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Abstract
Metabolic dysregulation in the hypoxic tumor microenvironment (TME) is considered as a hallmark of solid tumors, leading 
to changes in biosynthetic pathways favoring onset, survival and proliferation of malignant cells. Within the TME, hypoxic 
milieu favors metabolic reprogramming of tumor cells, which subsequently affects biological properties of tumor-infiltrating 
immune cells. T regulatory cells (Tregs), including both circulating and tissue-resident cells, are particularly susceptible to 
hypoxic metabolic signaling that can reprogram their biological and physicochemical properties. Furthermore, metabolic 
reprogramming modifies Tregs to utilize alternative substrates and undergo a plethora of metabolic events to meet their 
energy demands. Major impact of this metabolic reprogramming can result in differentiation, survival, excessive secretion 
of immunosuppressive cytokines and proliferation of Tregs within the TME, which in turn dampen anti-tumor immune 
responses. Studies on fine-tuning of Treg metabolism are challenging due to heterogenicity of tissue-resident Tregs and their 
dynamic functions. In this review, we highlight tumor intrinsic and extrinsic factors, which can influence Treg metabolism in 
the hypoxic TME. Moreover, we focus on metabolic reprogramming of Tregs that could unveil potential regulatory networks 
favoring tumorigenesis/progression, and provide novel insights, including inhibitors against acetyl-coA carboxylase 1 and 
transforming growth factor beta into targeting Treg metabolism for therapeutic benefits.
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Introduction

Cancers are polygenic diseases initiated by multiple onco-
genic factors that dysregulate the expression of tumor sup-
pressor genes and/or proto-oncogenes leading to malig-
nant progression [1]. The neoplastic tissue is comprised 
of heterogeneous population of tumor cells, in a milieu of 
immune (e.g., myeloid cells, lymphocytes, and natural-
killer cells), and non-immune cells (e.g., fibroblasts and 
endothelial cells) embedded in the extracellular matrix 

with a plethora of cytokines and chemokines, known as 
tumor microenvironment (TME) [2–4]. TME has dynamic 
attributes with pro- and anti-tumorigenic properties, which 
can also influence drug responses [5]. Tumor cells evade 
host-immunosurveillance by recruiting surplus of immu-
nosuppressive cells including T regulatory cells (Tregs) 
[6, 7] and myeloid-derived suppressive cells (MDSCs) 
[6], which suppress the proliferation of cytotoxic T cells 
(CTLs) and favor malignant progression [8]. Amongst 
these suppressive cells, Tregs are considered as the master-
regulatory cells, which not only secrete cytokines that pro-
mote onset and proliferation of malignancies, but also play 
indispensable roles in the induction of neo-angiogenesis 
and metastasis [9–12]. Accumulating evidence suggest 
that Treg infiltration was evident in vast majority of solid 
tumors including breast [7], colon [6], pancreatic [13] and 
ovarian cancer [9]. Tumors samples from advanced stages 
of cancer exhibit higher infiltration of Tregs, compared 
with samples obtained from early stages of cancer [14]. 
Moreover, meta-data analyses showed that higher Treg 
infiltration is negatively correlated with cytotoxic  CD8+ 
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T cell infiltration and that is associated with poor-disease 
prognosis [15]. Currently, it is believed that Treg infil-
tration favors tumor progression and dampens anti-tumor 
immune responses; thus, it is essential to understand the 
progression and functions of Tregs in the TME [16, 17].

Tumor cells adapt to multiple metabolic pro-
cesses including glycolysis, oxidative phosphorylation 
(OXPHOS) and fatty acid metabolism to obtain energy 
for their survival and progression in adverse tumor milieu 
[18]. Moreover, the differentiation of T cells within the 
TME is indirectly regulated by tumor-mediated metabo-
lites and favors tumor progression [19]. Within the TME, 
metabolic reprogramming of T cells is initiated by the acti-
vation of T cell receptor (TCR) signaling along with vari-
ous costimulatory molecules, resulting in the production 
of sufficient ATP to meet energy requirements for T cell 
proliferation and effector functions [20]. Interestingly, T 
cells isolated from the TME frequently exhibit exhaustive 
T cell markers and possess distinct metabolic signatures 
including reduction in the uptake of glucose and upregula-
tion of reactive oxygen species (ROS) [21]. These meta-
bolic defects could be circumvented and partially restored 
the activation of tumor-infiltrating  CD8+ T cells (TILs) 
through the adequate supplementation of pyruvate and 
neutralization of ROS [21]. These reports suggest that 
tumor metabolic environment could alter the regulation, 
function and tumor-antigen recognition of T cells, leading 
to inadequate anti-tumor responses.

It has been reported that accumulation of lactate and 
carbon dioxide could efficiently reprogram the metabolic 
potentials of tumor cells, including elevated nutrient 
uptake and glucose metabolism and favor the differentia-
tion of Tregs by inhibiting the infiltration of effector T 
cells within the TME [22, 23]. Moreover, hypoxic condi-
tions as a result of increased tumor growth and oxygen 
deprivation stabilize the expression of hypoxia‐inducible 
factor 1‐α (HIF1‐α), which in turn mediates the induction 
of FoxP3 expression and favors Treg stability [24, 25]. 
Therefore, comprehensive analyses of malignancy-induced 
metabolic/hypoxic regulation of T cells can improve cur-
rent immunotherapeutic modalities. Numerous studies 
have focused on the metabolic reprogramming of tumor 
cells and their influence over T cell function within the 
TME; however, limited data are available on the meta-
bolic-induced alterations in Tregs in the TME. This review 
highlights the metabolic reprogramming of physicochemi-
cal characteristics of Tregs, their function, differentiation 
and crosstalk within the TME. Additionally, we focus on 
the potential metabolic pathways of Tregs within the TME, 
which may be targeted for improvement of prognosis and 
development of novel therapeutic strategies.

Metabolism in the tumor microenvironment

Tumor cells are characterized by their competence to 
adapt with altering environmental cues by exploiting 
various nutrients to uphold their necessitating anabolic 
requirements [3]. This sustained energy demand is accom-
plished by adequate supply of nutrients and oxygen via 
tumor vasculature [26]. Consequently, these extracellular 
nutrients are indispensable for cancer cells to meet their 
high-energy demand during rapid, uncontrolled prolifera-
tion [26]. Unlike normal cells, malignant cells have higher 
metabolic plasticity, which could reshape the environment 
even in nutrient-deprived conditions per se [27]. This plas-
ticity has profound influence on tumor differentiation and 
gene expression within the TME [27]. In this context, Pav-
lova and colleagues classified tumor-associated metabolic 
modifications into six groups: (1) deregulation in glucose 
and amino acid metabolism, (2) altered nutrient uptake, 
(3) utilization of intermediates from citric acid cycle (TCA 
cycle)/glycolysis for the biosynthesis of nicotinamide 
adenine dinucleotide phosphate (NADPH), (4) increased 
nitrogen requirement, (5) variations in the regulation of 
metabolite-dependent gene expression and (6) interactions 
between metabolic pathways within the TME [27].

