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Abstract

Experiments that study neural encoding of stimuli at the level of individual neurons typically

choose a small set of features present in the world—contrast and luminance for vision, pitch

and intensity for sound—and assemble a stimulus set that systematically varies along these

dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on

regression models, with experimenter-controlled features as predictors and spike counts or

firing rates as responses. Unfortunately, this approach requires knowledge in advance

about the relevant features coded by a given population of neurons. For domains as com-

plex as social interaction or natural movement, however, the relevant feature space is poorly

understood, and an arbitrary a priori choice of features may give rise to confirmation bias.

Here, we present a Bayesian model for exploratory data analysis that is capable of automati-

cally identifying the features present in unstructured stimuli based solely on neuronal

responses. Our approach is unique within the class of latent state space models of neural

activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-

varying features tied to the stimulus, each of which has Markov (or semi-Markov) dynamics.

That is, we are modeling neural activity as driven by multiple simultaneous stimulus features

rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algo-

rithm and show that it correctly recovers hidden features in synthetic data, as well as

ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of

the algorithm, we also apply it to cluster neural responses and demonstrate successful

recovery of features corresponding to monkeys and faces in the image set.

Author summary

Many neuroscience experiments begin with a set of reduced stimuli designed to vary only

along a small set of variables. Yet many phenomena of interest—natural movies, objects—

are not easily parameterized by a small number of dimensions. Here, we develop a novel

Bayesian model for clustering stimuli based solely on neural responses, allowing us to dis-

cover which latent features of complex stimuli actually drive neural activity. We
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demonstrate that this model allows us to recover key features of neural responses in a pair

of well-studied paradigms.

Introduction

The question of how the brain encodes information from the natural world forms one of the

primary areas of study within neuroscience. For many sensory systems, particularly vision and

audition, the discovery that single neurons modulate their firing of action potentials in

response to particular stimulus features has proven foundational for theories of sensory func-

tion. Indeed, neuronal responses to contrast, edges, and motion direction appear to form fun-

damental primitives on which higher-level visual abstractions are built. Nevertheless, many of

these higher-level abstractions do not exist in a stimulus space with obvious axes. As a result,

experimenters must choose a priori features of interest in constructing their stimulus sets, with

the result that cells may appear weakly tuned due to misalignment of stimulus and neural axes.

For example, in vision, methods like reverse correlation have proven successful in elucidat-

ing response properties of some cell types, but such techniques rely on a well-behaved stimulus

space and a highly constrained encoding model in order to achieve sufficient statistical power

to perform inference [1–3]. However, natural stimuli are known to violate both criteria, gener-

ating patterns of neural activity that differ markedly from those observed in controlled experi-

ments with limited stimulus complexity [3–5]. Information-based approaches have gone some

way in addressing this challenge [4], but this approach assumes a metric structure on stimuli

in order to perform optimization, and was recently shown to be strongly related to standard

Poisson regression models [6].

More recently, Gallant and collaborators have tackled this problem in the context of fMRI,

demonstrating that information present in the blood oxygen level-dependent (BOLD) signal is

sufficient to classify and map the representation of natural movie stimuli across the brain [7–

9]. These studies have used a number of modeling frameworks, from Latent Dirichlet Alloca-

tion for categorizing scene contents [9] to regularized linear regression [8] to sparse nonpara-

metric models [7] in characterizing brain encoding of stimuli, but in each case, models were

built on pre-labeled training data. Clearly, a method that could infer stimulus structure directly

from neural data themselves could extend such work to less easily characterized stimulus sets

like those depicting social interactions.

A rich body of previous work has addressed the problem of identifying low-dimensional

latent dynamics underlying neural firing. Typically, these models assume a continuous latent

state governed by a linear dynamical system [10–17]. Using generalized linear models and

latent linear dynamical systems as building blocks, these models have proven able to infer

(functional) connectivity [10], estimate spike times from a calcium images [11], and identify

subgroups of neurons that share response dynamics [13, 16, 17]. Inference in these models is

generally performed via expectation maximization, though [14–19] also used a variational

Bayesian approach. In each case, the focus has typically been on inferring the dynamics of

intrinsic neural activity, perhaps conditioned on known covariates xt. Our work is distinct,

however, in focusing on inferring features within stimuli that drive repeatable patterns of firing

across time and trials.

