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Abstract

Genome-scale metabolic models (GEMs) provide a powerful framework for simulating the

entire set of biochemical reactions in a cell using a constraint-based modeling strategy

called flux balance analysis (FBA). FBA relies on an assumed metabolic objective for gener-

ating metabolic fluxes using GEMs. But, the most appropriate metabolic objective is not

always obvious for a given condition and is likely context-specific, which often complicate

the estimation of metabolic flux alterations between conditions. Here, we propose a new

method, called ΔFBA (deltaFBA), that integrates differential gene expression data to evalu-

ate directly metabolic flux differences between two conditions. Notably, ΔFBA does not

require specifying the cellular objective. Rather, ΔFBA seeks to maximize the consistency

and minimize inconsistency between the predicted flux differences and differential gene

expression. We showcased the performance of ΔFBA through several case studies involv-

ing the prediction of metabolic alterations caused by genetic and environmental perturba-

tions in Escherichia coli and caused by Type-2 diabetes in human muscle. Importantly, in

comparison to existing methods, ΔFBA gives a more accurate prediction of flux differences.

Author summary

Metabolic alterations are often used as hallmarks of observable phenotypes. In this regard,

reconstructed genome-scale metabolic models (GEMs) provide a rich and computable

representation of the entire set of biochemical reactions in a cell. However, the perfor-

mance of analytical tools for predicting metabolic reaction rates or fluxes using GEMs is

sensitive to the assumed metabolic objective that is often unknown and likely context-spe-

cific. Here, we propose a novel method called ΔFBA that combines differential gene

expression data and GEMs to evaluate differences in the metabolic fluxes between two

conditions (perturbation vs. control) without the need for specifying a metabolic objec-

tive. In our demonstration, ΔFBA outperformed other existing methods in predicting

metabolic flux alterations.
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This is a PLOS Computational Biology Methods paper.

Introduction

In the post-genomic era, there has been intense efforts directed toward the reconstruction of

genome-scale models of cellular networks. An important portion of these efforts focuses on

metabolic networks due to the significance of cellular metabolism for understanding diseases

such as cancer [1–4] as well as for metabolic engineering applications in biomanufacturing [5].

Recent advances in high-throughput sequencing technologies, gene functional annotation,

and metabolic pathway databases, and developments of algorithms for mapping gene-protein-

reaction (GPR) associations and identifying missing metabolic reactions systematically (gap-

filling), have enabled the reconstruction of thousands of genome-scale metabolic models

(GEMs), from single cell organisms to human [6,7]. A GEM provides GPR associations that

encompass the set of metabolites and metabolic reactions in an organism as prescribed by its

genome. Concurrent with these developments is the creation of efficacious algorithms that use

GEMs to predict intracellular metabolic fluxes–the rates of metabolic reactions–and how these

fluxes vary under different environmental, genetic, and disease conditions [8–10].

A prominent class of algorithms based on a constrained-based modeling technique called

flux balance analysis (FBA) have flourished due to its ease of formulation and flexibility. FBA

uses the stoichiometric coefficients of the metabolic reactions in a GEM, an assumed cellular

objective such as maximization of biomass production, and experimental data on metabolic

capabilities and constraints of the cells, to predict metabolic fluxes [11]. Although FBA is effec-

tive in handling large networks and predicting cell behavior in many metabolic engineering

studies [12–15], considerable uncertainty still remains about the appropriate choice of cellular

objective for different conditions and cell types, a choice that typically requires expert knowl-

edge of the cells and their phenotype in a given condition. Such an issue is particularly promi-

nent for complex organisms such as human. Moreover, multiple equivalent flux solutions exist

that give the same cellular objective value [16]. Not to mention, the standard FBA often pro-

duces biologically unrealistic flux solutions [17,18].

Driven by the increasing ease and availability of whole-genome omics profiling data, a mul-

titude of FBA-based algorithms have been developed to incorporate omics datasets to create

context-specific metabolic networks and to improve flux prediction accuracy [19–26]. Several

of these methods, such as GIMME (Gene Inactivity Moderated by Metabolism and Expres-

sion) [20], iMAT (integrative Metabolic Analysis Tools) [21], and MADE (Metabolic Adjust-

ment by Differential Expression) [22], are based on maximizing the consistency between the

predicted flux distribution and the mRNA transcript abundance of metabolic genes, where the

higher the transcript level of an enzyme, the larger should the flux of the corresponding reac-

tions. Recent methods use data of mRNA transcript abundance for setting the bounds on reac-

tion fluxes, e.g. E-Flux [23], or in the biological objective function, e.g. Lee et al. [24] and

RELATCH (RELATive Change) [25]. Meanwhile, others like GX-FBA [26] determine fluxes

in a perturbed state using differential gene expression and FBA flux prediction for the control

(reference) state. Interestingly, a systematic evaluation of different FBA methods that incorpo-

rate gene expression data revealed a surprisingly poorer performance of these methods when

compared to FBA with growth maximization and parsimony criteria, referred to parsimonious

FBA (pFBA) [27]. More recently, ME-model [28] and GECKO [29] combine FBA with an

explicit modeling of enzyme/protein expression and thus, are able to directly account for pro-

tein abundance. Thermodynamics constraints have also been integrated with the FBA to elimi-

nate thermodynamically infeasible fluxes, and at the same time enable the integration of
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metabolite concentration data, as done in recent methods such as ETFL [30]. All of the afore-

mentioned methods, however, revolve around using omics data to predict metabolic fluxes for

a given condition. But, many a times we are interested in the metabolic alterations caused by a

perturbation or a change in intra/extracellular conditions.

