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Abstract: Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-
CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular
assays allowing a precise quantification of viral replication in high-throughput experimental settings
are essential to the screening of chemical libraries and the selection of best antiviral chemical struc-
tures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a
firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease
3CLPro of coronaviruses, so that the luminescent biosensor is turned on upon 3CLPro expression
or SARS-CoV-2 infection. This cellular assay was used to screen a metabolism-oriented library of
492 compounds to identify metabolic vulnerabilities of coronaviruses for developing innovative
therapeutic strategies. In agreement with recent reports, inhibitors of pyrimidine biosynthesis were
found to prevent SARS-CoV-2 replication. Among the top hits, we also identified the NADPH oxidase
(NOX) inhibitor Setanaxib. The anti-SARS-CoV-2 activity of Setanaxib was further confirmed using
ACE2-expressing human pulmonary cells Beas2B as well as human primary nasal epithelial cells.
Altogether, these results validate our cell-based functional assay and the interest of screening libraries
of different origins to identify inhibitors of SARS-CoV-2 for drug repurposing or development.

Keywords: SARS-CoV-2; antiviral; chemical screening; DHODH; Vidofludimus; BAY2402234; IPPA-
17-A04; NADPH oxidase; Setanaxib
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1. Introduction

In January 2020, SARS-CoV-2 was identified as the etiological agent of the current
Covid-19 pandemic. Covid-19 is a complex respiratory disease with symptoms ranging
from none to severe illness that can lead to death. Thanks to unprecedented worldwide
efforts, this virus and the associated diseases are being characterized in great detail and
vaccines have been developed and approved in less than a year. Drugs to treat patients with
Covid-19 are also urgently needed, but the current therapeutic arsenal is extremely limited
despite research endeavors. Many molecules have been evaluated in clinical trials for either
treating symptoms of the infection or blocking the virus replication. The anti-inflammatory
corticosteroid dexamethasone and the anti-IL6 antibody tocilizumab have been shown
to contain the cytokine storm associated with severe Covid19 and to improve patients’
survival in intensive care units [1,2]. Unfortunately, most of the molecules tested so far
have shown none (e.g., hydroxychloroquine, interferon or lopinavir/ritonavir) or only
minor benefits for patients (e.g., remdesivir, favipiravir). This stresses the persistent need
for prophylactic or therapeutic drugs with a clear benefit for patients.

SARS-CoV-2 is a positive-strand RNA virus of the Nidovirales order, Coronaviri-
dae family and Betacoronavirus genus. It is closely related to human coronavirus OC43
(HCoV-OC43) and HKU1 (HCoV-HKU1) which cause common cold, but also to SARS-CoV
and MERS-CoV which were respectively responsible for deadly but much more limited
pandemics in 2003 and 2012. The development of effective antiviral strategies against
coronaviruses should rely first on a better characterization of their replication machinery
and interactions with cellular components to identify valuable drug targets. An exam-
ple of this knowledge-based strategy is the characterization of the virus transcriptional
complex that led to the development of S-adenosyl-methionine analogs for blocking the
2′-O-methylation step required for viral mRNA capping [3]. A complementary approach is
to conduct phenotypic screenings of chemical libraries using in cellulo infection models
without a priori knowledge of the targets. When using libraries containing approved
drugs, this may lead to repurposing strategies. Furthermore, hits with a previously well-
characterized mode of action may identify cellular pathways and enzymatic reactions
required for the virus to replicate. Several screens of approved drug libraries were recently
conducted on SARS-CoV-2-infected cultures, leading to the selection of molecules which
now require more elaborated in vitro, ex vivo and in vivo model assessments [4–6]. Here
we report the first screen of a metabolism-oriented library containing well-characterized
molecules and approved drugs.

The reported phenotypic screens used to identify SARS-CoV-2 inhibitors essentially
rely on host cell viability as an indicator of viral growth [4–6], assessing the inhibition of the
virus cytopathic effect after multicyclic replication at relatively late timepoints. More direct
measures of viral infection by immunostaining and fluorescence imaging have been used
but are often more challenging to implement in a format suitable for testing hundreds of
molecules and require automated microscopes for data acquisition [7,8]. Interestingly, the
SARS-CoV-2 genome encodes a 3C-like protease (3CLPro; nsP5) that is responsible for the
cis- and trans-processing of the viral polyprotein and the destruction of host protein targets
(Figure 1A). This proteolytic activity of 3CLPro could thus be used as a marker of SARS-CoV-
2 replication as previously reported for the NS3/4A protease of HCV [9]. Furthermore, the
target sequence for the 3CLPro protease is highly conserved among coronaviruses, opening
the possibility for a versatile assay compatible with multiple coronaviruses.
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Figure 1. Development of a luminescent biosensor to measure the protease activity of SARS-CoV-2 3CLPro. (A) Schematic 
representation of SARS-CoV-2 genome with corresponding opened reading frames. PLPro and 3CLPro cleavage sites within 
the non-structural polyprotein are indicated by blue and red arrows, respectively. (B) Schematic representation of the 
luminescent biosensor designed for detecting 3CLPro activity. Firefly luciferase N and C-terminal fragments 4-233 (D1) and 
234-544 (D2) were circularly permuted, and linked together by a peptide containing the 3CLPro cleavage site. The reporter 
protein is stabilized by circularization thanks to the IntN and IntC domains, while the PEST sequence promotes the deg-
radation of non-ligated proteins. Upon proteolytic cleavage, constrained domains are relaxed and fold into a functional 
luminescent enzyme. (C) List of 3CLPro cleavage sites that are present in SARS-CoV-2 polyprotein ORF1ab. The nsp9-10 
junction that was used in the luminescent biosensor is colored in red. (D) Sequence of the nsP9-10 junction across different 
alpha and betacoronaviruses. MHV is for Murine Hepatitis Virus or murine coronavirus, PEDV is Porcine Epidemic Di-
arrhea Virus, TGEV is for Transmissible Gastroenteritis Coronavirus and FCoV is for feline coronavirus. 

To establish a bioluminescent reporter system and measure the activity of 3CLPro in 
infected cells, two groups have described a circularly permuted firefly luciferase con-
strained by an engineered site corresponding to the 3CLPro target sequence [10–12]. This 
cleavage site maintains the recombinant luciferase in an inactive, constrained form (Figure 
1B). When processed by 3CLPro, the two fragments of the luciferase are relaxed and the 
bioluminescent activity is recovered. This luminescent biosensor was validated by transi-
ent overexpression of 3CLPro from different coronaviruses, but was never used to monitor 
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Figure 1. Development of a luminescent biosensor to measure the protease activity of SARS-CoV-2 3CLPro. (A) Schematic
representation of SARS-CoV-2 genome with corresponding opened reading frames. PLPro and 3CLPro cleavage sites within
the non-structural polyprotein are indicated by blue and red arrows, respectively. (B) Schematic representation of the
luminescent biosensor designed for detecting 3CLPro activity. Firefly luciferase N and C-terminal fragments 4-233 (D1)
and 234-544 (D2) were circularly permuted, and linked together by a peptide containing the 3CLPro cleavage site. The
reporter protein is stabilized by circularization thanks to the IntN and IntC domains, while the PEST sequence promotes the
degradation of non-ligated proteins. Upon proteolytic cleavage, constrained domains are relaxed and fold into a functional
luminescent enzyme. (C) List of 3CLPro cleavage sites that are present in SARS-CoV-2 polyprotein ORF1ab. The nsp9-10
junction that was used in the luminescent biosensor is colored in red. (D) Sequence of the nsP9-10 junction across different
alpha and betacoronaviruses. MHV is for Murine Hepatitis Virus or murine coronavirus, PEDV is Porcine Epidemic
Diarrhea Virus, TGEV is for Transmissible Gastroenteritis Coronavirus and FCoV is for feline coronavirus.