Our model sits at the intersection of these regression and latent variable approaches. We

utilize a Poisson observation model that shares many of the same features as the commonly

used generalized linear models for Poisson regression. We also assume that the latent features

modulating neural activity are time-varying and Markov. However, we make 3 additional
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unique assumptions: First, we assume that the activity of each neuron is modulated by a com-

bination of multiple independent latent features governed by Markov dynamics. (This can be

extended to the semi-Markov case; see Supplementary Information). This allows for latents to

evolve over multiple timescales with non-trivial duration distributions, much like the hand-

labeled features in social interaction data sets. Second, we assume that these latents are tied to

stimulus presentation. That is, when identical stimuli are presented, the same latents are also

present. This allows us to selectively model the dynamics of latent features of the stimulus that

drive neural activity, rather than intrinsic neural dynamics (e.g., variation within and across

trials). Finally, we enforce a sparse hierarchical prior on modulation strength that effectively

limits the number of latent features to which the population of neurons is selective. This allows

for a parsimonious explanation of the firing rates of single units in terms of a small set of stim-

ulus features. Finally, we perform full variational Bayesian inference on all model parameters

and take advantage of conditional conjugacy to generate coordinate ascent update rules, nearly

all of which are explicit. Combined with forward-backward inference for latent states, our

algorithm is exceptionally fast, automatically implements Occam’s razor, and facilitates proper

model comparisons using the variational lower bound.

However, as noted above, we are not the first to employ variational Bayesian methods to

the problem of inferring latent firing rate states. Moreover, several other models have made

use of the idea of discrete latent states and Markov models as explanations of neural dynamics

[19, 20]. Both of those methods used a Hidden Markov Model (HMM) to capture variability in

neural firing in time and identify discrete modes or states of spiking that could be driven by

both spike history and external covariates. In [19], this state space was assumed to be organized

according to a binary tree, dramatically reducing model complexity. Our model differs from

both of these in assuming that the states that govern firing are deterministic functions of sti-

muli, and that these states are a collection of discrete, independent stimulus features, not a sin-

gle HMM. Thus, while previous models serve well to capture transitions between discrete

states of neural activity, our model discovers statistically reliable patterns of activity that are

consistent across repeated presentations of a given stimulus. By directly associating latent fac-

tors that drive firing with stimulus features, we thus achieve a means of (multiply) coding a

given stimulus. That is, we focus on binary latent states as a means of labeling a finite number

of overlapping stimulus features.

Most importantly, as we will show, the stimulus features found by our model are often inter-
pretable. The choice to assign multiple discrete, independent tags to each stimulus results in a

combinatorial code, with capacity exponential in the number of tags. This can, in principle,

accommodate a hierarchical structure (as in [19]), but need not. Yet the ultimate goal of latent

state models such as ours is to provide a low-dimensional description of neural responses, not

simply a compression of them. In practice, experimentalists may perform an initial screening

experiment by exposing an organism to a broad range of stimuli, with few fixed hypotheses

about responsiveness. A given population of neurons may respond to only a few stimulus fea-

tures, and features so inferred do not necessarily generalize to new brain structures, nor to sti-

muli outside the initial set. The value of our model, as with topic models and other latent space

models, comes in identifying stimulus features that are readily interpretable: we expect our

method will be most useful when the latent tags it identifies group stimuli into useful catego-

ries that generate hypotheses for future experiments.

In the sections below, we outline the mathematics behind our model, discuss the process of

approximate Bayesian inference we use to infer stimulus features, and perform a series of vali-

dation experiments on both synthetic data and real data sets of spiking responses. In the latter,

we have chosen datasets where the features that drive spiking are reasonably well understood.

We train our model without using this information and then compare the inferred and
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experimenter-labeled features as a means of illuminating strengths and weaknesses of our

model. We conclude by discussing possible extensions and applications to other domains.

Model

Observation model

Consider a population of U spiking neurons or units exposed to a series of stimuli indexed by

a discrete time index t 2 {1 . . . T}. We assume that this time index is unique across all stimuli,

such that a particular t represents a unique moment in a particular stimulus. In order to model

repeated presentations of the same stimulus to the same neuron, we further assume that each

neuron is exposed to a stimulus Mtu times, though we do not assume any relationship among

Mtu. That is, we need not assume either that all neurons see each stimulus the same number of

times, nor that each stimulus is seen by all neurons. It is thus typical, but not required, that Mtu

be sparse, containing many 0s, as shown in Fig 1.