Thus far, only a handful of methods focus on using differential expression data between

two conditions (e.g., perturbation vs. control) to predict metabolic alterations directly, which

is a particular focus of our study. The method Relative Expression and Metabolic Integration

(REMI) [31] used differential expression of transcriptome and metabolome to estimate meta-

bolic flux profiles in Escherichia coli under varying dilution and genetic perturbations. The

method relies on maximizing the agreement between the fold-changes of metabolic fluxes and

the fold-changes of enzyme expressions between two conditions. The metabolome data, if

available, are used to determine the flux directionality using reaction thermodynamics.

Among the alternative flux solutions, the L1-norm minimal solution is adopted to give a repre-

sentative flux distribution. Another method by Zhu et al. [32] employed a softer definition

when assessing consistency between the metabolic fluxes and enzyme differential expressions,

where only the sign of the differences needs to agree. The method provides a qualitative deter-

mination of metabolic flux changes by determining the maximum and minimum flux through

each reaction in the GEM. Both of the above methods generate metabolic flux predictions for

each of the conditions in comparison. Also, like the standard FBA, both methods require an

assumption on the cell’s metabolic objective. Generally, model prediction inaccuracy is ampli-

fied when evaluating the differences between two model predictions. Another related method

MOOMIN [33] uses a Bayesian approach to integrate differential gene expression profiles with

GEMs to predict the qualitative change in the metabolic fluxes—increased, decreased or no

change.

In this work, we developed ΔFBA (deltaFBA) for predicting the metabolic flux difference

given a GEM and differential transcriptomic data between two conditions. ΔFBA relies on a

constrained-based model that governs the balance of flux difference in the GEM, while maxi-

mizing the consistency and minimizing inconsistency between the flux alterations and the

gene expression changes. ΔFBA is developed as a MATLAB package that works seamlessly

with the COnstraint-Based Reconstruction and Analysis (COBRA) toolbox [34]. We applied

the ΔFBA to analyze the metabolic changes of Escherichia coli in response to environmental

and genetic perturbations using data from the studies of Ishii et al. [35] and Gerosa et al. [36].

We compared the performance of ΔFBA in evaluating flux differences between conditions to

that of REMI and eight FBA methods, including parsimonious FBA (pFBA) [19], GIMME

[20], iMAT [21], MADE [22], E-Flux [23], Lee et al. [24], RELATCH [25], and GX-FBA [26].

We also demonstrated the application of ΔFBA to a human GEM, specifically evaluating the

metabolic alterations associated with type-2-diabetes in skeletal muscle using myocyte-specific

GEM [37].

Materials and methods

Method formulation

ΔFBA generates a prediction for metabolic flux differences between a pair of conditions, for

example, treated vs. untreated or mutant vs. wild-type strains. In the following, we use the

superscript C to denote the control (reference) condition and P to denote the perturbed condi-

tion. In the standard FBA, writing mass balance around every metabolite and applying the

steady state assumption give a linear equation Sv = 0, where S 2 Rm�n denotes the stoichiomet-

ric matrix for m metabolites that are involved in n metabolic reactions and transports in the

GEM and v 2 Rn
denotes the vector of n fluxes (rates). In ΔFBA, the steady state flux balance
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is assumed for each condition, and consequently, the flux difference Δv = (vP − vC) satisfies the

following balance equation:

SDv ¼ SðvP � vCÞ ¼ SvP � SvC ¼ 0

where vC 2 Rn
and vP 2 Rn

denote the vectors of metabolic fluxes in C and P, respectively,

and Dv 2 Rn denotes the vector of metabolic flux differences. The prediction of Δv is based on

maximizing the consistency while minimizing the inconsistency between the flux changes Δv
and the differential reaction expressions, constrained by among other things, the flux balance

equation above. The following constrained mixed integer linear programming (MILP) gives

the main formulation for ΔFBA:

max zU ; zDF ¼ max
zU ; zD

X

i2RUw
U
i ðz

U
i � zDi Þ þ

X

j2RDw
D
i ðz

D
j � zUj Þ ð1Þ

subject to:

SDv ¼ 0 ð2Þ

Dvmin � Dv � Dvmax ð3Þ

Dv � MzU � μ � M1 ð4Þ

Dv � MzU � μ ð5Þ

Dv þMzD � � ηþM1 ð6Þ

Dv þMzD � � η ð7Þ

Dv þMz0 � M1 ð8Þ

Dv � Mz0 � � M1 ð9Þ

z0

k þ zUk � þz
D
k0 ð10Þ

z0

k þ zDk � þz
U
k0 ð11Þ

Eqs (2) and (3) ensure that the flux difference Δv satisfy the flux balance equation while

staying within acceptable lower and upper bounds. The constrained MILP produces the opti-

mal binary vectors zU 2 Zn
and zD 2 Zn

that maximize the consistency and minimize the

inconsistency between the flux differences and the differential gene expressions. When zUi ¼ 1,