It has been reported that the highly proliferating can-
cer cells modify the metabolic components of the TME. 
For instance, malignant cells take up higher amount of 
glucose leading to the biosynthesis of large amount of 
lactate, which could influence many cell populations 
within the TME [28]. Higher accumulation of lactate cre-
ates an immune-subversive milieu by reducing dendritic 
and T cell activation and migration of tumor-associated 
macrophages/monocytes [28, 29]. Moreover, the excess 
accumulation of lactate polarizes resident macrophages 
to highly activated/ immunosuppressive M2 state and pro-
motes angiogenesis [30, 31]. Excess levels of lactate also 
favor the biosynthesis of hyaluronic acid by fibroblasts, 
contributing to higher tumor invasiveness [32].

Hypoxia-inducible factor 1-alpha (HIF-1α) is the key 
transcriptional factor of hypoxic cells, a hallmark of the 
TME, and is a downstream target of glucose transporter-1 
(GLUT-1) [33]. During hypoxic conditions, the higher 
glucose uptake by cancer cells could upregulate the sta-
bility of HIF-1α, which in turn leads to the attenuation of 
anti-tumor immune responses [34]. In HIF-1α-knocked-
out murine models, the anti-tumor immune responses of 
 CD8+ TILs improve through the activation of peroxisome-
activated receptor α (PPARα) signaling and also elevated 
metabolism of fatty acids [35]. HIF-1α promotes the 
migration of Tregs in the TME through the upregulation of 
glycolysis and fatty acid oxidation (FAO) within the TME 
[36]. Indeed, HIF-1α-deficient Tregs exhibit reduction in 
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glycolytic-driven Treg migration and oxidation of fatty 
acid-driven immunosuppression, which in turn upregulates 
anti-tumor immune responses of  CD8+ TILs [36].

Glucose metabolism is the key energy source of T cells 
for their polarization toward tumor antigen-specific effector 
T cells. Within the TME, the scarcity of glucose for T cells 
affects their differentiation to effector T cells. Moreover, a 
low-glucose milieu could diminish glycolysis of T cells by 
decreasing serine/threonine-protein kinase (AKT) signaling 
and inducing the apoptosis of TILs through the upregulation 
of pro-apoptotic proteins [20]. This metabolic microenviron-
ment may also promote the polarization of naïve  CD4+ TILs 
to peripherally induced Tregs [37]. The stimulation of Treg 
differentiation and their suppressive characteristics is medi-
ated by the metabolic intermediates including kynurenine 
and tryptophan [38]. In solid tumors, the overexpression of 
tryptophan-degrading enzymes, including indoleamine-2, 
3-dioxygenase (IDO1) and tryptophan-2, 3-dioxygenase 
(TDO2), catalyzes tryptophan to its derivative, kynurenine 
[38]. This tryptophan depletion is associated with the apop-
tosis of effector T cells, within the TME [39]. Additionally, 
kynurenine promotes the migratory and immunosuppressive 
characteristics of Tregs through aryl hydrocarbon receptor 
(AhR)-dependent manner [40]. The overall effect of metabo-
lism in the TME is depicted in Fig. 1a.

Tregs in the tumor microenvironment

Tregs are key immunosuppressive players, which impede 
anti-tumor immune responses in the TME [41]. Within the 
TME, there is cross-talk among Treg and other immune 
cells, stromal cells, and tumor cells to maintain hypoxic, 
pro-angiogenic and highly immunosuppressive milieu [4, 
8]. Tumor-infiltrating Tregs primarily comprise terminally 
differentiated and highly suppressive FoxP3high effector 
Tregs [42]. However, Treg heterogeneity impacts disease 
outcome across various cancers. Accumulation of  FoxP3+ 
Tregs in the TME is concomitant with higher Treg to effec-
tor T cell (Teff) ratios, and lower levels of naïve T cells and 
is associated with worse disease outcomes in various malig-
nancies [43]. However, elevated levels of tumor-infiltrating 
Tregs have also been associated with good prognosis in cer-
tain cancers such as colorectal (CRC) and gastrointestinal 
cancers [8]. This could be due to Tregs capacity to sup-
press inflammation in initial stages, associated with disease 
progression of these cancers. Moreover, this inconsistency 
can also be attributed to the infiltration of non-suppressive, 
 CD45RA–FoxP3Low non-Tregs [44]. Importantly, CRC 
patients with high levels of effector Tregs exhibited poorer 
prognosis, while a better prognosis was reported in CRC 
patients with predominantly higher levels of non-Tregs, who 

also showed high mRNA levels of TGF-β, TNF-α and IL-12 
[45].

Tregs are recruited in the TME by various chemokines 
including CCR4/8/10 and CCL9/10/11 [8, 46], and expand 
in the TME in response to various tumor-derived factors 
[8]. High levels of IL-10, TGF-β and adenosine in the TME 
promote expansion of natural/thymic Tregs (nTregs) and 
generation of peripheral Tregs (pTregs) [47, 48]. However, 
it remains unclear whether Tregs in the TME are trafficked 
to tumors or are expanded from tissue-resident Tregs [49]. 
In pancreatic cancer, it has been reported that Tregs are the 
key source of TGF-β, while their depletion could reprogram 
fibroblast populations and lead to tumor progression [50]. 
Moreover, depletion of Tregs leads to upregulation of CCL3, 
CCL6 and CCL8, and recruitment of immunosuppressive 
myeloid cells into the TME to favor tumor progression [50]. 
Furthermore, analyses of TCR repertoire of circulating, tis-
sue-resident and tumor-infiltrating Tregs showed slight over-
lap with some distinct features in tumor-infiltrating Tregs 
[51]. Compared with circulation or lymph nodes, tumor-
infiltrating  FoxP3high effector Tregs are highly activated and 
express high levels of activation molecules including CD25, 
ICOS, PD-1, CTLA-4, OX40, GITR and TIGIT [41, 52].

Tumor-infiltrating Tregs suppress proliferation of other 
effector T cell populations via contact-dependent mecha-
nisms and contact-independent mechanism, primarily 
through IL-10 and TGF-β secretion [4]. IL-10 and TGF-β 
secretion suppresses IFNγ and IL-2, which are required for 
T cell activation and survival within the TME [53, 54]. In 
addition, secretion of IL-35 by Tregs leads to inhibition of 
T cell proliferation within the TME [55]. CTLA-4 presents 
as a homolog of CD28 and is constitutively expressed on 
Tregs [56]. Interactions between CTLA-4 and CD80/86 
on APCs prevent costimulatory signals from CD28 for T 
cell activation, leading to inhibition of proliferation and 
cytokine release of effector T cells within the TME [57]. 
In addition, LAG-3 expression on tumor-infiltrating Tregs 
and interactions with MHC class II lead to impaired DC 
maturation and inhibition of proliferation of effector T cell 
populations [58]. MHC class II interactions are also ham-
pered by increased expression of neuoropilin-1(NRP1) on 
Tregs, which enhance the suppressive activity and block 
interactions between APCs and effector T cells via endur-
ing interactions between DCs and Tregs [59, 60]. Lastly, 
granzyme and perforin expression by tumor resident Tregs 
induces cytotoxic T cell and NK cell death within the TME 
in murine models [61].