Each unique observation m in our data set consists of a spike count Nm for a particular

(time, unit) pair (t(m), u(m)). We model these spike counts as arising from a Poisson distribu-

tion with rate Λtu and observation-specific multiplicative overdispersion θm:

Nm � PoisðLtðmÞ;uðmÞymÞ where ym � GammaðsuðmÞ; suðmÞÞ ð1Þ

That is, for a given stimulus presentation, the spiking response is governed by the firing rate Λ
(we set Δt = 1 for convenience), specific to the stimulus and unit, along with a moment-by-

moment noise in the unit’s gain, θm. We restrict these θm to follow a Gamma distribution with

Fig 1. Observational model. A: Stimuli are concatenated to form a single time series indexed by t. B: Individual experimental sessions draw from the

available set of stimuli, with index m representing unique (time, unit) presentations. Example stimulus sequences for two experimental sessions are shown,

with corresponding neuronal spike data. Note that the number of presentations of each stimulus can differ by unit, and that units need not be simultaneously

recorded. Images copyright Geoff Gallice, (retrieved from Wikimedia Commons), kimumbert/Flickr and dvs/Flickr under CC-BY. Stim 23 image copyright

J.M. Garg (used with permission).

https://doi.org/10.1371/journal.pcbi.1005645.g001
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the same shape and rate parameters, since this results in an expected noise gain of 1. In prac-

tice, we model this noise as independent across observations, though it is possible to weaken

this assumption, allowing for θm to be autocorrelated in time (see Supplementary Informa-

tion). Note that both the unit and time are functions of the observation index m, and that the

distribution of the overdispersion for each observation may be specific to the unit observed.

Firing rate model

At each stimulus time t, we assume the existence of K binary latent states ztk and R observed

covariates xtr. The binary latent states can be thought of as time-varying “tags” of each stimu-

lus—for example, content labels for movie frames—and are modeled as Markov chains with

initial state probabilities πk and transition matrices Ak. The observed covariates, by contrast,

are known to the experimenter and may include contrast, motion energy, or any other a priori
variable of interest.

We further assume that each unit’s firing rate at a particular point in time can be modeled

as arising from the product of three effects: (1) a baseline firing rate specific to each unit (λ0),

(2) a product of responses to each latent state (λz), and (3) a product of responses to each

observed covariate (λx):

Ltu ¼ l0u

YK

k¼1

ðlzukÞ
ztk
YR

r¼1

ðlxurÞ
xtr ð2Þ

Note that this is conceptually similar to the generalized linear model for firing rates (in which

we model log Λ) with the identification β = log λ. However, by modeling the firing rate as a

product and placing Gamma priors on the individual effects, we will be able to take advantage

of closed-form variational updates resulting from conjugacy that avoid explicit optimization

(see below). Note also, that because we assume the ztk are binary, the second term in the prod-

uct above simply represents the cumulative product of the gain effects for those features pres-

ent in the stimulus at a given moment in time.

In addition, to enforce parsimony in our feature inference, we place sparse hierarchical pri-

ors with hyperparameters γ = (c, d) on the λz terms:

lzuk � Gammaðczk; czkdzkÞ czk � Gammaðack; bckÞ dzk � Gammaðadk; bdkÞ ð3Þ

That is, the population distribution for the responses to latent features is a gamma

distribution, with parameters that are themselves gamma-distributed random variables. As a

result, E½lu� ¼ d� 1 and var[λu] = (cd2)−1, so in the special case of c large and d � Oð1Þ, the

prior for firing rate response to each latent feature will be strongly concentrated around gain 1

(no effect). As we show below, this particular choice results in a model that only infers features

for which the data present strong evidence, controlling for spurious feature detection. In addi-

tion, this particular choice of priors leads to closed-form updates in our variational approxima-

tion. For the baseline terms, λ0u, we use a non-sparse version of the same model; for the

covariate responses, λxu, we model the unit effects non-hierarchically, using independent

Gamma priors for each unit.

Putting all this together, we then arrive at the full generative model:

pðN;L; yÞ ¼ pðNjL; yÞpðLjl; zÞpðljgÞpðgÞpðzjA;pÞpðAÞpðpÞpðyjsÞpðsÞ ð4Þ

where

pðljgÞ ¼
Y

u

pðl0ujc0; d0Þ
Y

kr

pðlzukjczk; dzkÞpðlxurÞ ð5Þ
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and

pðgÞ ¼ pðc0Þpðd0Þ
Y

k

pðczkÞpðdzkÞ ð6Þ

in conjunction with the definitions of p(N|Λ, θ) and Λ(λ, z, x) in Eqs (1) and (2). The genera-

tive model for spike counts is illustrated in Fig 2.