Δvi takes a positive value beyond the threshold μi, as specified by the constraints in Eqs (4) and

(5). When zDi ¼ 1, Δvi takes a negative value beyond a threshold ηi, as specified by Eqs (6) and

(7). Clearly, zUi and zDi cannot simultaneously be equal to 1. Meanwhile, the binary variable

z0 2 Zn is used to force certain user-selected reactions, if any, to have zero flux change value,

as specified by Eqs (8) and (9). Note that all reversible reactions in the GEM are written as two

separate irreversible reactions, whose indices are denoted by k and k0, the former for the for-

ward and the latter for the backward direction. For all half pairs of reversible reactions, Eqs

(10) and (11) ensure that the forward and reverse reactions are prevented to simultaneously

have non-zero values, which is done to reduce degeneracy of the flux change solution Δv.
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Finally, the constant M in Eqs (4)–(9) should be set to a large value (default = 105), following

the Big M method in linear programming [38].

The set of upregulated reactions RU and downregulated reactions RD are user-defined

inputs. More specifically, the sets RU and RD include indices of reactions with significant

increase and decrease in gene expression between the perturbed condition and the control,

respectively. The non-negative weighting coefficients wU
i 2 R and wD

j 2 R (default value = 1)

in the objective function allow users to prioritize certain reactions for consistency among

those in the sets RU and RD, respectively. For example, the reaction corresponding to a gene

deletion should be assigned a high wD
j to force the corresponding flux change to be negative.

The upper and lower bounds for the flux differences in Eq (3) are also user-defined parameters

that can be set based on experimental data (e.g., the difference of experimentally determined

biomass production or growth rates) or based on the flux bounds from each condition. For the

latter, given the lower and upper flux bounds for the i-th flux in the perturbed (vP
min;i 2 R and

vP
max;i 2 R, respectively) and the control condition (vC

min;i 2 R and vC
max;i 2 R, respectively), the

bounds for the flux difference can be set as follows:

Dvmin;i ¼ ðv
P
min;i � vC

max;iÞ ð12Þ

Dvmax;i ¼ ðv
P
max;i � vC

min;iÞ ð13Þ

Finally, the thresholds μi and ηi for the positive and negative flux differences, respectively,

are user-defined parameters. In the case studies, we used the same constant threshold value ε
(default = 0.1% of the largest flux bound magnitude in the two conditions). These thresholds

serve as a lower (upper) bound for which a positive (negative) flux difference is deemed to be

upregulated (downregulated).

Given the degrees of freedom in GEMs for Δv, many equivalent optimal solutions often

exist that give the same objective function value F� as specified in Eq (1). By assuming parsi-

mony for Δv—that is, Δv is minimal between the perturbed and control condition—a two-step

optimization procedure is implemented in ΔFBA. The first step is to maximize consistency

with gene expression changes as prescribed in Eqs (1)–(11) to determine the maximum objec-

tive function value, denoted byF�. The second step is to produce an L2 norm minimal solu-

tion for Δv, as follows:

minDv;zU ;zDkDvð z
U ; zDÞk2

2
ð14Þ

subject to the same constraints in Eqs (2)–(11) while achieving the same level of consistency

F�, implemented by the following additional constraint:

X

i2RUw
U
i ðz

U
i � zDi Þ þ

X

j2RDw
D
i ðz

D
j � zUj Þ ¼ F� ð15Þ

The L2 minimization is based on the premise that the flux differences should be small

between the conditions, which is similar to the method called Minimization of Metabolic

Adjustment (MOMA) [39]. An alternative to L2-norm minimization is L1-norm minimiza-

tion, which is analogous to maximizing sparsity of Δv. The L1-norm minimization was previ-

ously used in parsimonious FBA (pFBA) method [19], but such an approach often still leads to

multiple degenerate solutions. On the other hand, the L2-norm minimization will produce a

unique solution. However, the mixed integer quadratic optimization that is required to find

the minimum L2-norm solution may have high computational requirement.

PLOS COMPUTATIONAL BIOLOGY Predicting metabolic flux alterations using ΔFBA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009589 November 10, 2021 5 / 18

https://doi.org/10.1371/journal.pcbi.1009589


ΔFBA is available as MATLAB scripts and are compatible with the COBRA toolbox [34].

ΔFBA requires Gurobi optimizer (http://www.gurobi.com) as a pre-requisite. ΔFBA has been

tested on a Windows PC using a 6-core Intel Xeon (2146G) Processor with 16 GB RAM.