To establish a bioluminescent reporter system and measure the activity of 3CLPro in in-
fected cells, two groups have described a circularly permuted firefly luciferase constrained
by an engineered site corresponding to the 3CLPro target sequence [10–12]. This cleavage
site maintains the recombinant luciferase in an inactive, constrained form (Figure 1B).
When processed by 3CLPro, the two fragments of the luciferase are relaxed and the bio-
luminescent activity is recovered. This luminescent biosensor was validated by transient
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overexpression of 3CLPro from different coronaviruses, but was never used to monitor
viral infection. Here, we report the development of an improved luminescent biosensor
and reporter cell line based on this principle to identify antiviral molecules by monitoring
the 3CLPro activity of SARS-CoV-2. This assay is compatible with the screening of large
chemical libraries which requires miniaturized and automated in vitro infection models.
Moreover, the replication of viruses critically depends on the fine tuning of their host
metabolic pathways which could thus represent potential targets for a host-directed an-
tiviral approach [13]. Accordingly, this new reporter assay was used to screen a focused
library of 492 drugs specifically targeting cellular metabolic pathways. Results of this
screening and additional studies are presented here with a special focus on Setanaxib
(GKT137831; [14]), a NADPH oxidase 1 and 4 (NOX1/4) inhibitor in clinical trial, that
could be repositioned rapidly against SARS-CoV-2 infection.

2. Materials and Methods
2.1. Cells and Reagents

Vero E6 (ATCC CRL-1586), Caco-2 (ATCC HTB-37), Huh7 (a gift from Marco Binder;
Heidelberg University, Heidelberg, Germany), Huh7-Lunet (a gift from Ralph Barten-
schlager; Heidelberg University, Heidelberg, Germany) and Huh7.5 (a gift fom Paul D.
Olivo; Apath LLC, New York City, NY, USA) cells were grown in DMEM with GlutaMAX
(10566016; Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fetal
calf serum (FCS) and penicillin/streptomycin. Beas-2B cells were grown in F-12K sup-
plemented with 10% FCS, 1% L-glutamine, 10 mM HEPES, and penicillin/streptomycin.
Beas-2B cells expressing ACE2 were obtained by transduction with the lentiviral vector
RRL.sin.cPPT.SFFV/Ace2.IRES-hygro.WPRE, a gift from Dr. Caroline Goujon (Addgene
plasmid #145839) followed by hygromycin selection [15]. Culture medium and additives
were from ThermoFisher/Gibco except FCS (Dutcher). Setanaxib was purchased from
MedChemExpress (Monmouth Junction, NJ, USA). Hydroxychloroquine sulfate was from
Sigma-Aldrich (St Louis, MO, USA). Racemic BAY2402234 was prepared following the
synthesis described in a patent by Hassfeld, J. & al [16] with the difference that racemic
trifluoro isopropanol was used instead of the S enantiomer.

2.2. Virus Strains

The recombinant NeonGreen SARS-CoV-2 virus (icSARS-CoV-2-mNG) was obtained
by introducing the mNeonGreen reporter gene into ORF7 of the viral genome as described
elsewhere [17]. SARS-CoV-2 strain 2019-nCoV/USA_WA1/2020 was isolated by the CDC
in the United States, from the first patient diagnosed in the US. For stock production, Vero
E6 cells were infected in DMEM (MOI = 0.01). After 90 min incubation at 37 ◦C, medium
was replaced with DMEM-2% FBS and cells were incubated for two days. Viral supernatant
was collected and centrifuged (400× g, 5 min), and aliquoted for being stored at −80 ◦C.
Virus was titrated in plaque forming unit by classic dilution limit assay. SARS-CoV-2 strain
BavPat1 used in Supplementary Figure S2 was obtained from Pr. C. Drosten through EVA
GLOBAL (accessed on 13 February 2020; https://www.european-virus-archive.com/). For
stock production, confluent Vero E6 cells growing in MEM-2.5% FCS was inoculated at MOI
0.001. Cell supernatant medium was harvested at the peak of replication, centrifuged and
supplemented with 25 mM HEPES (Sigma-Aldrich, St Louis, MO, USA) before being stored
frozen in aliquots at −80 ◦C. Virus was titrated by classic TCID50 assay. All experiments
with infectious SARS-CoV-2 were conducted in a biosafety level 3 laboratory. Measles virus
Edmonston strain was amplified on Vero E6 cells and titrated by TCID50.

2.3. Establishing Reporter Cell Lines

The luciferase biosensor for 3CLPro activity was based on CycLuc_TEVS, a circularly
permuted luciferase described by Fink T et al. [18]. The CycLuc_TEVS luciferase contains
circularly permuted domains 4-233 and 234-544 of firefly luciferase separated by a TEV
cleavage site and flanked by a 6xHIS tag, IntN and IntC domains of the NpuDnaE intein,

https://www.european-virus-archive.com/
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and a PEST degradation sequence (Figure 1B). To replace the TEV cleavage site by a 3CLPro

cleavage site (STVRLQ↓AGTATE), the DNA sequence of CycLuc_TEVS (a gift from Roman
Jerala; Addgene #119207) was modified by replacing the ggatccgaaaatctctatttccagagcggcggt
sequence with tctacagttagattgcaagctggaactgctactgaa. The corresponding CycLuc_3CLPro

DNA sequence was obtained by gene synthesis from GeneArt (Thermo Fisher Scientific,
Waltham, MA, USA) and cloned in pDONR221 of the Gateway system (Thermo Fisher
Scientific, Waltham, MA, USA). The sequence was shuffled by in vitro recombination into
the Gateway-compatible lentiviral expression vector pLEX_307 (a gift from David Root;
Addgene #41392; Addgene, Watertown, MA, USA). Lentiviral particles were produced
and applied to target cells following manufacturer’s recommendations. Transduced cells
were then selected for at least 7 days in culture medium supplemented with puromycin
(1 µg/mL). Cells were stably transduced as no loss of the reporter construct was observed
after one month of culture corresponding to at least ten passages in the absence of selection
antibiotic.