Inference

Given a sequence of stimulus presentations (t(m), u(m)) and observed spike counts Nm, we

want to infer both the model parameters Θ = (λ0, λz, λx, A, π, c0, d0, cz, dz, s) and latent variables

Z = (zkt, θm). That is, we wish to calculate the joint posterior density:

pðY;ZjNÞ / pðNjZ;YÞpðZÞpðYÞ ð7Þ

In general, calculating the normalization constant for this posterior is computationally intrac-

table. Instead, we will use a variational approach, approximating p(Θ, Z|N) by a variational

posterior q(Z, Θ) = qZ(Z)qΘ(Θ) that factorizes over parameters and latents but is nonetheless

close to p as measured by the Kullback-Leibler divergence [21, 22]. Equivalently, we wish to

maximize the variational objective

L � Eq log
pðY;ZjNÞ
qðY;ZÞ

� �

¼ Eq logp Y;ZjNð Þ½ � þH½qYðYÞ� þH½qZðZÞ� ð8Þ

with H the entropy. We adopt the factorial HMM trick of [23], making the reasonable assump-

tion that the posterior factorizes over each latent time series z�k and the overdispersion factor

θm, as well as the rate parameters λ�u associated with each Markov process. This factorization

Fig 2. Generative model for spike counts. A: Counts are assumed Poisson-distributed, with firing rates Λ that depend on each unit’s baseline (λ0), as well

as responses to both latent discrete states zt (λz) and observed covariates xt (λx) that change in time. γ nodes represent hyperparameters for the firing rate

effects. θ is a multiplicative overdispersion term specific to each observation, distributed according to hyperparameters s. B: Spike counts N are observed

for each of U units over stimulus time T for multiple presentations.

https://doi.org/10.1371/journal.pcbi.1005645.g002
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results in a variational posterior of the form:

qðY;ZÞ ¼ qðc0Þqðd0Þ
Y

m

qðymÞ
Y

u

qðsuÞqðl0uÞ
Y

r

qðlxurÞ�

Y

k

qðckÞqðdkÞqðlzukÞqðczkÞqðdzkÞqðzkÞqðpkÞqðAkÞ
ð9Þ

With this ansatz, the variational objective decomposes in a natural way, and choices are avail-

able for nearly all of the qs that lead to closed-form updates.

Variational posterior

From Eqs (1) and (2) above, we can write the probability of the observed data N as

pðN; zjx;YÞ ¼
Y

m

ðymLtðmÞuðmÞÞ
Nme� ymLtðmÞuðmÞ

Nm!

" #
Y

mk

ðAkÞztðmÞþ1;k;ztðmÞ;k

Y

k

ðpkÞz0k ð10Þ

where again, m indexes observations of (t(m), u(m)) pairs, the portion in brackets is the Pois-

son likelihood for each bin count and the last two nontrivial terms represent the probability of

the Markov sequence given by ztk. From this, we can expand the log likelihood:

logpðN; zjx;YÞ ¼
X

mkr

½Nmð log ym þ log l0uðmÞ þ ztðmÞk log lzuðmÞk þ xtðmÞr log lxuðmÞrÞ�

�
X

m

ymLtðmÞuðmÞ þ
X

mk

log ðAkÞztðmÞþ1;k;ztðmÞ;k
þ
X

k

log ðpkÞz0k þ constant;
ð11Þ

Given that Eq (11) is of an exponential family form for θ and λ when conditioned on all other

variables, free-form variational arguments [21] suggest variational posteriors:

l0u � Gammaða0u; b0uÞ ð12Þ

lzuk � Gammaðazuk; bzukÞ ð13Þ

lxur � Gammaðaxur; bxurÞ ð14Þ

For the first of these two, updates in terms of sufficient statistics involving expectations of

γ = (c, d) are straightforward (see Supplementary Information). However, this relies on the fact

that zt 2 {0, 1}. The observed covariates xt follow no such restriction, which results in a tran-

scendental equation for the βx updates. In our implementation of the model, we solve this

using an explicit BFGS optimization on each iteration. Moreover, we place non-hierarchical

Gamma priors on these effects: λxur * Gamma(axur, bxur).
As stated above, for the latent states and baselines, we assume hierarchical priors. This

allows us to model each neuron’s firing rate response to a particular stimulus as being drawn

from a population response to that same stimulus. We also assume that the moment-to-

moment noise in firing rates, θm, follows a neuron-specific distribution. As a result of the form

of this hierarchy given in Eq (3), the first piece in Eq (8) contains multiple terms of the form