Gene-protein-reaction mapping

For mapping fold-change gene expression data to fold-change reaction expression, we utilized

the gene-protein-reaction (GPR) associations that are built into the GEM. These associations

do not follow a one-to-one relationship since metabolic enzymes include isozymes (multiple

enzymes mapping to the same reaction), promiscuous enzymes (a single enzyme participating

in multiple reactions), and enzyme complexes (multiple genes required for an enzyme). Here,

we used the Min/Max GPR rule [21,40,41]. The fold-change gene expression is first mapped to

fold-change protein/enzyme expression. When multiple genes are required to form an enzyme

complex, the fold-change enzyme expression is set to the minimum fold-change expression of

the participating genes. Otherwise, the fold-change enzyme expression is equal to the fold-

change gene expression. Then, the fold-change enzyme expression is mapped to the fold-

change reaction expression. Here, when isozymes are involved in a reaction, the fold-change

reaction expression is set to the maximum fold-change expression of the isoenzymes. Other-

wise, the fold-change reaction expression is equal to the fold-change enzyme expression.

Finally, based on the reaction expression, we prescribed the set of upregulated reactions RU

and the set of downregulated reactions RD based on the fold-change reaction expression.

Case studies: Data and implementation

The first case study involved the response of E. coli’s metabolism to genetic (single-gene dele-

tions) and environmental perturbations (dilution rates) performed by Ishii et al. [35]. The

study provided 13C-based flux data and RT-PCR mRNA abundances for the central carbon

metabolism, pentose phosphate pathway (PPP), and the tricarboxylic acid (TCA) cycle for

wild-type K12 E. coli culture in chemostat under different dilution rates (0.1, 0.2, 0.4, 0.5, and

0.7 hours−1) and for 24 single-gene perturbations along the glycolysis and PPP [35]. The global

transcriptional response was only captured for 5 of the 24 single-gene deletions (pgm, pgi,
gapC, zwf and rpe) and two of the 4 dilution conditions (0.5 and 0.7 hours−1). The differential

(fold-change) gene expression levels were computed with respect to the control condition that

was set to be wild-type K12 E. coli cultured at a dilution rate of 0.2 h-1. The differential (fold-

change) reaction expressions were subsequently evaluated based on the fold-change gene

expression using the GPR Max/Min rule in the COBRA toolbox (MATLAB) [40]. For samples

with only RT-PCR mRNA abundance data, the set of up- and downregulated reactions

included all reactions with fold-change reaction expressions higher than 1 and those with fold-

change lower than 1, respectively. In the additional analyses for samples with whole-genome

transcriptome data, the set of up- and downregulated reactions were taken from the top and

bottom 5th percentile of the differential reaction expressions. The differences of the measured

cell specific glucose uptake rates between perturbed and control experiments were used as con-

straints. ΔFBA was applied using the two-step optimization with the L2 norm minimization,

as described above.

The second case study came from a study of E. coli growth on 8 different carbon sources

performed by Gerosa et al. [36]. Unprocessed global transcriptomic data were obtained from

ArrayExpress (E-MTAB-3392), and differential expression analyses between every pair of car-

bon sources were evaluated using the Limma package in R [42]. We only included the set of

genes with significance fold-change expression at FDR< 0.05. As before, the fold-change reac-

tion expressions were computed based on fold-change in the global gene expression using the
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Max-Min GPR rule using COBRA toolbox [40]. The up- and downregulated set of reactions

were taken from the top and bottom 5th percentile of the differential reaction expressions. In

addition, cell culture data on specific growth rates were used to compute the bounds for flux

difference for biomass production rate. The uptake rates of the carbon source changes were

also incorporated as constraints. We implemented the two-step optimization of ΔFBA using

L2 norm minimization.

The third case study came from two studies of skeletal muscle tissue metabolism in type-2

diabetes (T2D) patients by van Tienen et al. [43] and Jin et al. [44]. The microarray gene

expression datasets were obtained from GEO (GSE19420 [43] and GSE25462 [44,45], respec-

tively) and the differential (fold-change) expression of genes for each dataset were computed

using the Limma package in R [42]. We only included the set of genes with significance fold-

change expression at FDR< 0.05. The fold-change reaction expressions were computed based

on the differential gene expression using the Max/Min GPR rule [40]. In the absence of addi-

tional constraints in the form of exchange fluxes or growth characteristics, we set the up- and

downregulated reactions from the top and bottom 25th percentile in differential reaction

expressions, rather than the 5th percentile threshold used in E. coli case studies above, so as to

incorporate more differentially expressed transcripts. We implemented an L1-norm minimi-

zation in the second step of ΔFBA to reduce computational complexity (time) due to the large

number of constraints associated with the differential reaction expressions.

Implementation of comparative methods

Among the comparative methods in this work, the method Relative Expression and Metabolo-

mic Integrations (REMI) was specifically developed for predicting individual flux distributions

of a pair of conditions (vP and vC) using multi-omics dataset, and thus more comparable to

ΔFBA. The toolbox was downloaded from https://github.com/EP-LCSB/remi. The differential

gene expressions in each case study were obtained as described above. The mapping from dif-

ferential gene expression to the corresponding reaction expressions were done using the pro-

cedure detailed in REMI [31]. Briefly, the authors followed the implementation of Fang et al.
[34] to translate gene expression ratios to obtain reaction expression ratios. When several

enzyme subunits are required for a reaction, a geometric mean of expression ratios is chosen

to represent the reaction ratio. In the case where multiple isozymes catalyze a reaction, the

arithmetic mean of the individual expression ratios of the isozymes is used for the reaction

ratio. The set of up- and down-regulated reactions RU and RD were taken from the computed

differential reaction expressions as in ΔFBA implementation. Unlike ΔFBA, REMI produces

solutions for the metabolic fluxes of perturbed vP and control condition vC. For comparison,

we evaluated the flux change predicted by REMI by taking the difference: Δv = vP − vC.