In addition to immune functions of Tregs in the TME, 
their potential non-immunologic roles to support tumor 
progression include supporting angiogenesis, tumor 
growth/proliferation and transition to metastasis [62–65]. 
Treg levels in the TME have been correlated with high 
levels of VEGF [66] and promote angiogenesis by 
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suppression of effector T cells and release of TNFα and 
IFNγ along with other chemokines such as CXCL9, 10 and 
11 [62]. Moreover, murine cancer models have shown that 
depletion of  CD25+ Tregs enhanced anti-tumor responses, 
which correlated with reduction in tumor volume [67]. 

Other groups have revealed plausible pathways affected by 
tumor-infiltrating Tregs to support invasion and metastasis 
in different cancers. For instance, Tan et al. showed that 
Tregs promote invasion and metastasis in mammary cells 
via activation of receptor activator of nuclear factor-κB 
ligand (RANKL) signaling [11], while, Shi et al. showed 
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that tumor-infiltrating Tregs promote invasion of hepato-
cellular carcinoma via epithelial–mesenchymal transition 
induced by TGF-β1 secretion [68].

Because of the multi-faceted roles in tumor develop-
ment and progression across different cancers, tumor-
infiltrating Tregs are key targets for multiple therapeutic 
strategies aimed to counter immunosuppression and pro-
mote immune stimulation for clinical benefits.

Metabolic pathways affecting Treg function 
in the hypoxic TME

The TME is a dynamic niche orchestrated by heterogene-
ous metabolic activity of cells with variable vascularity 
that generate regions of gradient hypoxia. The metabolic 
features include glycolysis, oxidative stress, OXPHOS, 
FAO, Warburg effect and amino acid metabolism which 
can influence the behavior and function of Tregs.

Treg survival in TME

The metabolic adaptation in TME favor Treg survival in a 
hostile environment. Recent studies have shown that Tregs 
exhibit low membrane expression of glucose transporter 

GLUT-1 along with increased lipid oxidation activ-
ity when compared to other effector T cell subsets [37]. 
Tregs and Teffs exhibit distinct metabolic patterns; the 
former require glycolysis, and the latter require lipid oxi-
dation for their survival and function [37]. Indeed, Tregs 
favorably rely on FAO and OXPHOS, especially in low-
glucose, high lactate environments with increased NAD/
NADH ratios [37]. On the other hand, the pharmacological 
inhibition of AMPK/lipid metabolism using Etomoxir can 
reduce in vitro generation of Tregs [37]. This metabolic 
preference is regulated by the expression of Treg transcrip-
tion factor FoxP3 that further dampens glycolytic enzymes 
and Myc expression [69].

Treg migration into TME

Several metabolic pathways influence Treg migration into 
the TME. Signaling through CD28 and CTLA-4 ligands 
has been reported to enhance the migration of Tregs via 
activation of PI3K-mTORC2 pathway that upregulates glu-
cokinase (GCK) expression, underlying the significance of 
glycolysis in Treg migratory phenotype in murine models 
[70]. Furthermore, in vitro migration assays of glioma-
produced HIF-1α KO Tregs showed an inhibited migratory 
response to CCL22 chemotactic agent in GL-261 murine 
glioblastoma model [71]. On the other hand, high expres-
sion levels of amino acid-degrading enzymes including 
IDO and arginase 1 have been associated with increased 
Treg infiltration in CRC [72], hepatocellular carcinoma 
(HCC) [73] and uterine cervical cancer [74]. In concord-
ance with these data, suppression of mTOR decreased 
IDO1 expression and activity, leading to decreased recruit-
ment of Tregs in the TME in a murine model of medul-
loblastoma [75].

Treg expansion in TME

Increased frequency of Tregs in the TME has been associ-
ated with a higher proliferation rate of these cells in MCA38 
CRC murine model. In this context, signaling via OX40/
OX40L has been shown to upregulate SCD1, PMVK and 
PPARγ, culminating in increased synthesis of monounsatu-
rated fatty acids and cholesterol that are essential for Treg 
expansion [76]. Similarly, IDO1-kynurenine pathway stimu-
lates expansion of Tregs in a rapamycin-dependent manner 
[75].

Treg effector functions in TME

Several metabolic cues have been shown to influence effec-
tor Treg functionality. In this regard, hypoxic environments 

Fig. 1  Metabolic effects within the TME (a). Tumor cells consume 
major fraction of glucose and accelerate glycolysis, leading to the 
accumulation of lactate. The secreted lactate could influence cell 
types within the TME by activating multiple processes for the sur-
vival and proliferation of tumor cells. Higher glycolysis rate within 
the TME leads to the accumulation of lactate and induces various cel-
lular and molecular events, including the upregulation of hyaluronic 
acid within the TME and favors tumor migration (1); activation of 
non-immunosuppressive macrophages (M1) to immunosuppressive 
M2 (2); upregulation of HIF-1α on Tregs could inhibit OXPHOS and 
PPARα signaling and favors the migration of Tregs into the TME 
(3); inhibition of AKT signaling network and induce apoptosis of 
activated T cells (4); promotion of angiogenesis and metastasis (5); 
polarization of conventional T cells to pTregs through the upregula-
tion of TGF-β, HIF-1α, IL-10 and inhibition of AKT/mTOR path-
way (6). Generation of pTregs within the TME (b). In hypoxic TME, 
HIF-1 binds to the hypoxia inducible response element (HRE) of 
tumor cells and activates the secretion of TGF-β. The secreted TGF-β 
also favors HIF-1 expression by inhibiting HIF-1 degradation enzyme 
PDH2. Moreover, the secreted TGF-β binds to its receptor on pTregs 
and triggers downstream pathways, including the phosphorylation 
of SMAD3, binding of phospho-SMAD3 to SMAD4, recruitment 
of CBP/p300 and binding of these complex on FoxP3 promoter to 
induce the expression of FoxP3. In addition, PD-L1 is also the down-
stream target of HIF-1, which could bind to PD-1 on T cells. PD-1/
PD-L1 interaction could activate the dephosphorylation of PI3K and 
block AKT/mTOR pathway. This signaling network helps to stabilize 
the expression of FOXP3. Moreover, tumor-derived exosomes could 
activate JAK/STAT3 pathway and favors the upregulation of IL-10. 
Altogether, hypoxic TME favors the polarization of conventional T 
cells to pTregs via multiple signaling cascades

