostic tests have LR–< 0.1. The lower the LR–, the

more significant contribution of the test is in ruling out disease [17]. The LR—of RF model

shows 0.017, C5.0 and SVM shows 0.018, and KNN is 0.034.

Table 5 shows the detailed evaluation results of the RF model. There are two misclassified

training samples in the table; one healthy sample is classified into the glaucoma group (FP and

one glaucoma sample is classified into the healthy group (FN). In the medical situation, FN is

more important than FP. The RF model shows very high accuracy (0.98) and very low FN rate

(0.01).

Fig 4 shows ROC curves and AUC values for all four models. AUC expresses global quality

of the prediction model and the RF and C5.0 models show 0.979, SVM is over 0.967, and KNN

is 0.971.

Table 6 shows the comparison of model performance between previous works and the pro-

posed RF model. Only AUC of Bizios et al6 is higher than the proposed model, but the number

of features is much more and sensitivity and specificity are lower than in the proposed model.

From the classification test, we reached following conclusions:

1. The quality of our developed features is suitable to use for our glaucoma prediction. It does

not depend on any specific learning model. It leads to best evaluation values on the RF

model, but it also leads to good evaluation values on C5.0, SVM, and KNN models.

2. The values of measures in Table 4 say that RF, C5.0, and SVM prediction models have very

strong and stable potential for glaucoma prediction, with its sensitivity measure being very

high. Furthermore, the C5.0 model has good interpretability because it is a decision tree

model.

3. In conclusion, RF, C5.0, and SVM, based on the proposed features, may be useful for the

diagnosis of glaucoma.

Decision tree of C5.0

C5.0 is an advanced version of ID3 and C4.5 that is developed by Ross Quinlan.10,11 C5.0

became an industrial standard for making a decision tree. We used the C50 package in R for

Table 5. Classification results of RF model using the test dataset. There are two misclassified training

samples in the table, one healthy sample is classified into the glaucoma group (FP and one glaucoma sample

is classified into the healthy group (FN).

Predicted

Healthy Glaucoma

Actual health (class 0) 39 1

glaucoma (class 1) 1 59

https://doi.org/10.1371/journal.pone.0177726.t005
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testing the C5.0 algorithm. By using the package, we could see and manipulate the structure of

decision tree. During the building process of the decision tree, C50 automatically performed

the pruning tasks. From the C5.0 model, we constructed a decision tree. Fig 5 shows a whole

decision tree. It contains 19 rules and training error of the model is 0.016. Table 7 summarizes

usage of features on the decision tree. In C5.0 model, RNFL4.mean,ocular_pressure,

MD, and PSD are mainly used for decision (prediction) rules. Most of cases that have RNFL4.
mean< = 89.34 are the glaucoma group.

The rule in line 2 on Fig 5 means that if a case has RNFL4.mean< = 89.33334 and MD
< = –4.02 then the case is classified into 1 (glaucoma). The number 126 refers to correctly clas-

sified cases in the training dataset by this rule. The rule in line 4 says that if a case has RNFL4.
mean< = 89.33334, MD> –4.02, and age> 77, it will be classified into class 0 health control).

The number 1 in line 12 means number of misclassified cases.

Table 6. Comparison of previous works and the proposed model. Only AUC of Bizios6 is higher than the proposed model, but the number of features is

higher and sensitivity and specificity are lower than the proposed model.