We also considered 8 additional FBA methods with transcriptome data integration, includ-

ing parsimonious FBA (pFBA) [19], GIMME [20], iMAT [21], MADE [22], E-Flux [23], Lee

et al. [24], RELATCH [25], and GX-FBA [26]. The implementation of each of these 8 methods

was described in a previous systematic comparison [27]. For performance evaluation, we again

evaluated the differences of flux predictions: Δv = vP − vC.

Performance evaluation

The agreement between the predicted flux changes Δv� and the ground truth 13C-based flux

difference ΔvM was assessed by using two accuracy metrics: uncentered Pearson correlation

coefficient and normalized root mean square error (NRMSE). The uncentered Pearson
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correlation coefficient ρ was computed as follows

r ¼
DvM � Dv�

kDvMk2kDv�k2

ð16Þ

Meanwhile, the NRMSE was according to the following equation—using tdStats package in R:

NRMSE ¼
1

DvMmax � DvM
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kDvM � Dv�k2

2

nM

s

ð17Þ

where nM is the number of measured fluxes. Besides the quantitative agreement in flux changes,

we also evaluated the qualitative agreement by comparing the signs of the flux changes between

experimental measurements and predictions. To this end, we discretized the measured and pre-

dicted flux changes into +1, 0, and −1, to describe upregulated, no change, and downregulated

reactions, respectively. The agreement in the direction of the flux changes was evaluated as the

number of correct sign predictions divided by the total number of fluxes.

Metabolic subsystem enrichment analysis

The flux differences obtained from applying ΔFBA were first filtered according to the direc-

tionality of their change. The significantly altered fluxes (|Δvi|> ε) were grouped based on the

subsystem to which the fluxes belong. A Fisher exact test (fisher.test function in the R-package)

was used in determining over-represented subsystems in upregulated (positive change) and

downregulated (negative change) fluxes. The statistical significance p-values were corrected

for multiple hypothesis testing using the p.adjust function in R.

Results

Escherichia coli response to genetic and environmental variations

Ishii et al. [35] studied the robustness of E. coli K12 metabolism in chemostat in response to

changes in dilution rates and to gene deletions. The study generated multi-omics data, includ-

ing transcriptomic, proteomic, metabolomic, and 13C metabolic fluxes, and demonstrated the

remarkable ability of E. coli to reroute its metabolic fluxes to maintain metabolic homeostasis in

response to environmental and genetic perturbations. But, only a small fraction of variation in

the measured flux ratios can be explained by the fold-change in reaction expressions, as indi-

cated by the low coefficient of determinations R2 (R2 = 0.088±0.059). The low agreement

between reaction expressions and metabolic fluxes suggests that metabolic fluxes are only

weakly controlled by the gene expression. The formulation of ΔFBA is driven by two main

assumptions: (1) first and foremost, that metabolic flux differences are balanced—an assump-

tion that follows directly from steady-state flux balances in the control and perturbed condi-

tions, and in addition (2) that the flux differences should be maximally consistent with the gene

expression changes. Note that ΔFBA allows for inconsistency between differential gene expres-

sion and flux difference—for example, the gene expression is downregulated, but the flux differ-

ence is positive—but such inconsistency is kept low through a constrained MILP optimization.

We applied ΔFBA using E. coli’s iJO1366 GEM to predict the metabolic flux shifts from the

control condition (wild-type K12 at 0.2 hour-1 dilution rate), caused by alterations in dilution

rates (0.1, 0.4, 0.5, and 0.7 hours−1) and by 24 single-gene deletions (galM, glk, pgm, pgi, pfkA,

pfkB, fbp, fbaB, gapC, gpmA, gpmB, pykA, pykF, ppsA, zwf, pgl, gnd, rpe, rpiA, rpiB, tktA, tktB,

talA, and talB), one condition at a time. For each single-gene deletion experiment, the

knocked-out reaction was included in the set RD and was assigned weighting wD
j ¼ 10, keeping
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the other weight coefficients to their default values of 1. However, we noted that using the

default wD
j ¼ 1 for the knocked-out reaction produced the same outcome as using wD

j ¼ 10 in

this case study. We compared the predicted flux differences using ΔFBA with the measured

differences of 46 metabolic fluxes along the central carbon metabolism by incorporating the

enzyme expression obtained from RT-PCR. Fig 1 depicts NRMSE, uncentered Pearson corre-

lations, and sign accuracy of the flux differences from ΔFBA, indicating a good agreement

between the prediction and the ground truth. The performance of ΔFBA is robust with respect

to the thresholds used in Eqs (4)–(9) (see S1 Text and S1 and S2 Figs) and to the cut-off for dif-

ferential gene expression in specifying the sets RU and RD (see S3 Fig). The results of ΔFBA