Eq
X

u

logpðlujc; dÞ

" #

¼
X

u

Eq½ðc � 1Þ log lu � cdlu þ c log cd � log GðcÞ� ð15Þ
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In order to calculate the expectation, we make use of the following inequality [24]

ffiffiffiffiffiffi
2p
p

�
z!

zzþ1
2e� z
� e ð16Þ

to lower bound the negative gamma function and approximate the above as

logpðlÞ �
X

u

ðc � 1Þð log lu þ 1Þ � cdlu þ c logd þ
1

2
log c

� �

ð17Þ

Clearly, the conditional probabilities for c and d are gamma in form, so that if we use priors

c * Gamma(ac, bc) and d * Gamma(ad, bd) the posteriors have the form

c � Gamma ac þ
U
2
; bc þ

X

u

Eq dlu � log lu � logd � 1½ �

 !

ð18Þ

d � Gamma ad þ UEq½c�; bd þ
X

u

Eq½clu�

 !

ð19Þ

This basic form, with appropriate indices added, gives the update rules for the hyperparameter

posteriors for λ0 and λz. For θ, we simply set c = su and d = 1.

For each latent variable z, the Markov Chain parameters πk and Ak, together with the

observation model Eq (11) determine a Hidden Markov Model, for which inference can be

performed efficiently via conjugate updates and the well-known forward-backward algorithm

[25]. More explicitly, given π, A, and the emission probabilities for the observations, log

p(N|z), the forward-backward algorithm returns the probabilities p(zt = s) (posterior marginal),

p(zt+1 = s0, zt = s) (two-slice marginal) and log Z (normalizing constant).

Our final algorithm is presented in Algorithm 1. Equation numbers reference posterior

definitions in the text. Exact updates for the sufficient statistics are presented in Table 2 of

S1 Text.

Algorithm 1 Iterative update for variational inference
1: procedureITERATE
2: Updatebaselinesλ0 ▷ conjugateGamma Eq (12)
3: Updatebaselinehyperparametersγ0 ▷ conjugateGamma(Eqs 18 and 19)
4: for k = 1 . . . K do
5: Updatefiringrate effectsλzk ▷ conjugateGamma Eq (13)
6: Updatefiringrate hyperparametersγzk ▷ conjugateGamma (Eqs 18

and 19)
7: Calculateexpectedlog evidence ηk ▷ (S13)
8: UpdateMarkovchainparameters ~Ak; ~pk ▷ (S11,S12)
9: ξk, Ξk, log Zk FORWARD-BACKWARD (Zk;

~Ak; ~pk) ▷ [26, 27]
10: if semi-Markovthen
11: Updatedurationdistributionpk(d|j) ▷ BFGS optimization(S25)
12: end if
13: UpdatecachedF ▷ (S8)
14: end for
15: Updatecovariatefiringeffectsλx ▷ BFGS optimization(Eq 14, S54,

S55)
16: UpdatecachedG ▷ (S9)
17: Updateoverdispersionθ ▷ conjugateGamma(Eqs 18 and 19)
18: end procedure

Neuron’s eye view
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Results

In this section, we report the results of three experiments illustrating the capabilities of our

model. The first demonstrates the ability of our algorithm to recover ground truth latent fea-

tures in a synthetic dataset with parameters similar to typical neural recording experiments. In

the second and third, we use data from actual experiments in order to compare labels specified

by experimenters with those recovered by our model. In each case, our model was only trained

using stimulus identity, not experimenter labels, but nonetheless managed to recover key fea-

tures that drove neural firing in the experiment. Code for all experiments and analysis is pro-

vided online (see Supplementary Information).

Synthetic data

We generated synthetic data from the model for U = 100 neurons for T = 10,000 time bins of

dt = 0.0333s (� 6min of movies at 30 frames per second). Assumed firing rates and effect sizes

were realistic for cortical neurons, with mean baseline rates of 10 spikes/s and firing rate effects

given by a Gamma(1, 1) distribution for Kdata = 3 latent features. In addition, we included

R = 3 known covariates generated according to Markov dynamics. For this experiment, we

assumed that each unit was presented only once with the stimulus time series, so thatMtu = 1.

That is, we tested a case in which inference was driven primarily by variability in population

responses across stimuli rather than pooling of data across repetitions of the same stimulus.