To assess the activation of the CycloLuc_3CLPro reporter, reporter cells were trans-
fected with pmCherry-C1 nsP5 (SARS-CoV-2), a plasmid expressing 3CLPro from SARS-
CoV-2. This construct was obtained by Gateway cloning using pDONR223 SARS-CoV-2
NSP5 as donor vector (a gift from Fritz Roth; Addgene #141259; Addgene, Watertown,
MA, USA) and pmCherry-C1-GW as destination vector [19,20]. Cells were transfected
with JetPrime reagent following manufacturer’s recommendations (Polyplus-transfection,
Illkirch-Graffenstaden, France). Briefly, 60 × 103 cells were plated in a 48-well plate and
transfected one day later with 0.75 µg of pmCherry-C1 nsP5 (SARS-CoV-2) or pmCherry-
C1-GW as a control. After 24 h of culture, cells were harvested and resuspended in 800 µL
of culture medium. To quantify luciferase activity, 100 µL of cell suspension was dispensed
in a white, flat-bottom 96-well plate and 50 µL of Bright-Glo Luciferase assay reagent
(Promega, Madison, WI, USA) was added. After 5 min of incubation at room temperature,
luminescence was quantified with a Mithras luminometer (Berthold Technologies, Bad
Wildbad, Germany).

2.4. Screening Procedure

The 492 compounds selected for the screen were from the Metabolism-related Com-
pound Library of APExBio (L1032; DiscoveryProbe; APExBio Technology, Houston, TX,
USA) which was purchased from Stratech (Ely, UK) and was stored at −80 ◦C. Stock solu-
tions provided by the manufacturer were at 10 mM in DMSO unless specified otherwise. To
generate screening plates, 2 µL from stock solutions were dispensed in white, flat-bottom
96-well screening plates (Greiner 655083; Greiner, Kremsmünster, Austria). 200 µL of
DMEM-10% FCS + PS were added to each well and after proper mixing, 100 µL were trans-
ferred into an empty plate in order to obtain duplicates of each screening plate. Huh7.5
cells with the CycLuc_3CLPro reporter (Huh7.5_ CycLuc_3CLPro) were resuspended in
DMEM-10% FCS + PS at 2 × 105 cells/mL, and dispensed under 100 µL corresponding
to 2 × 104 cells/well. All drugs were thus tested at a final concentration of 50 µM. The 7
control wells (column 12) were treated with DMSO alone. After 24 h of culture, the first set
of screening plates was infected by adding 20 µL of SARS-CoV-2 stock solution in culture
medium (MOI = 0.5). Only 4 of the control wells infected (positive controls), whereas 3 con-
trol wells were left uninfected (negative controls). The second set of screening plates was
left uninfected to determine the impact of each drug on expression of the CycLuc_3CLPro

reporter.
After 24 h of culture, 100 µL of culture supernatant was removed and 50 µL of Bright-

Glo Luciferase assay reagent (Promega, Madison, WI, USA) was added. After 5 min of
incubation at room temperature, luminescence was quantified with a Tecan Spark 10M
(infected cells) or a Mithras luminometer from Berthold (uninfected cells). In parallel and
to evaluate directly the cytotoxicity of drugs, Huh7 cells at 8 × 103 cells/well were treated
with drugs from the library at 50 µM in 200 µL of culture medium. After 3 days of culture,
100 µL of culture supernatant was removed and 50 µL of CellTiter-Glo Luminescent Cell
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Viability reagent (Promega, Madison, WI, USA) was added. After 10 min of incubation at
room temperature, luminescence was quantified with a Tecan M200 luminometer.

For each plate, raw luminescent values were first normalized to the average of non-
infected control wells (µ−) to eliminate plate-to-plate variations. The Z′ factor of the
assay was calculated from means (µ+ and µ−) and standard deviations (σ+ and σ−) of
negative and positive controls such as Z′ = 1−3 × (σ+ + σ−)/(µ+−µ−) [21]. The signal-
to-background ratio (S/B ratio) corresponds to µ+/µ−. For each drug, the normalized
luminescence ratio (NLR) of infected over non-infected cultures was calculated to take into
account the potential impact of the drug on the expression of the CycLuc_3CLPro reporter
protein. Finally, the NLR value obtained for each drug was used to express results as
percentage of inhibition when compared to DMSO-treatment.

2.5. Inhibition of Viral Replication

For data presented in Section 3.4, 1 × 104 Huh7.5 cells or 2 × 104 Beas-2B-ACE2 cells
were seeded in 100 µL of culture medium in 96-well plates one day prior to infection. The
next day, 100 µL of 2× concentrated Setanaxib was added to obtain a final concentration of
25 µM. Control wells were supplemented with DMSO. After an additional 24 h of culture,
cells were infected with SARS-CoV-2 expressing mNeonGreen. 20 µL of a virus mix diluted
in medium was added to the wells at the correct MOI. Plates were incubated for 24 h
at 37 ◦C after which 100 µL of the supernatant was collected for viral RNA purification
and mNeonGreen expression was determined by fluorescence microscopy. Viral RNA
was quantified by RT-qPCR as previously described using primers and probe indicated in
Table 1 [22]. For the evaluation of Setanaxib toxicity, the same culture conditions were set
without addition of the virus, and cell viability was measured using CellTiter-Glo reagent
(Promega). The CellTiter-Glo was added following the manufacturer’s instructions and
luminescence was determined with a Tecan M200 luminometer.

Table 1. Primers used for RT-qPCR.

Primer Primer (5′–3′)

SARS-CoV-2 N for AAACATTCCCACCAACAG
SARS-CoV-2 N rev CACTGCTCATGGATTGTT

For data presented in Supplementary Figure S2, 5 × 104 Vero E6 cells were seeded in
100 µL of MEM-2.5% FCS in 96-well plates. The next day, eight 2-fold serial dilutions of
compounds (depends on compound), in triplicates were added to the cells (25 µL/well, in
2.5% FCS-containing medium). Four virus control wells (per virus) were supplemented
with 25 µL medium and four cell control wells were supplemented with 50 µL of medium.
After 15 min, 25 µL of a virus mix diluted in medium was added to the wells at the correct
MOI (0.002), determined so that the replication growth is still in the log growth curve
for the readout at day 2. Plates were incubated for 2 days at 37 ◦C after which 100 µL of
the supernatant was collected for viral RNA purification. Viral RNA was quantified by
RT-qPCR as previously described using primers and probe indicated in Table 2 [4]. For
the evaluation of the CC50 (the concentration that reduces the total cell number by 50%),
the same culture conditions were set as for the determination of the EC50 and EC90 (the
concentrations that reduce the viral load by 50% and 90%, respectively), without addition
of the virus, and cell viability was measured using CellTiter-Blue reagent (Promega). The
CellTiter-Blue was added following the manufacturer’s instructions. Plates were incubated
for 2 h prior recording fluorescence (560/590 nm) with a Tecan Infinite 200Pro machine.
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Table 2. Primers and probe used for RT qPCR.

Primer/Probe Name Primer/Probe Sequence (5′–3′)

NCoV_AN_F GGCCGCAAATTGCACAAT
NCoV_AN_R CCAATGCGCGACATTCC
NCoV_AN_P FAM-CCCCCAGCGCTTCAGCGTTCT-BHQ1

Reporter dye (FAM) and quencher (BHQ1) elements are indicated in bold and italics.