◂
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enhance Treg effector function. As demonstrated in a mouse 
glioma model, HIF-1α stabilization in Tregs leads to a shift 
toward FAO and glutaminolysis supported by an upregula-
tion of lipid transporters CD36, SLC27A1 and SLC27A4 
and decreased glucose oxidation [36]. This increased uptake 
of lipid is pivotal to suppressive function of Tregs, demon-
strated by reduced proliferation of  CD8+ T cells in HIF-1α 
KO Tregs [36], whereas treatment with Etomoxir, a mito-
chondrial inhibitor, depleted  CD4+Foxp3+ T cells population 
and enhanced antitumor immunity [36]. Genes of pyruvate 
dehydrogenase kinase 1 (PDK1) and lactate dehydrogenase 
A (LDHA) were upregulated in Tregs from WT mice but not 
in HIF-1α KO mice [36]. Recent studies have also shown 
that elevated glucose metabolism alters Treg functionality. In 
a study of human tumors, glycolytic genes including Hexoki-
nase 2 (Hk2), glyceraldehyde 3-phosphate dehydrogenase 
(Gapdh), and Alpha-enolase (Eno1) had higher expression 
levels in Tregs [76]. In another study, TLR8 signaling selec-
tively inhibits glucose uptake and glycolysis in human Tregs 
via a downregulation of mTORC1-HIF1a signaling, result-
ing in reversal of Treg suppression [77]. Indeed, treatment 
with inhibitors for glucose transporters, glycolysis, choles-
terol as well as isoprenoid lipid synthesis have blocked Treg 
suppressive functions including proliferation of responder 
T cells and increased number of senescent  CD4+ T cell 
population [77]. In addition, adoptive transfer of T cells in 
a murine model of melanoma enhanced TLR8-dependent 
tumor regression [77]. However, in B16-F10 melanoma 
model, deletion of mTORC1 showed reduction in glycoly-
sis and TCA cycle metabolism, while mTORC1-deficient 
Tregs decreased the expression of suppressive receptors such 
as CTLA4, ICOS and PD‐1 [78]. Transcriptomic analyses 
of Tregs isolated from human melanomas demonstrated an 
increased expression of mitochondrial arginase 2 (ARG2) 
enzyme and enhanced Treg suppressive capacity [79].

Additionally, several tumor models including mice with 
ID8 ovarian cancer, MC38 colon cancer, and B16 melanoma 
have revealed altered Treg biological behavior characterized 
by substantial Treg apoptosis and potent immunosuppressive 
phenotype along with efficient inhibition of IL-2 production 
in effector T cells. Interestingly Treg immunosuppression 
was not mediated via typical suppressive pathways including 
CTLA-4, TGF-β, IL-35, or IL-10; instead, it was induced 
through adenosine production from ATP via CD39 and 
CD73 signaling [80]. These apoptotic Tregs exhibited an 
increased susceptibility to reactive oxygen species, which 
highlights the role of oxidative stress in TME and Treg func-
tion [80]. However, selective inhibition of fatty acid-binding 
protein (FABP5) in ex vivo human natural Tregs triggers 
mitochondrial DNA release accompanied by disruption in 
lipid metabolism and oxidative phosphorylation, promoting 
IL-10-mediated Treg suppressive function [81]. Intriguingly, 
impairment in electron transport chain (ETC) Complex I and 

NADH oxidation decreases Treg function [69]. Similarly, 
loss of mitochondrial complex III lead to decreased expres-
sion of genes related to Treg function and suppressive capac-
ity but not proliferation or survival. While RISP (an essential 
subunit of mitochondrial complex III) KO  CD25+  Foxp3+ 
mice have shown inhibition of melanoma growth mediated 
by Treg loss of function under the influence of ten-eleven 
translocation (TET) family of DNA demethylases [82]. In 
particular, DNA methylation, 2-hydroxyglutarate (2-HG) 
and succinate negatively regulated the expression of genes 
involved in Treg functionality [82].

Other metabolic cues induce an immunosuppressive phe-
notype in CNS tumors. The constitutive PPAR expression 
demonstrated increased tumor burden accompanied by an 
expansion of Treg repertoire in murine models of astro-
cytoma and oligoastrocytoma [83]. Interestingly, Tregs 
captured fatty acids threefold higher than  CD8+ T cells in 
intracranial murine astrocytoma [84]. In a B16 melanoma 
model, neuropilin-1 (Nrp1) induced intra-tumoral Treg sta-
bility by enhancing quiescence/survival genes, while inhib-
iting transcriptomic signatures that promote differentiation 
[85].

Metabolic pathways involved 
in heterogeneity of Tregs in the TME

Tregs exhibit distinct tissue-specific heterogeneity in 
inflammatory conditions and cancer. The reason behind 
this heterogeneity could be the association of Tregs with 
tissue-specific transcription factors including PPARγ and 
GATA3 [86]. Tumor-associated Tregs are often seen at 
the effector state with distinct metabolic signatures from 
lymphoid resident Tregs [86]. Cancer cells modify numer-
ous environmental factors and nutrients within the TME, 
which affects the differentiation and function of tissue-
resident Tregs. It has been reported that a sub-population 
of Tregs in the brain TME express higher level of fatty 
acid transporters including SLC27A1 and CD36, which 
favors immunosuppression [36]. However, the attenua-
tion of fatty acid intake inhibits the immunosuppressive 
characteristics of Tregs in the brain TME [36]. Under 
physiological conditions, the major energy source of tis-
sue-resident Tregs for their proliferation and function is 
mediated by mTOR-dependent lipogenesis [87]. Likewise, 
in the CRC TME, Tregs utilize fatty acid metabolism as a 
key energy resource to complement glucose metabolism, 
leading to the accumulation of lipid-intermediates within 
the TME [76]. It has been reported that  OX40+ Tregs 
were accumulated in the visceral adipose tissue (VAT) of 
obese CRC patients, proposing that VAT might act as a 
reservoir for  OX40+Tregs, which subsequently could be 
migrated to the TME via chemotaxis [88]. A study on 
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plasmacytoid dendritic cells (pDCs) from breast cancer 
patients showed that excessive accumulation of lactate in 
the TME enhances tryptophan metabolism and kynurenine 
secretion by pDCs, leading to the induction of  FoxP3+ 
Tregs [89].

It has been reported that Tregs in the CRC TME have 
Th17 like phenotype, expressing RORγt with elevated 
IL-17 release [90, 91]. These RORγt+FoxP3+ Tregs have 
more stable and immunosuppressive characteristics, 
compared with RORγt–FoxP3+ Tregs [91]. Subsequently, 
studies showed that numerous intermediates from choles-
terol metabolism including 24-dehydrocholesterol reduc-
tase, 7-dehydrocholesterol reductase act as an agonist for 
RORγt+ in inflammatory conditions [92]. These reports 
suggest that  Th17+ effector Tregs found in the CRC TME 
could be regulated by cholesterol biosynthesis and accu-
mulation of lipid-intermediates. Likewise, highly acti-
vated and proliferative Tregs in breast, colorectal, lung 
and melanoma TME express higher level of CCR8 and 
is associated with poor survival [51]. Additionally, it has 
been reported that the tissue-resident Tregs require higher 
lipid uptake for their function and survival [93].