Moreover, to test the model’s ability to parsimoniously infer features, we set K = 5. That is, we

asked the model to recover more features than were present in the data. Finally, we placed

hierarchical priors on neurons’ baseline firing rates and sparse hierarchical priors on firing

rate effects of latent states. We used 10 random restarts and iterated over parameter updates

until the fractional change in L dropped below 10−4.

As seen in Fig 3, the model correctly recovers only the features present in the original data.

We quantified this by calculating the normalized mutual information

Î � IðX;YÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðXÞHðYÞ

p
, between the actual states and the inferred states, with H(Z) and I

estimated by averaging the variational posteriors (both absolute and conditioned on observed

states) across time. Note that superfluous features in the model have high posterior uncertainty

for zk and high posterior confidence for λzk around 1 (no effect).

Labeled neural data

We applied our model to a well-studied neural data set comprising single neuron recordings

from macaque area LIP collected during the performance of a perceptual discrimination task

[28, 29]. In the experiment, stimuli consisted of randomly moving dots, some percentage of

which moved coherently in either the preferred or anti-preferred direction of motion for each

neuron. The animal’s task was to report the direction of motion. Thus, in addition to 5 coher-

ence levels, each trial also varied based on whether the motion direction corresponded to the

target in or out of the response field as depicted in Fig 4. (In the case of 0% coherence, the

direction of motion was inherently ambiguous and coded according to the monkey’s eventual

choice.) For our experiment, we only analyzed correct trials, on which the animal’s choice (tar-

get IN or OUT of response field) was synonymous with the direction of dot motion.

We fit a model with K = 10 features and U = 27 units to neural responses from the 1-second

stimulus presentation period of the task. Spike counts corresponded to bins of dt = 20ms. For

this experiment, units were individually recorded, so each unit experienced a different number

of presentations of each stimulus condition, implying a ragged observation matrix. As a result,

this dataset tests the model’s ability to leverage shared task structure across multiple sessions of
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recording, demonstrating that simultaneously recorded units are not required for inference of

latent states.

Fig 4 shows the experimental labels from the concatenated stimulus periods, along with

labels inferred by our model. Once again, the model has left some features unused, but cor-

rectly discerned differences between stimuli in the unlabeled data. Even more importantly,

though given the opportunity to infer ten distinct stimulus classes, the model has made use of

only five. Moreover, the discovered features clearly recapitulate the factorial design of the

experiment, with the two most prominent features, Z1 and Z2, capturing complementary val-

ues of the variable with the largest effect in the experiment: whether or not the relevant target

was inside our outside the receptive field of the recorded neuron. This difference can be

observed in both the averaged experimental data and the predicted data from the model (see

Fig 4C), where the largest differences are between the dotted and solid lines. Finally, we can

ask whether the reconstructed firing rates are in quantitative agreement with the data estimates

by calculating an RMS error for each curve in Fig 4C. That is, we calculate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðfi � faÞ

2 �

E½fi�E½fa �

q

for each

unit, where fi is the inferred firing rate from the model, fa is the mean firing rate estimated

Fig 3. Comparison of actual and inferred states of the synthetic data. A: Ground truth binary latent features for a subset of stimulus times in the

synthetic dataset. B: Recovered binary features for the same subset. Features have been reordered to facilitate comparisons with panel A. The unused

features are in gray, indicating a high posterior uncertainty in the model. C: Population posterior distributions for inferred hyper parameters. Features 3 and

4 are effectively point masses around gain 1 (no population gain change in response to the feature), while features 1–3 approximate the Gamma(1, 1) data-

generating model. D: Normalized mutual information between actual and inferred states.

https://doi.org/10.1371/journal.pcbi.1005645.g003
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from data, and expectations are taken across time bins. For our model, these values range from

4% to 12% across coherence levels.

But the model also reproduces less obvious features: it correctly discriminates between two

identical stimulus conditions (0% coherence) based on the monkey’s eventual decision (In vs

Out). In addition, the model correctly captures the initial 200ms “dead time” during the stimu-

lus period, in which firing rates remain at pre-stimulus baseline. (Note that the timing is

locked to the stimulus and consistent across trials, not idiosyncratic to each trial as in [30].)