Measure Chan [4] Goldbaum [5] Bizios [6] Barella [7] Silva [8] Proposed

ROC 0.923 0.922 0.989 0.877 0.946 0.979

Sensitivity 0.724 0.670 0.968 - - 0.983

Specificity 0.846 0.790 0.967 0.649 0.951 0.975

# of Features 53 53 17 23 4 7

https://doi.org/10.1371/journal.pone.0177726.t006

Fig 4. ROC curve and AUC for four models. AUC expresses global quality of prediction models and RF and

C5.0 models show 0.979, SVM is over 0.967, and KNN is 0.971. All models show very high values near 1.0.

https://doi.org/10.1371/journal.pone.0177726.g004
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Discussion

Glaucoma is a serious disease that can cause complete, permanent blindness, and its early diag-

nosis is very difficult. In recent years, computer-aided screening and diagnosis of glaucoma

has made considerable progress. The accuracy of the prediction model developed in this study

was investigated. A visual field index (VFI) value of 97 or higher was defined as early glau-

coma. Among the 12 cases of early glaucoma, 11 cases were diagnosed as glaucoma and 1 case

Fig 5. Decision tree for diagnosis of glaucoma from C5.0 algorithm. It contains 19 rules and the training

error of the model is 0.016.

https://doi.org/10.1371/journal.pone.0177726.g005

Table 7. Usage of features in the decision tree. RNFL4.mean,ocular_pressure, MD, and PSD are

mainly used for decision (prediction) rules. Most of cases that have RNFL4.mean< = 89.34 are glaucoma

group.

Feature Usage rate (%)

RNFL4.mean 100.00

ocular_pressure 55.31

PSD 53.75

MD 53.44

age 29.38

cornea_thickness 14.69

GHT 4.06

https://doi.org/10.1371/journal.pone.0177726.t007
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was misdiagnosed as normal. Therefore, the diagnosis rate of early glaucoma was 91.7%. One

case that was misdiagnosed is discussed below.

We reviewed several cases in which there are differences in the results between the clinical

diagnosis and the algorithm (C5.0) in detail (Table 8). Firstly, in case 6 (Fig 6), the presence of

tigroid fundus and peripapillary atrophy was observed, and there was a decrease in RNFL

thickness on the peripapillary RNFL OCT scan. Both eyes were clinically diagnosed as normal

Table 8. Demographic and clinical data of cases with differences between clinical diagnosis and algorithmic judgment.

Case Sex/age Eye IOP Central corneal thickness MD PSD Mean RNFL Clinical diagnosis C5.0 RF SVM

6 F/38 OD 17 557 -2.74 2.09 55 H G H G

OS 18 569 -2.1 2.04 85 H G H G

81 F/35 OD 14 523 -10.04 13.87 79 G G G G

OS 12 523 -1.41 1.98 86 G H H H

161 F/73 OD 16 573 -2.38 2.83 101 H H H H

OS 16 589 -7.72 5.99 88 G H G H

(H: Healthy, G: Glaucoma)

https://doi.org/10.1371/journal.pone.0177726.t008

Fig 6. Case 6, color-fundus and red-free fundus photography (A), peripapillary RNFL thickness measured by SD-OCT (B), and automated 30–2

visual field test (C). The presence of a tigroid fundus and peripapillary atrophy was observed, and there was a decrease in the RNFL thickness on the

peripapillary RNFL thickness scan. In the visual field test, the abnormalities were judged to be of no clinical significance.

https://doi.org/10.1371/journal.pone.0177726.g006
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by the clinical findings that comprehensively judged the appearance of the optic disc, visual

field examination, and normal range of IOP. On the contrary, based on the decision tree gen-

erated by the C5.0 algorithm, the mean deviation was reduced to –1.82 dB in both eyes and

finally she was diagnosed as having bilateral glaucoma. In this case, the algorithm seems to be

diagnosed as glaucoma from the beginning due to the decrease in peripapillary RNFL thick-

ness by high myopia (actually, she had myopia of 6 diopters). Likewise, it is difficult to clini-

cally differentiate between normal and glaucoma because RNFL thickness is often reduced

even without glaucoma in patients with high myopia [18–20]. Recently, reports on various

OCT parameters and the optic disc morphology for distinguishing normal from glaucoma in

high myopia have been published. In the future, it might be possible to improve the accuracy

of the algorithm by adding the refraction of the eye and OCT indices, such as macular ganglion

cell-inner plexiform layer (GCIPL) thickness, quadrant or clock-hour thickness of RNFL [21–