2.6. Culture and Infection of Human Primary Nasal Epithelial Cells (PNECs)

Primary human nasal epithelial cells were purchased from Epithelix (Plan-les-Ouates,
Switzerland) and cultured following previously described procedure [23]. After thawing
and centrifugation, cells were recovered in cold Basement Membrane Extract (BME; Cultrex
Reduced Growth Factor BME Type 2, Pathclear, 3533-010-02; Bio-techne, Minneapolis, MN,
USA). Three droplets of 30 µL were dispensed in 12-well plates, and then incubated for 1 h
at 37 ◦C to induce polymerization before adding organoid medium containing Advanced
DMEM/F12 (1X), Hepes (10 mM), GlutaMax (1X), Nicotinamide (5 mM), N-acetylcysteine
(1.25 mM), B27 supplement (1X), SB202190 (500 nM), Y-27632 (5 µM), A83-01 (500 nM), Nog-
gin (100 ng/mL), FGF 10 (100 ng/mL), FGF 7 (25 ng/mL) and R-Spondin 1 (500 ng/mL).
Medium was refreshed twice a week for 1–2 week. Organoids were then passaged. Culture
medium was removed and organoids were resuspended in cold PBS to dissolve BME. After
centrifugation, organoids were dissociated in Trypsin-Versene EDTA (Lonza, Basel, Switzer-
land) and trypsin was neutralized with SBTI. Cells were resuspended in BME as above
at 100,000 cells/droplet and cultured in organoid medium for an additional 1–2 weeks.
Organoids were harvested as above and 8 × 106 cells were plated in a pre-coated T75
flask (coating solution: PBS 1X; Fibronectin 5 µg/mL; PureCol 30 µg/mL; BSA 10 µg/mL)
containing Complete PneumaCult™-Ex Medium (Complete PneumaCult™-Ex Medium,
PneumaCult™-Ex Supplement, Hydrocortisone and Primocin; StemCell Technologies,
Vancouver, Canada). After 4 days, cells were harvested using soft-trypsin, and dispensed at
30,000 cells/well in pre-coated 96-well plates. One day later, culture medium was removed
and replaced with 100 µL of infection medium (50/50 Advanced DMEM/F12 (#11540446)
and BEGM (#CC-3170), Primocin, HEPES, and GlutaMax). Setanaxib was added at 12.5
or 25 µM, and cells were infected with SARS-CoV-2 expressing mNeonGreen (MOI = 0.7).
Viral infection was determined 24 h later by fluorescence microscopy.

2.7. Cell-to-Cell Fusion Assay

The β-galactosidase complementation-based fusion assay was performed as previ-
ously described [24]. Briefly, HEK-293T cells were seeded in two T25 flasks. The next day,
cells were transfected using Transit LT1 (Mirus Bio, Madison, WI, USA) and OptiMEM
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA). The first flask was transfected
with 3 µg of pCAGGS-Spike-WT + 1.7 µg of pCAGGS-Neo-α-β-gal + 0.33 µg of pCSCMV-
tdTomato; the second flask was transfected with 3 µg of pCAGGS-puro-ACE2-Venus +
1.7 µg of pCAGGS-Neo-Ω-β-gal. At 7 h post transfection, cells expressing the Spike protein
were seeded in black 96-well plates (Corning, Corning, NY, USA) coated with poly-D-
Lysine (Sigma-Aldrich, St Louis, MO, USA). Cells were incubated for 15 h at 37 ◦C to
allow attachment, and Setanaxib was added to cultures. Next, cells expressing ACE2 were
deposited, and plates were incubated for an additional 5 h to allow cell-to-cell fusion at
37 ◦C. β-galactosidase activity was determined in culture wells using the Galacto-Star™
β-Galactosidase Reporter Gene Assay System for Mammalian Cells (Thermo Fisher Scien-
tific, Waltham, MA, USA) following manufacturer’s recommendations. Luminescence was
measured after 45 min of incubation with a Tecan M200 luminometer.

2.8. Lysosomal Staining

Vero cells were seeded in 24-well plates at 40,000 cells/well in 500 µL of culture
medium. After 24 h, cells were treated with Setanaxib (25 µM), hydroxychloroquine
(50 µM) or DMSO alone in a final volume of 1 mL. After 4 h at 37 ◦C, LysoTracker Deep Red
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(L12492—Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) was added at 50 nM
(final volume: 1.5 mL) and cells were incubated for 30 min at 37 ◦C. Cells were washed
with 1.5 mL of HBSS (Gibco 14025-050, Thermo Fisher Scientific, Waltham, MA, USA) three
times, and lysosomal staining was immediately observed by fluorescence microscopy.

3. Results

3.1. Design of a Luciferase-Based Biosensor for the Detection of 3CLPro Activity

To develop a bioluminescence-based biosensor of the proteolytic activity of SARS-
CoV-2 3CLPro, we took advantage of a previously reported construct based on circularly
permuted N- and C-terminal fragments of firefly luciferase linked by a protease cleavage
site (Figure 1B) [18]. This permutation locks the luciferase in the opened conformation,
and prevents luciferin processing [25,26]. When the linker is cleaved, conformational
transition to the closed conformation is permitted and the luciferase activity is restored. In
addition, the biosensor is stabilized by cyclization using N and C-terminal intein domains,
IntN and IntC, which catalyze head-to-tail linkage. This type of circularly-permuted,
cyclized luciferase was successfully used to monitor the protease activity of 3CLPro from
Porcine Epidemic Diarrhea Virus (PEDV), a member of the Alphacoronavirus genus [10]. In
addition, to force the elimination of reporter proteins that failed to cyclize and potentially
generate background signal, a PEST degradation sequence was added at the C-terminus
of the reporter construct [18]. Finally, the cleavage site inserted in the biosensor protein
was carefully selected for an efficient processing by 3CLPro from SARS-CoV-2. The optimal
consensus sequence for the SARS-CoV 3CLPro substrate was previously reported by Chuck
CP. et al. and is V/F/T-C/V-R/V-L-Q↓S/A/C [27]. We thus analyzed the 11 cleavage
sites of 3CLPro within the polyprotein coded by SARS-CoV-2 (Figure 1C) and identified a
perfect match with this consensus at the nsP9-nsP10 junction (TVRLQ↓A). In addition, this
cleavage site is highly conserved across human and animal coronaviruses (Figure 1D). We
thus decided to introduce this sequence as the cleavable linker in our luciferase biosensor.

3.2. Validation of the 3CLPro Biosensor

The coding sequence of the biosensor defined above was obtained by gene synthesis
and cloned into a lentiviral vector suitable for gene transduction and antibiotic selection.
Lentiviral particles were produced and used for transducing four different cell lines which
are permissive to SARS-CoV-2. This included Caco-2 (human colorectal adenocarcinoma),
E6 Vero (kidney epithelial cells from African green monkey), Huh7 (human hepatocellular
carcinoma) and Huh7.5 (a subclone of Huh7 defective for the innate immune response be-
cause of a mutation in RIG-I). After one week of antibiotic selection to ensure that transgene
constructs were stably integrated, cells were transfected with a plasmid encoding SARS-
CoV-2 3CLPro or an empty plasmid as a control. Following 24 h of culture, the luciferase
activity was measured in transfected cells. A significant increase in bioluminescence was
observed in the presence of 3CLPro in all four reporter cells (Figure 2A–D). The induction
was however limited in Vero cells most likely because of a much higher background signal
(Figure 2B) reflecting the presence of an endogenous protease constitutively activating the
luminescent biosensor.