Fig 1. Comparison of the performance of ΔFBA and 9 comparative FBA methods, including REMI [31],

parsimonious FBA (pFBA) [19], GIMME [20], iMAT [21], MADE [22], E-Flux [23], Lee et al. [24], RELATCH

[25], and GX-FBA [26], in predicting E. coli metabolic response to environmental (dilution rates) and genetic

(single gene deletions) perturbations in the Ishii et al. [35] study. (A) Normalized Root Mean Square Error

(NRMSE) of the predicted flux differences; (B) Uncentered Pearson’s Correlation Coefficient (ρ); and (C) Sign

Accuracy (Sign Acc) between the predicted and measured flux differences. Statistical significance was done using two-

sided paired t-test.✶ indicates p-value< 0.05 and✶✶ indicates p-value< 0.01.

https://doi.org/10.1371/journal.pcbi.1009589.g001
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using the whole-genome gene expression profiles for a subset of perturbation experiments are

comparable with those using RT-PCR data (see S4 Fig). The prediction accuracy for individual

reactions is given in S5 Fig, demonstrating that metabolic reactions that form futile cycles,

including reactions along the glycolysis and citric acid cycle, were associated with higher pre-

diction errors. The difficulty in predicting metabolic fluxes in futile cycles is not surprising

since such cycles generate degeneracy in FBA [27].

We compared the prediction accuracy of flux differences by ΔFBA with REMI [31] and

eight other FBA methods: parsimonious FBA (pFBA) [19], GIMME [20], iMAT [21], MADE

[22], E-Flux [23], Lee et al. [24], RELATCH [25], and GX-FBA [26]. Except for pFBA, all of

these methods integrated gene expression data for the flux predictions. As illustrated in Fig 1,

ΔFBA outperforms the other methods in predicting the flux differences by having statistically

significantly lower NRMSE and higher Pearson correlations. Meanwhile, the sign accuracies

for all methods are comparable with each other. We noted that roughly 18% of the measured

flux differences are exactly 0, while methods generally do not produce any zero flux differ-

ences. Here, GIMME performed better than ΔFBA (and other methods) in sign accuracy while

having worse NRMSE and Pearson correlation, since the method is more readily able to pro-

duce zero flux differences than ΔFBA (e.g., when a reaction is removed from the metabolic net-

work model [20]).

Another study, carried out by Gerosa et al. [36], looked at how E. coli’s central carbon

metabolism adapts to 8 different carbon sources: acetate, fructose, galactose, glucose, glycerol,

gluconate, pyruvate and succinate. The study generated 13C metabolic flux, metabolite concen-

tration and microarray gene expression data from exponentially growing E. coli under each

carbon source. The study found that only a small subset of the numerous transcriptome

changes translates to notable shifts in the corresponding metabolic fluxes, indicating non-triv-

ial relationships between transcriptional regulations and metabolic fluxes. We applied ΔFBA

to predict flux changes between every pair of the carbon sources, treating one as the perturba-

tion and another as the control condition. Fig 2 describes the good agreement between the flux

difference predictions by ΔFBA with the measured differences of 34 metabolic fluxes between

any two carbon sources, specifically in terms of NRMSE (mean: 0.15), uncentered Pearson cor-

relation (mean: 0.61), and sign accuracy (mean: 0.66). The findings from Ishii et al. [35] and

Gerosa et al. [36] highlight the ability of ΔFBA in accurately predicting metabolic flux alter-

ations using transcriptomic data for both environmental (e.g., dilution rates, carbon sources)

and genetic perturbations.

Dysregulation of skeletal muscle metabolism in type-2 diabetes

In this case study, we looked at metabolic alterations of human muscle using the myocyte

GEM iMyocyte2419 [37] and gene expression datasets from two type-2 diabetes (T2D) studies,

one by van Tienen et al. [43] and another by Jin et al. [44]. The study by van Tienen et al. [43]

compared long term T2D patients with age-matched cohort, and reported the downregulation

of gene expression related to substrate transport into mitochondria, conversion of pyruvate

into acetyl-CoA, aspartate-malate shuttle in mitochondria, glycolysis, TCA cycle, and electron

transport chain. Similarly, Jin et al. [44] reported a significant enrichment of pathways

involved the oxidative phosphorylation among the downregulated genes in their T2D cohort

when compared to control. Jin et al. [44] further identified the transcription factor SRF and its

cofactor MKL1 among the top-ranking enriched gene sets with increased expression. But, the

correlation between the differential gene expressions in the two studies is only modest. [37]

We applied ΔFBA to predict the flux changes based on the differential gene expressions in

each of the two studies above (see Materials and methods). We grouped the reactions based on
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whether the predicted flux differences are positive or negative, denoted by up- and down-reac-

tions, respectively. We performed metabolic subsystem enrichment analysis using the subsys-

tems defined in myocyte specific GEM iMyocyte2419 [37] to identify over-represented

metabolic subsystems among the up- and down-reactions (see Materials and methods). As

summarized in Fig 3, the enrichment analysis of metabolic changes in the van Tienen et al.
study shows a significant over-representation of ß-oxidation and BCAA (branched-chain

amino acids) metabolism among the down-reactions, and of extracellular transport and lipid

metabolism among the up-reactions. The enrichment analysis of flux differences in the Jin

et al. study also indicates an over-representation of lipid metabolism among the up-reactions

in T2D patients, as well as an over-representation of ß-oxidation pathway among the down-

reactions (see Fig 3).