Accumulating studies demonstrate the cytotoxic proper-
ties of circulating and in vitro generated γδ T cells (γδTc), 
while the functional characteristics of tumor-infiltrating 
γδTc vary [94, 95]. As mentioned in previous sections, 
the metabolic microenvironment of the tumor is differ-
ent with the high supplement of TGF-β1 and IL-10 [4]. 
This milieu might favor tumor-infiltrating γδTc to acquire 
certain suppressive characteristics and termed as “γδ T 
regulatory cells (γδ Tregs)”. It has been reported that two 
subpopulations of γδTc (Vδ1Tc and Vδ2Tc) have suppres-
sive characteristics with induced FoxP3 expression [96]. 
However, in renal carcinoma, it has been reported that 
the expression of FoxP3 was higher in tumor-infiltrating 
Vδ1Tc, compared with Vδ2Tc [97]. Additionally, the per-
centage of  FoxP3+γδTc is inversely correlated with  CD8+ 
TILs, confirming the anti-tumor immunosuppressive role 
for γδTc and poor clinical outcome [98]. Reports suggest 
that accumulation of γδTc in the TME could be due to the 
elevated metabolite flux of the mevalonate pathway inter-
mediates [99, 100]. Moreover, isopentenyl diphosphate 
(IPP), a metabolic intermediate of mevalonate pathway, 
binds to butyrophilin 3A1 (BTN3A1) and activates γδTc 
[101]. Moreover, IPP-stimulated Vδ2Tc in the presence 
of exogenous TGF-β1 and IL-15 could induce the expres-
sion of FoxP3 [102]. Altogether, these reports suggest that 
tumor metabolic milieu could favor the heterogeneity of 
Tregs, and dampen anti-tumor immune responses.

Metabolic regulations behind the induction 
of Tregs in the hypoxic TME

Within the TME, pTregs are generated from naïve  CD4+ T 
cells in response to tumor antigens and other stimulatory 
networks [103]. These induced Tregs have a profound sup-
pressive function alike nTregs [65]. Moreover, studies on 
tumor antigen-specific Tregs demonstrated that preferen-
tial accumulation of pTregs is induced by tumor antigens 
within the TME could potentially suppress therapeutic 
vaccinations [103, 104].

Apart from tumor antigens, TME plays an indispensable 
role to support the generation and accumulation of pTregs. 
TGF-β, which favors pTregs generation, is involved in 
the downstream network of HIF-1α and was upregulated 
in hypoxic microenvironment [105]. The expression of 
TGF-β and HIF-1α favors each other; HIF-1 promotes the 
expression of TGF-β in  CD4+ T cells, and TGF-β attenu-
ates the expression of HIF-1 degrading enzyme prolyl 
hydroxylase domain 2 (PHD2) and indirectly favors the 
stability of HIF-1 (Fig. 1b) [105, 106]. A hypoxic micro-
environment not only promotes the expression of TGF-β 
in  CD4+ T cells, but also their internalization into the 
cytoplasm. In cytoplasm, TGF-β binds to its receptor and 
triggers downstream pathways including phosphoryla-
tion of SMAD3, binding of phospho-SMAD3 to SMAD4, 
recruitment of CBP/p300 and binding of these complex 
on FoxP3 promoter to induce the expression of FoxP3 
(Fig. 1b) [107]. Apart from TGF-β, PD-L1 is also a down-
stream target of HIF-1α. In a hypoxic microenvironment, 
the expression of PD-L1 on tumor cells was upregulated 
by HIF-1α and augments their binding with its receptor, 
PD-1, on T cells [108, 109]. The PD-1/PD-L1 interaction 
could dephosphorylate PI3K and attenuate the activation 
of AKT/mTOR pathway, thereby promoting the expres-
sion of FoxP3 (Fig. 1b) [108, 109]. Additionally, tumor-
derived exosome-mediated release of IL-10 will activate 
JAK/STAT-3 pathway and stabilizes FoxP3 expression 
and differentiation of pTregs (Fig. 1b) [110]. Moreover, 
tumor-derived exosomes not only release IL-10, but also 
upregulate microRNA-214 (miR-214) [111]. miR-214 
enters into T cells through endocytosis and attenuates 
PTEN pathway and activates PI3K/AKT signaling [111]. 
These signaling networks activate cycle-associated tran-
scription factor E2F and augment proliferation of nTregs 
[112]. On the other side, downregulation of PTEN could 
deplete the expression of CD25 leading to the accumula-
tion of  FoxP3+CD25– pTregs [113].

It has been reported that TGF-β-induced Tregs express 
reduced level of GLUT-1 and have lower glycolysis and 
higher oxidative phosphorylation in the TME [76]. More-
over, the reduction in glycolysis could dampen mTOR 
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signaling and favor the generation of pTregs. The switch 
between glycolysis to oxidative phosphorylation is consid-
ered as a key metabolic checkpoint for pTreg generation in 
the TME [114]. In the TME, HIF-1α-dependent transcrip-
tional network facilitates glucose metabolism, which deter-
mines the polarization of T cell choice between pTregs 
and Th17; Th17 polarization requires higher glycolysis 
but not for pTregs [115]. Likewise, acetyl-coA carboxylase 
1 (ACC1), a major enzyme in fatty acid anabolism, also 
determines the fate of Th17 and Treg polarization. Inhibi-
tion of ACC1 favors pTregs, while activation favors Th17 
differentiation [116, 117]. Unlike pTregs, nTregs persist in 
distinct tumor metabolic environment. Highly proliferative 
and immunosuppressive nTregs require mTOR activation 
and higher glycolysis and fatty acid metabolism for their 
survival [118, 119]. In the tumor milieu, glucose-deprived 
condition favors more of pTregs than nTregs in order to 
balance the percentage of Tregs within the TME [103].

Factors affecting the Treg metabolism

Vitamins

Vitamins, including A, B, C and D, play important regu-
latory roles, which affect different metabolic pathways, 
modulate gene transcription and immunological responses 
[120]. Vitamin A metabolite, retinoic acid (RA), produced 
by specific subsets of dendritic cells (DCs) can regulate 
FoxP3 expression via direct or indirect means [121–123]. 
RA can directly promote FoxP3 expression by increasing 
histone methylation and acetylation of the conserved non-
coding DNA sequence (CNS) at the FoxP3 gene locus and 
promoter region, and by triggering the activation of extra-
cellular-related kinase (ERK) signaling [122]. Through 
indirect means, RA supports the stability of FoxP3 expres-
sion [121] and promotes Treg survival and expansion via 
the activation of IL-2 signaling, leading to the conver-
sion of TGF-β-mediated  CD4+CD25+FoxP3+ Tregs from 
 CD4+CD25–FoxP3– T cells [124, 125].