Finally, the model resists detection of features with little support in the experimental data. For

instance, while feature Z4 captures the large difference between 50% coherence and other sti-

muli, the model does not infer a difference between intermediate coherence levels that are

indistinguishable in this particular dataset. That is, mismatches between ground truth labels

and model-inferred features here reflect underlying ambiguities in the neural data, while the

Fig 4. Comparison of actual and inferred states of the Roitman dataset. A: Experimental design features. Each vertical block represents a single type

of trial (combination of stimulus coherence and choice location). Features present on a particular trial are plotted in white, and duration of each feature

within the stimulus presentation period is indicated by the width of the bar in the horizontal direction. B: Recovered features from the model. Note that model

features 6–9 are unused and that Features 1 & 2 closely track the In and Out features of the data, respectively. Shorter bars represent inferred features that

lasted less than the full stimulus presentation period. C: Actual and predicted firing rates for the stimulus period. Note that the model infers stimulus

categories from the data, including appropriate timing of differentiation between categories.

https://doi.org/10.1371/journal.pcbi.1005645.g004
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model’s inferred features correctly pick out those combinations of variables most responsible

for differences in spiking across conditions.

Visual category data

As a second test of our model, we applied our algorithm to a designed structured stimuli data-

set comprising U = 56 neurons from macaque inferotemporal cortex [31]. These neurons were

repeatedly presented with 96 stimuli comprising 8 categories (M = 1483 total trials, with each

stimulus exposed between 12 to 19 times to each unit) comprising monkey faces, monkey bod-

ies, whole monkeys, natural scenes, food, manmade objects, and patterns (Fig 5A). Data con-

sisted of spike time series, which we binned into a 300ms pre-stimulus baseline, a 300ms

stimulus presentation period, and a 300ms post-stimulus period. Three trials were excluded

because of the abnormal stimulus presentation period. To maximize interpretability of the

results, we placed strong priors on the πk to formalize the assumption that all features were off

during the baseline period. We also modeled overdispersion with extremely weak priors to

encourage the model to attribute fluctuations in firing to noise in preference to feature detec-

tion. We again fit K = 10 features with sparse hierarchical priors on population responses.

The inferred categories based on binned population responses are shown in Fig 5B. For

clarity, in Fig 5, we only show population mean effects with a > 5% gain modulation sorted

from the highest to the lowest, though the full set of inferred states can be found in Fig 6.

Out of the original categories, our model successfully recovers three features clearly corre-

sponding to categories involving monkeys (Features 0–2). These can be viewed additively,

with Feature 0 exclusive to monkey face close-ups, Feature 1 any photo containing a monkey

face, either near or far; and Feature 2 any image containing a monkey body part (including

faces); but as we will argue, given the nature of the model, it may be better to view these as a

“combinatorial” code, with monkey close-ups encoded as 0&1&2 (* 59.46% increase in fir-

ing), whole monkeys as 1&2 (* 32.47% increase), and monkey body parts as 2 (* 7.62%

increase). Of course, this is consistent with what was found in [31], though our model used no

labels on the images. And our interpretation that these neurons are sensitive to close-ups and

faraway face and body parts is consistent with findings by another study using different experi-

mental settings [32].

Again, as noted above, our results in Fig 5A and 5B indicate predicted population

responses, derived from the hierarchical prior. As evidenced in Fig 5C and 5D, individual neu-

ron effects could be much larger. These panels show data for two example units, along with the

model’s prediction. Clearly, the model recapitulates the largest distinctions between images in

the data, though the assumption that firing rates should be the same for all images with similar

features fails to capture some variability in the results. Here, RMS errors range from 16% to

238% across units, with most units showing at least qualitative agreement from only a handful

of presentations of each stimulus. Even so, uncertainties in the predicted firing rates are also in

line with uncertainties from those of observed rates, indicating that our model is correctly

accounting for trial-to-trial noise.

Finally, even the weaker, sparser features inferred by our model captured intriguing addi-

tional information. As shown in Fig 6, Feature 4, a feature only weakly present in the popula-

tion as a whole (and thus ignored in Fig 6A), when combined with the stronger Features 0, 1,

and 2, successfully distinguishes between the monkey close-ups with direct and averted gaze.

(Stimulus 5, with averted gaze, is additionally tagged with Feature 5, which we view as an

imperfect match.) Thus, despite the fact that Feature 4 is barely a 3.4% gain change over the

population, it suggests a link between neural firing and gaze direction, one for which there

happens to be ample evidence [33, 34]. Similarly, Feature 5, barely a 1.1% effect, correctly tags

Neuron’s eye view
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Fig 5. Comparison of actual and inferred states of the macaque dataset. A: Experimenter-determined features for the IT data set. 96 stimuli comprising