We then determined whether SARS-CoV-2 infection was able to activate the lumi-
nescent biosensor. The Huh7.5 cells were used since they are easier to grow than Caco-2
cells and because of their higher permissiveness to SARS-CoV-2 compared to the parental
cells Huh7 [8]. Their high susceptibility to infection was confirmed using a recombinant
virus expressing the fluorescent protein mNeonGreen (Figure 3A). In comparison, the
Huh7-Lunet cells that are highly permissive to Hepatitis C virus alike Huh7.5 cells poorly
replicated SARS-CoV-2 [28]. The Huh7.5 cells were thus infected with increasing amounts
of SARS-CoV-2 infectious particles corresponding to multiplicities of infections (MOI)
ranging from 0.004 to 0.5. After 24 h of culture, the luciferase activity was determined
in infected cells and activation of the 3CLPro biosensor was linearly proportional to the
logarithm of MOI (Figure 3B). This time point was selected to get the highest luminescence
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related to infection in the absence of viral cytopathic effect. As a control, we checked
that a virus without cysteine protease such as measles virus (MeV) did not activate this
bioluminescent biosensor (Figure 3C). This validated the sensitivity and specificity of the
reporter system for a SARS-CoV-2 infection at such an early time point.
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Figure 2. Activation of the luminescent biosensor by SARS-CoV-2 3CLPro expression in different cell lines. (A–D) Caco-2, E6
Vero, Huh7 and Huh7.5 cells were stably transfected with a lentiviral vector to constitutively express the 3CLPro luminescent
biosensor. Stable cell lines were transfected with an expression plasmid that was either empty (None) or encoding SARS-
CoV-2 3CLPro. After 24 h of culture, luciferase activity in culture wells was determined. Data correspond to means ± SEM
from 3 independent experiments in triplicate and p values were determined by Student’s t-test.

3.3. Screening of a Metabolism-Oriented Compounds Library

We then tested if our cell-based biosensor was suitable for high-throughput screening
of small molecules. Viruses in general, and specifically coronaviruses, are known for
hijacking metabolic pathways through specific interactions to fulfill their needs in energy
and metabolites. Pharmacological modulators of cell metabolism thus have a plausible
potential as antivirals by interfering with the metabolic reprogramming triggered by
viruses. To establish a proof of concept, we thus selected a set of 492 molecules inhibiting
or activating metabolic pathways which were assayed in 96-well plates at 50 µM using the
Huh7.5 cells expressing the 3CLPro biosensor. After 24 h of culture, cells were infected with
SARS-CoV-2 (MOI = 0.5), and cultured for an additional 24 h before measuring luciferase
activity. Each plate included four positive and three negative controls corresponding to
infected and non-infected cells, respectively.

We established an algorithm to analyze data and identify potential inhibitors of SARS-
CoV-2 (Figure 4A). Raw luminescence data were normalized using the mean of internal
negative controls to eliminate plate-to-plate variations. Across the six screening plates,
the signal-to-background (S/B) ratio between infected and non-infected control wells was
on average 2.86. We also calculated the Z′ factor which reflects the capacity of the assay
to discriminate positive controls (infected wells) from negative controls (non-infected
wells) (see Section 2.4). The Z′ factor was on average 0.54 across the six screening plates,
which is above the threshold of 0.5 characterizing an excellent assay and thus validates the
screen [21]. Because some drugs alone could have a significant impact on the background
activity of the luciferase biosensor, we performed a control experiment without infecting the
cells. For each drug, we calculated a normalized luminescence ratio (NLR) corresponding
to the signal in infected over non-infected cultures. Using this NLR value, we calculated
the percentage of inhibitory effect of the drug when compared to DMSO treatment.
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Figure 3. Activation of the luminescent biosensor by SARS-CoV-2 infection. (A) To compare their
susceptibility to infection, Huh7-Lunet and Huh7.5 cells were infected with a recombinant strain
of SARS-CoV-2 expressing mNeonGreen as a reporter (MOI = 0.5). After 20 h of culture, infection
was determined by fluorescence microscopy and representative images are presented. Scale bar is
300 µm. (B) In 96-well plates, Huh7.5 cells stably transfected with the 3CLPro biosensor were infected
with increasing amounts of SARS-CoV-2 (strain 2019-nCoV/USA_WA1/2020) ranging from 156 to
20,000 PFUs/well (i.e., 0.004 to 0.5 MOIs). After 24 h of culture, luciferase activity was determined.
Data correspond to means ± SEM from 3 independent experiments in triplicate (n = 1) or in duplicate
(n = 2). Linear regression was determined for PFUs/well ranging from 625 to 20,000 (i.e., 0.0156 to
0.5 MOIs) where some luciferase signal was detected. (C) Same experiment as in (B) but cells were
infected with measles virus. Data correspond to means ± SEM from six experiments.
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Figure 4. Identification of SARS-CoV-2 inhibitors by screening a chemical library of metabolic modulators. (A) Filtering
pipeline for the selection of hit compounds. A total of 492 compounds were tested at 50 µM on Huh7.5 expressing the
luminescent biosensor for 3CLPro. 20,000 cells per well were treated with the drugs for 24 h and then infected with
SARS-CoV-2 (strain 2019-nCoV/USA_WA1/2020; MOI = 0.5; “screen w/ virus”) or were left uninfected (“screen w/o
virus”). After 24 h, luciferase activity was determined and results were normalized across plates using DMSO-treated,
uninfected control wells as reference. Activation of the luminescent biosensor upon SARS-CoV-2 infection was determined
by calculating the normalized luminescence ratio (NLR = “luminescence w/ virus” over “luminescence w/o virus”),
and results were expressed as a percentage of inhibitory effect compared to the DMSO-treated, infected control wells.
Compounds showing no sign of cellular toxicity (see Section 2.4 for details) and inhibiting by 90% or more the activation of
the luminescent biosensor in SARS-CoV-2 infected wells were selected. (B) Inhibitory effect of the 276 compounds showing
no sign of cellular toxicity. Those with a negative inhibitory effect actually increased the activation of the luminescent
biosensor upon SARS-CoV-2 infection. (C) List of the molecules selected from the screen. (D) Inhibitory effect of Setanaxib
on the activation of the 3CLPro biosensor by SARS-CoV-2. Experiment was conducted as in (A) but with increasing
concentrations of Setanaxib and results were expressed as percentage of activity compared to the infected, untreated control.
Data correspond to means ± SEM from one experiment in triplicate.