Other vitamins such as C and D have also been implicated 
in the modulation of FoxP3 expression. Studies on induced 
Tregs (iTregs) demonstrated the importance of vitamin C in 
stabilizing FoxP3 expression via the induction of the TET-
mediated demethylation of CNS2 region, which in turn 
activates FoxP3 gene transcription [126, 127]. TET family 
proteins are enzymes, which facilitate DNA demethylation 
leading to the activation of gene transcription [128]. Studies 
have shown that deletion of both TET2 and TET3 genes is 
sufficient to disrupt the stability of FoxP3 expression and 
that deletion of TET2 gene in Tregs counteracts the effect 
of vitamin C and diminishes the suppressive activity of 
Tregs [126, 127, 129]. In an allogeneic skin transplantation 

model, vitamin C-treated allogenic iTregs exhibited a high 
suppressive property with increased expression of Treg gene 
signature and a stable expression of FoxP3 induced by the 
TET-mediated demethylation [130].

Vitamin D3 metabolites, 25-dihydroxyvitamin D3 
[25(OH)VD3] and the active form 1,25(OH)2VD3 are also 
known to induce the expression of FoxP3 in  CD4+ T cells 
upon the stimulation of TCR and IL-2 signaling [131, 132]. 
Jeffery et al. demonstrated that stimulating  CD4+CD25– T 
cells with 1,25(OH)2VD3 diminished the production of 
proinflammatory cytokines (IFNγ, IL-17 and IL-21), and in 
cooperation with IL-2 significantly upregulated the levels 
of CTLA-4 and FoxP3 [131]. Indeed, vitamin D response 
element (VDRE) has been found in the intronic CNS region 
of the human FoxP3 gene, suggesting that this region could 
serve as a functional enhancer for the induction of FoxP3 
gene expression [133]. However, the exact mechanisms by 
which VDRE transcriptionally regulates FoxP3 gene remain 
undetermined. Data from clinical trials supported the effi-
cacy of vitamin D in promoting the expansion of peripheral 
Tregs in patients with inflammatory or autoimmune condi-
tions [134], suggesting that targeting vitamin D in Tregs 
could offer a therapeutic efficacy in cancer patients.

Vitamin B3 is another vitamin which is known to regulate 
the generation of Tregs present in the colon and to maintain 
colonic immune tolerance [135, 136]. Additionally, niacin, 
a form of Vitamin B3, triggers anti-inflammatory signals 
through G protein-coupled receptor (GPR) 109a, leading 
to expression of RA synthetases in colon macrophages and 
DCs, which in turn stimulate Treg differentiation [135].

Metabolites

Metabolites generated from amino acid catabolism can posi-
tively influence Treg induction and function. The expres-
sion of IDO, an enzyme which catabolizes the amino acid 
tryptophan and limits its availability to T cells, showed a 
positive correlation with Treg density in tumors, for instance 
in papillary thyroid carcinomas [137]. DCs expressing IDO 
can induce the generation of  FoxP3+ Tregs from naïve T 
cells, and block the differentiation of Th17 cells [138–140]. 
IDO catabolizes tryptophan to kynurenine, which in turn 
binds to AHR and facilitates the differentiation of naïve T 
cells to Tregs [141, 142]. Moreover, the ability of the tryp-
tophan metabolite, 3-hydroxyanthranilic acid (3-HAA), in 
increasing the expression of TGF-β in DCs and levels of 
Tregs and in reducing the levels of Th1 and Th17 cells has 
been demonstrated in vivo. Alternatively, limited availabil-
ity of tryptophan mediated by IDO activity can trigger a 
stress response pathway via the activation of general control 
nonderepressing-2 (GCN2) protein kinase, resulting in the 
inhibition of mTORC2 and Akt activation, thereby favor-
ing Treg differentiation/function/stability and inducing cell 
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cycle arrest and anergy in T effector cells [40, 143, 144]. 
Collectively, these data implicate that tryptophan catabolism 
could be essential for the maintenance of Treg stability, and 
blocking this pathway could offer a therapeutic benefit for 
targeting Treg metabolism.

Metabolites from purine (nucleotide base) catabolism can 
regulate Treg induction and FoxP3 expression by the genera-
tion of extracellular adenosine triphosphate (ATP), which 
binds to the purinergic P2X7 receptor, and leads to the dis-
ruption of FoxP3 stability and promotion of Treg conversion 
to Th17 cells [145]. However, excess extracellular ATP can 
be converted by  CD39+CD73+ Tregs into immunosuppres-
sive adenosine [146, 147]. Adenosine in turn acts on effector 
T cells via the binding to its receptor (A2AR) and exert sup-
pressive functions, including the inhibition of TCR signaling 
and the induction of cell cycle arrest [148, 149]. Thus, tar-
geting metabolic pathways resulting in excess production of 
ATP could be important to control the adenosine-mediated 
immunosuppression pathway.

Targeting Treg metabolism or metabolic 
pathways

Conventional cancer therapeutic strategies such as chemo-
therapy and radiotherapy can effectively reduce the number 
of activated Tregs and increase the number of effector T 
cells in cancer patients [150–152]. For instance, Cao et al. 
reported that gamma irradiation can reduce the suppres-
sive function of Tregs by downregulating the expression 
of FoxP3 and membrane TGF-β [153]. Moreover, clinical 
trials showed the efficacy of chemotherapy in reducing the 
frequency of  CD4+CD25+FoxP3+ Tregs and their suppres-
sive function in the circulation of patients with hepatocel-
lular carcinoma [154] and in tumor tissues of breast cancer 
patients [155]. However, there are multiple potential risks 
associated with cytotoxicity, which can arise from using 
chemotherapeutic and radiotherapeutic drugs as these 
strategies could also affect the number of effector T cells 
and negatively modulate anti-tumor immunity [152, 156]. 
Additionally, evidence from animal models suggests that 
emergence of Treg resistance against radiotherapy is medi-
ated by the overexpression of glucocorticoid-induced tumor 
necrosis factor receptor family-related protein (GITR) and 
increased production of TGF-β [153, 157]. In addition, a 
study by Muroyama et al. showed that radiotherapy in tumor-
bearing mice increased the suppressive function and pro-
liferation of tumor-infiltrating Tregs and the expression of 
inhibitory immune checkpoints, such as CTLA-4, on Tregs 
[158]. Schuler et al. reported increased frequency of circu-
lating Tregs and Treg suppressive function in patients with 
head and neck squamous cell carcinoma (HNCC) following 
chemo-radiotherapy [159], while Oweida et al. showed that 

tumor-infiltrating Tregs can induce resistance against radio-
therapy in mouse HNCC model and their blockade using 
anti-CD25 mAb in combination with radiotherapy showed 
better clinical outcomes [160]. Therefore, these latter find-
ings indicate that identifying Treg-targeting agents is cru-
cial to maximize anti-tumor efficacy and specifically deplete 
Tregs with minimal or no adverse effects on effector T cells.