23]. Secondly, in case 81 (Fig 7), clinically, glaucoma was diagnosed in the left eye, but the C5.0

algorithm judged it to be normal. In this patient, both MD and PSD were not significantly

worse than the algorithm’s criteria because of the early glaucoma in the left eye. As in this case,

we thought that the algorithm had a limitation on the diagnosis of “early glaucoma” with a

lack of data in this study. However, this limitation might be improved by using a quadrant or

clock-hour thickness of RNFL instead of mean RNFL thickness or by increasing the number of

Fig 7. Case 81, color-fundus and red-free fundus photography (A), peripapillary RNFL thickness measured by SD-OCT (B), and automated

30–2 visual field test (C). Fundus photographs show an increased cup-to-disc ratio and RNFL defects in the both eyes. SD-OCT shows decrease in

peripapillary thickness of inferotemporal quadrant for both eyes. Visual field defects are apparent in both eyes.

https://doi.org/10.1371/journal.pone.0177726.g007
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cases. Finally, in case 161 (Fig 8), the review of the decision tree of the C5.0 algorithm revealed

that the central corneal thickness was higher than that of the others, and thus it was deter-

mined to be normal rather than glaucoma. This error would improve if the number of cases is

increased and the standard of central corneal is changed and if the mean RNFL thickness is

changed to another OCT index.

Recently, two new machine-learning genome analysis methods, Pse-Analysis (http://

bioinformatics.hitsz.edu.cn/Pse-Analysis/) and Pse-in-One [24], have been introduced. These

methods support sample feature extraction, optimal parameter selection, model training,

cross-validation, and prediction quality evaluation. The methods are optimized for DNA/RNA

and protein/peptide sequence data. The in-built support for feature extraction and optimal

parameter selection can render these methods invaluable for the diagnosis of Glaucoma. Fur-

ther investigation and research needs to be conducted to establish if this is a plausible solution

for diagnosis of Glaucoma.

Most classification test report results demonstrate that learning models such as RF and

SVM deliver a better performance than KNN. Table 4 shows that the accuracy of KNN is simi-

lar to other advanced learning models, which means that the derived dataset used in our

research has the high quality required for classification but does not clearly reveal the relative

performance of the learning models. This establishes that the performance of KNN is expected

to deteriorate with an increase in the volume of validation data.

Fig 8. Case 161, color-fundus and red-free fundus photography (A), peripapillary RNFL thickness measured by SD-OCT (B), and automated

30–2 visual field test (C). Fundus photographs show an increased cup-to-disc ratio in both eyes and a RNFL defect in the left eye. SD-OCT shows a

decrease in the peripapillary thickness of the infratemporal quadrant of the left eye. The visual field test demonstrates field defect in the left eye.

https://doi.org/10.1371/journal.pone.0177726.g008
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As we mentioned earlier, FN is a more serious error than FP in medical applications. Many

learning models support control of the FN rate. In the C5.0 model, we can assign higher error

cost to FN than FP. In the RF model, we can modify cutoff values for classes. For example, if

we assign stricter values for decisions of healthy control, then we can reduce the number of

glaucoma cases that are classified into the healthy control group.

If we want to improve classification accuracy, we can use ensemble learning [25]. It uses

multiple learning algorithms to obtain better accuracy. In our cases, we can consider predic-

tion results from the four learning models, and take the majority of results as a final decision.

In our study, we confirm that the machine learning model has many clinical applications

and is useful for diagnosing glaucoma. If we gather additional clinical data, we can construct a

more accurate, elaborate learning model. In our future studies, we will clarify the cases that on

the border between healthy controls and glaucoma cases. For this purpose, we will analyze

clinical image data and merge the data with our model. We will also develop diagnostic sup-

port software using pre-constructed learning models. With precision medicine gaining

considerable attention, we plan to construct new machine-learning models for major ophthal-

mological diseases and their treatments using precision medicines.
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