Some drugs decreased luciferase activity in the absence of infection, suggesting some
detrimental effect on the expression of the biosensor. We thus discarded 158 drugs that
decreased the luminescence signal in non-infected cells by more than 30%. In addition,
we had previously tested as part of an independent research project all 492 drugs on the
long-term proliferation and survival of Huh7 cells by using ATP level in culture wells
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as a measure of cellular viability (CellTiter-Glo reagent; Promega). Drugs that reduced
cellular proliferation or viability by more than 30% in this secondary assay were also
discarded (191 drugs). Interestingly, 84% of the drugs reducing the expression of the
biosensor in the absence of infection also reduced cellular viability, thus highlighting
the link existing between these two filtering criteria. In total, 276 drugs passed these
toxicity filters (Figure 4B, Supplementary Table S1). Finally, we selected molecules that
inhibited by more than 90% the induction the luciferase biosensor by SARS-CoV-2. This
led to 7 molecules which passed these stringent criteria, and these were further studied
(Figure 4C, Supplementary Figure S1).

Vidofludimus, an inhibitor of pyrimidine biosynthesis targeting dihydroorotate dehy-
drogenase (DHODH), which was recently reported to inhibit SARS-CoV-2 replication, was
in the list of identified hits [29]. To validate the antiviral activity of this drug in a different
cell line, Vidofludimus was assessed on Vero E6 cells, which is commonly used as an
in vitro infection model for SARS-CoV-2. Cells were treated with increasing concentrations
of Vidofludimus and then infected with SARS-CoV-2 at a MOI of 0.002. After 48 h of culture,
supernatants were harvested and the production of viral particles in culture supernatants
was determined by RT-qPCR. As shown in Supplementary Figure S2A, Vidofludimus
inhibited the production of SARS-CoV-2 as recently reported [29]. EC50 and 90 values
reached 3.2 and 11.4 µM, respectively. Other well-known DHODH inhibitors such as
IPPA17-A04 [30] or the racemic form of BAY2402234 [31] also blocked the production
of SARS-CoV-2 particles (Supplementary Figure S2B). In addition, the antiviral effect of
IPPA17-A04 was reverted by the addition of uridine, thus confirming the causative link
between pyrimidine depletion and SARS-CoV-2 inhibition in cells treated with DHODH
inhibitors (Supplementary Figure S2B). Tretinoin, a retinoic acid receptor (RAR) agonist that
was suggested to block the ion channel formed by SARS-CoV-2 envelope (E) protein [32],
and clarithromycin, a macrolide antibiotic closely related to azithromycin which blocks
coronavirus replication in vitro [4], were also in this short list of hit compounds. Altogether,
this validated our selection strategy although DHODH inhibitors have yet to be shown as
useful frontline antivirals in clinic.

In any case, the most effective molecule in our list was Setanaxib (GKT137831), a
NADPH oxidases 1 and 4 (NOX1/4), which also scored as a hit in a recently published
SARS-CoV-2 inhibitors screen [6]. When evaluated at different concentrations in our assay,
results showed that a 6 µM concentration of Setanaxib inhibited by 90% the SARS-CoV-2
activation of the luciferase biosensor by SARS-CoV-2 without toxicity (Figure 4D). Because
Setanaxib is already in clinical trial for other indications, we thus investigated in details
SARS-CoV-2 inhibition by this molecule.

3.4. Inhibition of SARS-CoV-2 Replication by Setanaxib

The antiviral effect of Setanaxib was first assayed in Huh7.5 cells infected with a
recombinant strain of SARS-CoV-2 expressing the fluorescent protein mNeonGreen as
reporter (MOI = 0.1). After 24 h of culture, fluorescence microscopy confirmed the inhibition
of viral infection in these cells (Figure 5A,B). In addition, viral RNAs present in culture
supernatants were measured by RT-qPCR to evaluate the release of virus. As shown
in Figure 5C, Setanaxib strongly inhibited the production of viral particles from Huh7.5
cultures infected at different MOIs (0.004; 0.02; 0.1). To validate the antiviral activity of
this drug in a different cell line, we also used human lung epithelial cells BEAS-2B which
had been transduced with SARS-CoV-2 receptor ACE2 (Angiotensin-Converting Enzyme
2). The cells were treated with Setanaxib and immediately infected with SARS-CoV-2
expressing mNeonGreen at a MOI of 0.004. After 48 h of culture, fluorescence microscopy
confirmed the inhibition of viral infection by Setanaxib (Figure 5D). The level of viral RNAs
present in culture supernatants was also quantified by RT-qPCR and this confirmed a
strong viral production inhibition by Setanaxib (Figure 5E).
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Figure 5. Inhibition of SARS-CoV-2 replication by Setanaxib. (A,B) Huh7.5 cells were treated for 24 h with Setanaxib
(25 µM) or left untreated, and then infected with recombinant SARS-CoV-2 expressing mNeonGreen (MOI = 0.1). After
24 h of culture, infection was determined by fluorescence microscopy. A representative image is presented in (A). Scale
bar is 100 µm. A total of six randomly selected microscopy fields from three independent culture wells (one experiment
in triplicate) were analyzed for mNeonGreen expression. Fluorescence quantification was performed with ImageJ, and
corresponding data are presented in (B). (C) Same as in (A) but cells were infected with recombinant SARS-CoV-2 expressing
mNeonGreen at 0.004, 0.02 and 0.1 MOIs. After 24 h of culture, supernatants were harvested and SARS-CoV-2 RNAs were
quantified by RT-qPCR. (D) Beas-2B cells expressing ACE2 were infected with SARS-CoV-2 expressing mNeonGreen (MOI
= 0.004) and cultured without or with Setanaxib at 25 µM. After 48 h, infection was determined by fluorescence microscopy
for mNeonGreen expression. Quantitative data correspond to the fluorescence signal from six independent culture wells
obtained with ImageJ (two independent experiments in triplicate). (E) Same experiment as in (D) but culture supernatants
were collected to quantify viral RNA by RT-qPCR. Data correspond to means± SEM. Statistical significance was determined
by Student’s t-test using Prism (GraphPad Software, San Diego, CA, USA) for all panels except (C) where two-way ANOVA
was used.
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Finally, the antiviral activity of Setanaxib was determined on human primary nasal
epithelial cells (PNECs) from a healthy donor. Cultures were infected by SARS-CoV-2
expressing mNeonGreen (MOI = 0.7) with or without Setanaxib at 12.5 or 25 µM. After
24 h of culture, viral infection was determined by fluorescence microscopy (Figure 6;
upper panel). Fluorescence quantification in each culture well showed a dose-dependent
inhibition of viral growth (Figure 6; lower panel). Altogether, these results support the
inhibition of SARS-CoV-2 by Setanaxib in different cellular models including human
primary cells from the respiratory tract.
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Figure 6. Setanaxib is inhibiting SARS-CoV-2 infection in human primary nasal epithelial cells. Primary nasal epithelial
cells from healthy donors were infected with SARS-CoV-2 expressing mNeonGreen (MOI = 0.7) and cultured without
or with Setanaxib at 12.5 or 25 µM. After 24 h, infection was determined by fluorescence microscopy for mNeonGreen
expression. Scale bar is 300 µm. Fluorescence signal from culture wells was determined with ImageJ. Results are expressed
as percentage of the untreated control well.