Effects of chemotherapy and radiotherapy on Treg meta-
bolic reprograming have not been yet reported. Nonetheless, 
Treg metabolism could be targeted via the inhibition of vari-
ous metabolism-related signaling mediators, such as PTEN, 
HIF-1α, TGF-β and AMPK, in addition to key enzymes 
which facilitate fatty acid metabolism (such as ACC1) or 
amino acid catabolism (such as IDO) as described below.

PI3K/AKT/mTOR signaling pathway is amongst the 
key pathways, which controls metabolic reprogramming in 
Tregs and negatively regulates Treg suppressive function. 
Conversely, the inhibition of PI3K/AKT/mTOR pathway 
promotes the programming of immunosuppressive Tregs 
[161, 162]. Studies have shown that inhibiting the activity 
of specific isoforms of PI3K or mTORC1 (target of rapa-
mycin complex 1) can diminish the expression of inhibi-
tory immune checkpoints such as PD-1 and CTLA-4 and 
negatively influence Treg phenotype [78, 163]. A study by 
Kanamori et al. reported that  FoxP3+ Tregs can be generated 
upon the reprogramming of Th1 cells via therapeutic inter-
vention targeting the activation of PI3K/AKT/mTOR path-
way, causing a metabolic shift from glycolysis to OXPHOS 
[164]. Another study by Basu et al. showed that Treg stabil-
ity can be disrupted by the pharmacological activation of 
AKT, which in turn leads to an increase in glucose uptake 
and glycolysis [165]. The stability of Tregs and their sup-
pressive phenotype requires PTEN (phosphatase and tensin 
homolog), a key negative regulator of PI3K/AKT signaling, 
which restrains the capacity of Th1 and follicular T helper 
cell polarization [113, 166]. Studies have shown that FoxP3 
instability in PTEN-deficient Tregs is more likely to occur as 
a result of increased glycolysis and reduced OXPHOS [113, 
144, 166]. A study in melanoma mouse model showed that 
PTEN is required for the IDO-induced Treg activation and 
stability [144]. It was shown that IDO inhibits the phospho-
rylation of serine residue 473 on AKT and mTOR/TORC2 
complex and hence hampers their activation [144]. On the 
other hand, in vivo administration of IDO inhibitor in tumor-
bearing mice resulted in the phosphorylation of Akt in Tregs 
[144]. PD-1 expressed by activated Tregs is another inhibi-
tor of AKT through the activation of PTEN and therefore 
has been implicated in Treg stability [167, 168]. Altogether, 
these findings suggest that targeting PTEN, IDO and PD-1 
signaling pathways in Tregs can lead to metabolic program-
ming switching from lipid oxidation to glycolysis via the 
activation of PI3K/AKT/mTOR signaling in activated Tregs 
(Fig. 2). Since CTLA-4 is constitutively expressed by Tregs 
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and may play a key role in stabilizing FoxP3 expression via 
the induction of IDO expression [56, 57, 149]; hence, target-
ing CTLA-4 could be beneficial in altering Treg programing 
and disrupting Treg stability (Fig. 2).

T cell metabolism is a highly dynamic process and can 
be mimicked in vitro using experimental conditions, which 
include the optimization of TCR signal strength (dose and 
duration) and the presence of cytokines or drugs [169, 170]. 
The metabolic requirements for Treg differentiation in vitro 
under the influence of cytokines have been well studied; 
however, less is known about the metabolic factors required 
for Treg induction in vivo. Highly activated immunosup-
pressive Tregs rely on fatty acid metabolism, rather than 
glycolysis; hence, targeting enzymes which facilitate fatty 

acid metabolism, such as ACC1, could offer a therapeutic 
benefit in cancer by depleting activated Tregs. The require-
ment of lipid uptake and oxidation for FoxP3 expression in 
T cells has been determined through the use of etomoxir, 
a small molecule inhibitor, which targets fatty acid oxida-
tion (FAO) selectively by inhibiting the activity of carnitine 
palmitoyltransferase 1a (CPT1a), resulting in the abroga-
tion of FoxP3 expression [37, 171]. Moreover, pharmaco-
logical inhibition of enzymes regulating the generation or 
signaling of fatty acid derivatives such as estrogen-related 
receptor-α (ERRα) can also impair Treg differentiation and 
function in vitro [172]. On the contrary, the differentiation 
of Tregs can be rescued upon the addition of fatty acids to 
in vitro cultures resulting in the upregulation of ERRα and 

Fig. 2  Strategies for targeting Treg metabolism. The accumulation of 
high numbers of Tregs within the tumor microenvironment could be 
governed by the action of various mediators and signaling pathways. 
Direct interactions between tolerogenic DCs and Tregs results in the 
activation of TCR-mediated signaling pathway. Moreover, the interac-
tions between CTLA-4 on Tregs and B7 ligands on DCs induces IDO 
expression, an enzyme which facilitates tryptophan catabolism and 
limits its availability to T effector cells. Metabolites from tryptophan 
catabolism can be also important for Treg induction and FoxP3 stabil-
ity (not shown here). IL-2/CD25 signaling is essential for the survival 
and proliferation of Tregs, as it leads to the downstream activation 
of PI3K/AKT/mTOR signaling and STAT5 signaling. PD-1/PD-L1 
signaling, on the other hand, suppresses the activation of PI3K/AKT/
mTOR via PTEN, thereby favoring FoxP3 expression and stability. 
TCR-mediated signaling in cooperation with IL-2 signaling triggers 
the activation of AMPK, a critical protein kinase for lipid metabo-
lism and FAO, which are required for energy production, and Treg 

survival and function. ACC1 is an enzyme which facilitates fatty acid 
synthesis, while CPT1a is responsible for FAO. Activated, highly 
immunosuppressive Tregs can release high levels of TGF-β, which is 
a key mediator for Treg survival, function and differentiation. Via an 
autocrine signaling, the activation of TGF-β signaling in Tregs can 
induce HIF-1α expression and trigger the activation of SMAD3 and 
4 signaling, which subsequently prompt FoxP3 expression and Treg 
function. Targeting PD-1 and CTLA-4 signaling by mAbs could be 
beneficial in reducing FoxP3 stability and diminishing Treg numbers. 
Small molecule inhibitors targeting PTEN, ACC1 and CPT1a could 
offer a therapeutic benefit in cancer by destabilizing FoxP3 expres-
sion and suppressing Treg function. Moreover, the neutralization of 
TGF-β could block the HIF-1 and SMAD-mediated FoxP3 induction, 
and the inhibition of AMPK activity could be beneficial in depleting 
Tregs and disrupting FoxP3 expression. Potential therapeutic inhibi-
tion strategies are indicated by dotted red lines
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lipid oxidation [172]. These data implicate that pharmaco-
logic inhibitors targeting FAO could be potentially used to 
block Treg programing and disrupt their stability by affect-
ing FoxP3 expression (Fig. 2).