Furthermore, we evaluated the difference in the flux throughput for every metabolite irre-

spective of its compartmental location by computing the difference in the total production flux

of each metabolite. Metabolites with a large difference in the flux throughput are of particular

interest for disease biomarkers. In the following, we focused on metabolites that have a flux

throughput change above a threshold (|Δvi|> 1% of the largest flux bounds) and excluded

Fig 2. Prediction of metabolic flux changes in E. coli caused by changes in the carbon source using ΔFBA. The horizontal axis reports the reference carbon

source (control) and the vertical axis shows the altered (perturbed) carbon source. Uncentered Pearson’s Correlation Coefficient (ρ) is shown by the color of

the markers. NRMSE is represented by the size of the markers—the larger the markers, the smaller is the NRMSE. Finally, the directional (sign) accuracy of the

flux perturbation predictions is shown by the numbers inside the markers.

https://doi.org/10.1371/journal.pcbi.1009589.g002
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intermediary metabolites that participate in linear reaction sequences. Fig 4 shows the flux

throughput differences predicted by ΔFBA for various metabolites. Among the metabolites

with a large drop in the flux throughput in both studies are Coenzyme A (CoA), Acetyl-CoA

and AMP (Adenosine monophosphate), all of which have been previously identified as metab-

olite reporters of diabetes [37,46]. Other metabolic biomarkers that have been previously pro-

posed for T2D, such as repression of FAD (Flavin adenine dinucleotide), FADH2 and NADH

by van Tienen et al. study [43] and increased glycerol by Jin et al. study [44], are confirmed by

ΔFBA (see Fig 4). Väremo et al. [37] had identified these markers of T2D using gene- reaction

associations and consensus gene-set analysis in the GEM, iMyocyte2419. Besides the above

confirmatory observations, ΔFBA results of the two studies further suggest that arachidonate

and palmitate are candidate metabolic biomarkers for T2D, both of which have a large positive

flux throughput change in the two T2D studies. These metabolites are undetected by simple

gene-set analysis using GPR associations in the GEM, but have important roles in the progres-

sion and cause of T2D [47–49]. The results above showcase the ability of ΔFBA in elucidating

metabolic flux alterations in a complex human GEM and identifying key metabolites of inter-

est in human diseases.

Fig 3. Enriched metabolic subsystems (FDR<0.05) among the in T2D patients based on flux changes predicted using ΔFBA. The flux changes were

computed based on the transcriptome datasets from two T2D studies: van Tienen et al. [43] (GSE19420) and Jin et al. [44] (GSE25462). The statistical

significance of the over-representation is shown by the size of the markers—larger markers have smaller adjusted p-values—while the odds ratio is shown by

the color of the markers.

https://doi.org/10.1371/journal.pcbi.1009589.g003
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Discussions

GEMs and constraint-based modeling using FBA and the myriad FBA variants have proven to

be important enabling tools for establishing genotype-phenotype relationship [10,50,51]. The

increasing availability of omics data have driving the development of FBA-based strategies that

are able to use such data to improve the accuracy of predictions of intracellular metabolic

fluxes. In this work, we present a new FBA-based method, called ΔFBA, built for the purpose

of analyzing the metabolic alterations between two conditions given data on differential gene

expression. ΔFBA does not require the specification of the metabolic objective, and thus, elimi-

nates any potential pitfalls that are associated with an incorrect selection of this objective. Note

that ΔFBA does not generate the flux prediction for a given condition; rather, the method pro-

duces differences of metabolic fluxes between two conditions. Differential flux predictions are

indispensable in formulating hypothesis and in understanding the physiological response of

cells to changes in the environment. ΔFBA can be easily integrated and have been tested to

work with the widely popular COBRA toolbox [34].

We showed the applicability and performance of ΔFBA for predicting metabolic flux

changes in an array of experimental perturbations and in both simple prokaryotic E. coli and

complex multicellular human muscle cells. In comparison to other relevant FBA methods,

ΔFBA show a markedly better accuracy in prediction metabolic flux changes in E. coli. Further,

the application of ΔFBA to two T2D studies shed light on the rewiring of muscle metabolism

associated with type-2 diabetes that leads to the repression of ß-oxidation and activation of gly-

cerolphospholipids, pointing to increased lipid metabolism in the T2D patients. Interestingly,

serum metabolic profiling of T2D patients showed increased glycerophospholipids when com-

pared to healthy controls [52]. Besides, clinical and experimental studies have demonstrated

Fig 4. Alterations in metabolite flux throughput in T2D patients as predicted by ΔFBA.

https://doi.org/10.1371/journal.pcbi.1009589.g004
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the association between phospholipids and insulin resistance [53]. Furthermore, by looking at

the changes in the flux throughput of metabolites, the results of ΔFBA suggest two fatty acids,

arachidonate and palmitate, for candidate biomarkers of T2D.