3.5. Setanaxib Does Not Affect 3CLPro Activity or Viral Fusion

Setanaxib was developed as a NOX1/4 inhibitor but it appears to be effective on
a SARS-CoV-2 infection assay for which relies on 3CLPro protease activity. Accordingly,
this compound could also be an inhibitor of this viral enzyme. To check this hypothesis,
Huh7.5 cells expressing the 3CLPro biosensor were transfected with a plasmid encoding
SARS-CoV-2 3CLPro and cultured for 24 h with Setanaxib at 25 µM. 3CLPro expression
activated the luciferase biosensor as expected, but similar levels of activation were obtained
with or without Setanaxib (Figure 7A). This demonstrated that this compound does not
inhibit the protease activity of 3CLPro.
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Figure 7. Setanaxib does not affect 3CLPro activity or viral fusion. (A) Huh7.5 cells expressing the 3CLPro luminescent
biosensor were transfected with an expression plasmid that was either empty (None) or encoding SARS-CoV-2 3CLPro as
described in Figure 2. After 5 h of incubation, Setanaxib was added at 25 µM. After 24 h of culture, luciferase activity in
culture wells was determined and normalized to cell viability determined using the CellTiter-Glo reagent. Data correspond
to means ± SEM from 2 independent experiments in triplicate and statistical significance was determined by Student’s
t-test. (B) The potential impact of Setanaxib on membrane fusion induced the S protein of SARS-CoV-2 was determined
in a cell-to-cell fusion assay. HEK-293T cells expressing both the S protein and the α peptide of β-galactosidase were
co-incubated with HEK-293T cells expressing ACE2 and the Ω peptide of β-galactosidase. Cells were co-cultured for
5 h with increasing concentrations of Setanaxib to permit fusion, and β-galactosidase activity was determined using a
bioluminescent substrate. Data correspond to means ± SEM from one experiment in triplicate and statistical significance
was determined by Student’s t-test.

Setanaxib could also inhibit the interaction of the viral glycoprotein Spike with its
receptor ACE2 or membrane fusion events [33]. This was evaluated in a membrane
fusion assay recently adapted to this virus [24]. HEK-293T cells were transfected with
plasmids to express either the Spike protein or its cellular receptor ACE2 together with
complementary fragments of β-galactosidase. Cells were mixed to induce cell-to-cell fusion.
Trans-complementation of β-galactosidase is associated to syncytia formation and can be
used to quantify fusion events. β-galactosidase activity was not affected by the addition
of Setanaxib in culture wells, thus demonstrating that Spike interaction with its receptor
and membrane fusion events are not affected by this drug (Figure 7B). Because current
SARS-CoV-2 variants are mainly characterized by variations in the glycoprotein, and thus
on attachment to the ACE2 receptor and fusion capacity [34,35], these results suggest that
they should also be susceptible to Setanaxib. Following these two control experiments, we
can conclude that Setanaxib inhibits other step(s) of SARS-CoV-2 replication cycle and their
identification will require further investigations.

4. Discussion

We have developed and validated an in vitro luminescent assay relying on the detec-
tion of 3CLPro-mediated proteolysis as a reporter for SARS-CoV-2 infection. This assay was
used to screen a metabolism-oriented chemical library to identify antiviral compounds
which could potentially be transferred to clinic. In the top compounds found was a known
SARS-CoV-2 inhibitor (Vidofludimus) [29] as well as molecules already suspected to impair
the replication of this virus (Tretinoin; Clarithromycin) [4,32]. Most interestingly, we also
identified Setanaxib, a well-characterized NOX1/4 inhibitor that was reported as a hit in
a recently published chemical screening for SARS-CoV-2 inhibitors [6]. We thus further
investigated and validated the antiviral properties of this molecule in different cellular
models.
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The urgent need for drugs inhibiting SARS-CoV-2 has motivated the development of
screening assays to identify antivirals. Out of these, the simplest rely on in vitro measures
of cytopathic effects induced by the virus [4,5]. Recombinant viruses expressing fluorescent
proteins or luciferases as reporters were also developed [36,37]. High-throughput ELISA-
based assays for detecting viral proteins in culture supernatants were also adapted to the
screening of chemical libraries [38]. More focused system to identify drugs specifically
targeting viral entry, components of the viral transcription/replication machinery or viral
proteases PLPro and 3CLPro were also engineered [39–48]. In this work, we took advantage
of luciferase-based assays previously described to monitor the proteolytic activity of PLPro

and 3CLPro from MERS-CoV and PEDV [10,11]. As opposed to a recently described cellular
assay in which the proteolytic cleavage of the reporter luciferase by SARS-CoV-2 3CLPro

abolishes bioluminescence [44], the cleavage of our biosensor relaxed circularly-permuted
domains of luciferase to actually trigger bioluminescence. The same principle was recently
applied by others to EGFP or luciferase for detecting the proteolytic activity of 3CLPro

from SARS-CoV-2 [12,45]. However, and compared to previous reports, we achieved a
demonstration that our assay can detect 3CLPro activity in the context of SARS-CoV-2
infection, thus allowing the selection of drugs inhibiting not only 3CLPro but different
steps of the virus replication cycle. The same assay could be used to evaluate the antiviral
activity of neutralizing antibodies and biologics against SARS-CoV-2 [49].

We took advantage of this assay to screen an original library of metabolic modulators
for an antiviral effect. Indeed, it is now well-established that coronaviruses interact with
several cellular metabolic enzymes and reprogram a large array of metabolic pathways to
promote their replication [50,51]. Consequently, these pathways represent promising targets
for developing host-directed antivirals [52]. In the list of hit compounds, Vidofludimus can
be viewed as a proof of concept for our assay and screening strategy. Indeed, Vidofludimus
is an inhibitor of dihydroorotate dehydrogenase (DHODH), the fourth and rate-limiting
step in the de novo pyrimidine biosynthesis pathway. Inhibitors of this metabolic path-
way deprive cells in pyrimidines and block their proliferation. For this reason, DHODH
inhibitors have been developed for treating cancer and autoimmune diseases [53]. Most
interestingly, these drugs also exhibit a broad-spectrum antiviral activity in vitro that is
now well documented [54]. However in vivo, divergent results were obtained in virus-
infected animal models. Nevertheless, this dual antiviral and immunomodulatory activity
of DHODH inhibitors suggest some potential benefit in the treatment of Covid19 [55].
We have previously reported that HCoV-229E, a member of the alphacoronavirus genus,
is sensitive to DHODH inhibition [56]. Furthermore, several recent reports have shown
that SARS-CoV-2 replication is impaired in cells treated with DHODH inhibitors such as
teriflunomide, Vidofludimus or PTC299 [29,57,58]. Several DHODH inhibitors including
Vidofludimus are clinically evaluated in the treatment of Covid19 (ClinicalTrials.gov Iden-
tifier: NCT04361214; NCT04379271; NCT04425252; NCT04575038; NCT04439071; accessed
on 22 July 2021).