Hypoxia and HIF1‐α can be also involved in the induction 
of FoxP3 expression [24, 25, 105]. However, some stud-
ies have demonstrated that HIF1‐α expression can impair 
Treg stability in vivo as it induces the transcription of gly-
colytic genes and promotes FoxP3 degradation [115, 173, 
174]. Suppression of HIF1‐α function via the activation of 
oxygen‐sensing prolyl‐hydroxylase (PHD) results in the 
induction of Treg programming in metastatic niches [175]. 
Alternatively, targeted deletion of the HIF1‐α E3 ubiqui-
tin ligase in Tregs can increase the expression of HIF1‐α, 
which can directly bind to the promoter of the IFNG gene 
and trigger the expression of IFN‐γ in Tregs, resulting in 
their conversion into Th1‐like cells [176, 177]. Considering 
the mutual relationship between TGF-β and HIF-1α, inhibi-
tion of TGF-β signaling could result in effective depletion of 
Tregs by limiting the capacity of  FoxP3+ Treg survival and 
differentiation [147] and increase the degradation of HIF-1α 
(Fig. 2).

AMP-activated protein kinase (AMPK) signaling is another 
pathway, which can promote the generation of Tregs and 
diminish the numbers of Th1 and Th17 cells [37], thereby 
favoring immunosuppression and tumor progression. LKB1, 
upstream of AMPK, is another metabolic sensor, which is crit-
ical for lipid metabolism, OXPHOS, energy production and 
survival and function of Tregs in an independent manner of 
the AMPK pathway [178]. Collectively, these studies suggest 
that targeting AMPK or LKB1 signaling may be beneficial in 
regulating Treg metabolisms and disruption of Treg stability. 
The potential metabolic pathways, which could be targeted for 
the improvement of disease prognosis, are depicted in Fig. 2.

Concluding remarks and future perspectives

The physicochemical properties of the TME could be altered 
by nutrient availability and metabolic reprogramming of 
tissue-resident cells. These modifications are evident by the 
development of hypoxic environment and reduction in pH, 
due to changes in cell-mediated transcription factors and the 
accumulation of metabolic intermediates [179]. Besides the 
biochemical cues, which have been explained throughout the 
above sections, physical modifications could also be greatly 
influenced by the metabolic alterations within the TME 
[180]. These physical cues could alter the cellular charac-
teristics, including proliferation, metastatic potential and 
stem cell features of tumor, as well as other tissue-resident 
cells [180]. The major physical cues affect the extra cellular 
matrix (ECM) of the TME, including their pore size, align-
ment of fibrous tissue, cellular attachment and cross-link of 

collagen, which favor tumor progression [181]. Indeed, it has 
been reported that an intact ECM component, high molecu-
lar weight hyaluronan (HMW-HA), could stabilize FoxP3 
and favor the survival and differentiation of Tregs with in the 
ECM [182]. Additionally, HWA-HA could enhance the sup-
pressive function of Tregs in both in vivo and in vitro [182].

In all cases, the metabolic modifications in the TME favor 
tumor progression and tumor-immune evasion. In addition, 
immunometabolism has also been manipulated to enhance 
current immunotherapeutic modalities through adoptive T 
cell transfer. For instance, the metabolic potential of genet-
ically-engineered Chimeric Antigen Receptor (CAR)-T 
cells or other T cells, including T effector cells, could be 
enhanced to overcome the deleterious effects of the TME 
and enhance their anti-tumor aptitude [183, 184]. Moreo-
ver, the plausible side-effects of metabolic modulators on 
non-malignant tissue have not been fully elucidated. How-
ever, reports showed that the deleterious effects of metabolic 
inhibitors are very low, compared with other drugs, perhaps 
due to the high metabolic plasticity of tissue-resident cells 
[183, 185].

This review mainly resolves three important queries (1) 
how does the hypoxic metabolic TME affects the function 
of Tregs, (2) how do pTregs benefit from the metabolic cues 
within the TME and (3) what possible therapeutic modalities 
can be employed to target the metabolic reprogramming of 
Tregs. Infiltration of Tregs is considered as a hallmark of the 
TME and can affect the progression and metastasis of tumor. 
The metabolic reprogramming within the TME influences 
Tregs in three main ways; (1) encouraging the trafficking of 
Tregs to the TME, (2) induction of Tregs from conventional 
T cells and (3) upregulating the immunosuppressive char-
acteristics of Tregs. The major metabolic pathways which 
could influence the Tregs in the TME include tryptophan 
metabolism, glycolysis and fatty acid oxidation. Moreo-
ver, the metabolic reprogramming of Tregs is not limited 
to a certain pathway. For instance, glycolysis could affect 
Tregs in conflicting ways; favoring the proliferation of Tregs 
and attenuating their suppressive function [186]. However, 
the intermediate metabolites of glycolysis and tryptophan 
metabolism promote the regulatory function of Tregs [186].

Several factors which are indispensable for the effective 
function of effector T cells are restricted in the TME, while 
metabolic alterations favor unrestrained tumor proliferation 
that leads to nutrient-deprived milieu, excess accumulation 
of metabolic intermediates, and inadequate oxygen supply. 
These conditions benefit the generation of pTregs through 
HIF-1-dependent manner. Moreover, the reduction in glyco-
lysis triggers AMPK-mediated mTOR inhibition, which is 
the foremost signaling pathway for the generation of pTregs 
in the hypoxic tumor milieu.

Next, we focused on the development of therapeutic 
modalities, which could work synergistically with current 
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immunotherapies for better prognostic outcomes. Up to 
date, there is evidence demonstrating that utilizing mAbs 
against immune checkpoints, suppressive mediators (e.g., 
TGF-β), epigenetic modifiers and pharmacological inhibi-
tors for protein kinases, fatty acid transporters, fatty acid 
metabolism-related enzymes which favor FAO pathways, 
Treg differentiation and suppressive functions could have 
a promising clinical impact in cancer patients. However, 
more studies utilizing advanced technologies are required 
to investigate the epigenetic and molecular signaling driven 
by metabolic reprogramming, which influence the differen-
tiation of Tregs and their suppressive and migratory prop-
erties. For instance, single cell RNA sequencing could be 
adapted to uncover the molecular pathways involved in Treg 
metabolic reprogramming during cancer progression. Addi-
tionally, the utilization of Assay for Transposase-Accessible 
Chromatin sequencing (ATAC-seq) could be used to analyze 
the transcription factors which have key roles in regulating 
epigenetic mechanisms and mediate metabolic alterations 
shaping Treg stability, plasticity and function. Furthermore, 
in situ imaging and metabolic profiling could be utilized 
to analyze cell-to-cell communication between Tregs and 
other cell types to reveal novel metabolic interactions, which 
potentially could provide new Treg metabolic interventions 
for cancer treatment.
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