8 categories were presented in 1483 trials, with each stimulus presented to each neuron *15 times. B: The inferred states from our model. Color represents

the mean percent change in firing rate across the population in response to each feature. For clarity, features with mean population effects <5% are not

plotted. The model has inferred features corresponding to monkey close-ups, whole monkey photos, and most close-ups of monkey body parts. C: Actual

Neuron’s eye view
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three of the four close-ups with rightward gaze (with one false positive). Clearly, neither of

these results is dispositive in this particular dataset, but in the absence of hypotheses about the

effect of head orientation and gaze on neuronal firing, these minor features might suggest

hypotheses for future experiments.

and predicted spikes per second across all stimulus of neuron 089a. D. Actual and predicted spikes per second across all stimulus of neuron 100a. Error bars

for data represent 95% credible intervals for firing rates inferred from observed data using a Poisson model with weak priors. Error bars on predictions are

95% credible intervals based on simulation from the approximate posterior for the plotted unit. Images copyright Geoff Gallice, kimubert/Flickr, dvs/Flickr,

Julien Harneis, and Celtus/WikiMedia under CC-BY. Second and third monkey images copyright J.M. Garg (used with permission).

https://doi.org/10.1371/journal.pcbi.1005645.g005

Fig 6. Small features suggest additional neural hypotheses. A: Zoomed-in view of Fig 5A, focusing on the first 24 images. B: The feature combinations

0&1&2&4 (Group 1) and 0&1&2 (Group 2) are distinguished by direct vs. indirect gaze. Only Stimulus 5, coded 0&1&2&5, is missing from Group 2. Images

are for illustration only. Stims 2, 4, and 10 correspond to images in the original data set; other images approximate stimuli for which publication permission

could not be obtained. Images copyright jinterwas/Flickr (Stim 2), Geoff Gallice (Stim 4) under CC-BY. Stim 10 copyright J.M. Garg (used with permission).

All others in the public domain.

https://doi.org/10.1371/journal.pcbi.1005645.g006
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An additional feature of our approach is that the generated labels provide a concise and

fairly complete summary of the stimulus-related activity of all neural recordings, which can be

observed by comparing the categorization performance of decoded neural activity to the cate-

gorization performance of the decoded features. Although our model is not a data compres-

sion method, it nonetheless preserves most of the information about image category contained

in the N = 56 dimensional spike counts via a 10-dimensional binary code. That is, using a

sparse logistic regression on two-bit and three-bit combinations of our features to predict

stimulus category ties and outperforms, respectively a multinomial logistic regression on the

raw spike counts (see Supplementary Information).

Discussion

Here, we have proposed and implemented a method for learning features in stimuli via the

responses of populations of spiking neurons. This work addresses a growing trend in systems

neuroscience—the increasing use of rich and unstructured or structured stimulus sets—

without requiring either expert labeling or a metric on the stimulus space. As such, we expect

it to be of particular use in disciplines like social neuroscience, olfaction, and other areas in

which the real world is complex and strong hypotheses about the forms of the neural code are

lacking. By learning features of interest to neural populations directly from neural data, we

stand to generate unexpected, more accurate (less biased) hypotheses regarding the neural

representation of the external world.

Here, we have validated this method using structured, labeled stimuli more typical of neu-

roscience experiments, showing that our model is capable of parsimoniously and correctly

inferring features in the low signal-to-noise regime of cortical activity, even in the case of

independently recorded neurons. Furthermore, by employing a fully variational, Bayesian

approach to inference, we gain three key advantages: First, we gain the advantages of Bayesian-

ism in general: estimates of confidence in inferences, parsimony and regularization via priors,

and the ability to do principled model comparison. Second, variational methods scale well to

large datasets and can be easily parallelized when combining data from multiple recording ses-

sions. Finally, variational methods are fast, in that they typically converge within only a few

tens of iterations and in many case (such as ours) can be implemented using explicit coordi-

nate update rules, eliminating the need to tune a learning rate.

Finally, even small features in our model recapitulated known physiological results regard-

ing face encoding in single neurons. And while these features alone might not provide proof

positive of, e.g., viewpoint tuning, similar findings would be valuable in generating hypotheses

in cases where the stimulus space and its neural correlates remain poorly understood. Thus

our model facilitates an iterative experimental process: subjects are first be exposed to large,

heterogeneous data; stimuli are then tagged based on neural responses; and finally, features

with the largest effects are used to refine the set until it most accurately represents those stimuli

with the largest neural correlates. Combined with the modularity of this and similar

approaches, such models provide a promising opportunity to “build out” additional features

that will meet the challenges of the next generation of experimental data.
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