Our results confirm the inhibitory effect of Vidofludimus on SARS-CoV-2 replication,
and we extended this observation to BAY2402234, a potent DHODH inhibitor currently
developed by Bayer as a treatment of acute myeloid leukemia [31]. Clinical trials started
recently to evaluate the benefit of DHODH inhibitors in the treatment of SARS-CoV-
2. These should provide important conclusions on the therapeutic potential of these
drugs against coronavirus infections. Clarithromycin was also in the short list of SARS-
CoV-2 inhibitors identified in the screen. Clarithromycin is a macrolide antibiotic closely
related to Azithromycin, a drug previously reported for blocking SARS-CoV-2 replication
in vitro [4,59]. However, a large fraction of SARS-CoV-2 inhibitors identified by functional
screening such as hydroxychloroquine and macrolide antibiotics are cationic-amphiphilic
molecules which will accumulate in endosomes and lysosomes (and are therefore referred
as “lysosomotropic”). Once in the lysosomes, these drugs are trapped by protonation and
this leads to an increased pH, a perturbed endolysosomal trafficking, and an induction of
phospholipidosis [60–63]. As a consequence, not only the pH-dependent entry of SARS-
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CoV-2 through the endolysosomal pathway but also later steps of the viral replication cycle
which depend on intracellular vesicles are impaired [59,62]. Even if conflicting results have
been published on the efficacy of these drugs in patients, when assessed in macaques in a
highly controlled experiment setting, azithromycin combined with hydroxychloroquine
did not show any protection against infection with SARS-CoV-2 [64].

Our screen also identified Tretinoin, the acid form of vitamin A and a RAR agonist,
as an inhibitor of SARS-CoV-2 replication in line with Riva et al. [5]. This molecule
was suggested to block the ion channel formed by SARS-CoV-2 envelope (E) protein [32].
However, this may not be the actual mode of action of tretinoin since the inhibition of SARS-
CoV-2 replication by Tazarotene, another RAR agonist, is reversed by the RAR antagonist
Ro41-5253 [5]. This suggests that antiviral properties of RAR agonists such as Tretinoin rely
on RAR transcriptional activity and the modulation of target genes. RIG-I (retinoic-acid
induced gene I; DDX58) which is a key sensor for viruses and an essential component
of the host antiviral response is upregulated by retinoids. However, the Huh7.5 cell line
that was used for the screen is mutated for this antiviral factor. It has also been reported
that SARS-CoV-2 receptor ACE-2 is downregulated by retinoids [65,66]. Accordingly, the
suppression of ACE-2 could contribute to the inhibition of SARS-CoV-2 replication by RAR
agonists. Ongoing clinical trials are evaluating the benefit of RAR agonists in the treatment
of Covid19 (ClinicalTrials.gov Identifier: NCT04361422; accessed on 22 July 2021).

Finally, we report the inhibition of SARS-CoV-2 by Setanaxib. This molecule is a
NOX1/4 inhibitor developed to prevent oxidative stress and fibrosis in multiple diseases
including primary idiopathic fibrosis, primary biliary cholangitis, and diabetic nephropa-
thy [67]. Because Setanaxib is highly active against NOX1/4 and is a well-tolerated drug
exhibiting a good pharmacokinetic, it has been extensively evaluated in pre-clinical in vivo
models and several clinical trials have been performed or are ongoing. Biering SB et al.
have recently reported the inhibition of SARS-CoV-2 by Setanaxib in Calu3 and HPMEC
cells transduced for ACE2, but this molecule was found inactive in Huh7 and Vero E6
cells [6]. Here, we showed that Setanaxib is active in Huh7.5 cells, Beas-2B cells transduced
for ACE2 and most importantly, human primary nasal epithelial cells. Therefore, the antivi-
ral effect of Setanaxib appears to be cell-type specific. Surprisingly, opposite results were
obtained in Huh7 and the related clone Huh7.5, but it should be emphasized that these
two cell lines do differ in their susceptibility to SARS-CoV-2 infection [8]. The difference
between these two cell lines in regards to SARS-CoV-2 infection is likely to extend beyond
the well-characterized mutation in RIG-I.

The mechanism responsible for the inhibition of SARS-CoV-2 infection by Setanaxib
remains elusive. NOX proteins are transmembrane enzymes that generate reactive oxy-
gen species (ROSs) in different subcellular compartments including cellular membranes,
lysosomes, mitochondria and the endoplasmic reticulum [67]. In physiological conditions,
ROS generated by NOX enzymes participate to an antimicrobial response but also to cell
signaling and post-translational modifications of proteins. Interestingly, ROS production is
increased in monocytes infected by SARS-CoV-2 and this burst is essential to viral replica-
tion [68]. Although complex I of the respiratory chain was identified as the main source of
ROS in this system, it is possible that NOX enzymes support SARS-CoV-2 replication by
producing ROS in other cellular systems. The NOX enzymes are also known for regulating
the pH of lysosomes. Indeed, elevated oxidative activity has been linked to lysosomal
alkalization [69]. To determine the effect of Setanaxib on the lysosomal compartment, we
performed the following exploratory experiment. Vero cells were treated with Setanaxib
and grown for 4 h and then the lysosomes were stained with LysoTracker Deep Red. When
assessing hydroxychloroquine, which was used as a reference lysosomotropic drug associ-
ated to phospholipidosis [63], a massive accumulation of large intracellular vesicles that
stained positive with LysoTracker Deep Red was observed (Supplementary Figure S3). On
the other hand, Setanaxib did not induce a similar phenotype but increased the intracellu-
lar staining with the lysosomal dye. This suggests that Setanaxib also interferes with the
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lysosomal compartment and this could account for an antiviral activity [62]. Deciphering
the mechanisms involved and the role of NOX enzymes requires further investigations.

In conclusion, we report here a functional cell-based assay to identify inhibitors of
SARS-CoV-2 infection which can be adapted to all strains of SARS-CoV-2 and potentially
other coronaviruses without the need of introducing reporter genes in the viral genome.
The screening of a metabolism-oriented library led to the identification of several hits
including the DHODH inhibitor Vidofludimus and the NOX1/4 inhibitor Setanaxib which
antiviral activity was validated in PNECs. Although further investigations are required
to determine the mechanisms involved in this antiviral activity, our data suggest that this
class of molecule may have potential against SARS-CoV-2 infection. Interestingly, it has
been shown that NOX activation is associated with inflammation and severe Covid19, and
the potential of NOX inhibitors for controlling the cytokine storm induced by SARS-CoV-2
has also been discussed [70]. Therefore, Setanaxib could show a dual benefit in patients by
limiting inflammation and by blocking viral replication as presented in this report.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/v13091814/s1, Figure S1: Structures of the compounds used in this study. Figure S2: Inhibition
of SARS-CoV-2 replication by DHODH inhibitors, Figure S3: Lysosomal staining in Setanaxib-treated
cells. Table S1: Inhibitory effect of the 276 compounds showing no sign of cellular toxicity.
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