There are several limitations of ΔFBA, the most obvious of which is that the method does

not produce flux predictions for individual conditions under comparison. If separate flux pre-

dictions for control and perturbed conditions are desired, ΔFBA can be applied synergistically

with another FBA method that is capable of predicting single-condition metabolic fluxes.

Many of such methods, such as GIMME [20] and iMAT [21], transform gene expression data

to a binary state (active/inactive, high/low) and produce metabolic flux prediction for a single

condition. But, as shown in Fig 1, pFBA often works as well, if not better, without using gene

expression data. When deciding the reference (control) condition, the more well-characterized

metabolic state (e.g., more experimental data, more obvious metabolic objective) should be

used to generate the reference flux distribution ΔFBA flux differences can be combined with

the reference flux values by simple algebra to evaluate metabolic fluxes of the other (perturbed)

condition. Such a strategy may be advantageous since once the metabolic flux distribution for

the baseline condition is accurately determined (and ideally experimentally validated), one can

use ΔFBA and differential gene expression datasets for various perturbation experiments to

generate accurate prediction for metabolic fluxes of the perturbed conditions. Note that for

many gene expression profiling technologies the relative (differential) expressions are often

more reliable and informative of the underlying cellular alterations than the absolute expres-

sion because of technical and biological considerations.

Finally, while in the formulation and the application of ΔFBA we considered only differen-

tial gene expression data, the method can also accommodate other omics dataset, such as pro-

teomics, by appropriate mapping of the data to changes in reaction expressions. Metabolomics

data can also be accommodated in ΔFBA via thermodynamics constraints, as done in REMI

[31], in which certain reactions can only proceed in one direction.

Supporting information

S1 Text. Threshold criteria for minimum flux change magnitudes.

(PDF)

S1 Fig. Comparison of ΔFBA predictions of E. coli metabolic response in Ishii et al. study

[35] using original (relaxed) thresholding in Equation (S1) and stringent thresholding

using fold-change reaction expression in Equations (S2)-(S3) (see S1 Text). (Left) Normal-

ized root mean square error (NRMSE), (Middle) uncentered Pearson’s Correlation Coefficient

(ρ), (Right) Sign accuracy (Sign Acc) between the predicted flux difference and the measured

flux change. The error bars show standard deviation across for 4 dilution rates (0.1, 0.4, 0.5,

and 0.7 hours−1) and 24 single-gene deletions (galM, glk, pgm, pgi, pfkA, pfkB, fbp, fbaB, gapC,

gpmA, gpmB, pykA, pykF, ppsA, zwf, pgl, gnd, rpe, rpiA, rpiB, tktA, tktB, talA, and talB). The

difference in performance is not statistically significant.

(TIF)

S2 Fig. Comparison of FBA performance for different ε. Accuracy of ΔFBA predictions of

E. coli metabolic shifts in response to environmental and genetic perturbations in the Ishii

et al. study [35]. The default ε is 0.1% of the largest flux in the metabolic model under growth

maximization and parsimony criteria. The error bars show standard deviation across flux dif-

ference predictions for 4 dilution rates and 24 single-gene deletions. The result indicates that

the performance of ΔFBA is relatively insensitive to ε between 0.01% and 1%.

(TIF)
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S3 Fig. Comparison of ΔFBA performance for different fold-change (FC) expression cut-

off for assigning up- and down-regulated reactions (the sets RU and RD). The default FC

cut-off is 1. The error bars show standard deviation across for 4 dilution rates and 24 single-

gene deletions in the Ishii et al. study [35]. The difference in performance is not statistically

significant (Mean NRMSE—FC cutoff of 1 = 0.14, FC cutoff of 2 = 0.13; Mean ρ—FC cutoff of

1 = 0.61, FC cutoff of 2 = 0.63; Mean sign accuracy—FC cutoff of 1 = 0.49, FC cutoff of

2 = 0.48).

(TIF)

S4 Fig. Comparison of ΔFBA performance in predicting E. coli metabolic shifts using

whole-genome transcriptome data versus using RT-PCR mRNA data. Directional (Sign

Accuracy) agreement and uncentered Pearson’s Correlation Coefficient (ρ) between the pre-

dicted and measured flux differences have little difference between the incorporation of the

two transcriptomic sources using ΔFBA (Mean NRMSE: whole-genome = 0.15,

RT-PCR = 0.16; Mean ρ: whole-genome = 0.57; RT-PCR = 0.54; Mean sign accuracy: whole-

genome = 0.53, RT-PCR = 0.53).

(TIF)

S5 Fig. Normalized prediction errors of flux differences by ΔFBA across 46 individual reac-

tions in E. coli central carbon metabolism in Ishii et al. study [35]. The NRMSE for the full

flux differences is shown in blue (leftmost box plot). The remaining box plots in red show the

distribution of the normalized error (NE) for each flux i: NEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDvMi � Dv

�
i Þ

2
p

DvMmax� Dv
M
min

, across 28 condi-

tions (4 dilution rates and 24 single-gene deletions).

(TIF)
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