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Abstract: Recent investigations have yielded both profound insights into the mechanisms required by
pathogenic fungi for virulence within the human host, as well as novel potential targets for antifungal
therapeutics. Some of these studies have resulted in the identification of novel compounds that act
against these pathways and also demonstrate potent antifungal activity. However, considerable
effort is required to move from pre-clinical compound testing to true clinical trials, a necessary
step toward ultimately bringing new drugs to market. The rising incidence of invasive fungal
infections mandates continued efforts to identify new strategies for antifungal therapy. Moreover,
these life-threatening infections often occur in our most vulnerable patient populations. In addition
to finding completely novel antifungal compounds, there is also a renewed effort to redirect existing
drugs for use as antifungal agents. Several recent screens have identified potent antifungal activity
in compounds previously indicated for other uses in humans. Together, the combined efforts of
academic investigators and the pharmaceutical industry is resulting in exciting new possibilities for
the treatment of invasive fungal infections.
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1. Introduction

Fungal infections are a worldwide global health problem, affecting millions of patients per year [1].
Of these, approximately 1.5 million are disseminated or invasive fungal infections (IFIs), requiring
advanced treatment and hospitalization [1]. Unfortunately, this high number of infections is associated
with high mortality rates, with some fungal infections having mortality rates nearing 90%–95% [2,3].
A summary of some of the most common fungal diseases along with their rates of incidence and
mortality can be seen in Table 2. Worldwide, most IFIs are caused by the Candida, Cryptococcus,
Aspergillus and Pneumocystis species, although diseases caused by rarer fungi are becoming more
common. Additionally, the thermally-dimorphic, or endemic, fungi, which tend to be more prevalent
in specific geographic zones, have high rates of unreported infection due to the frequency of subclinical
infection [4,5].

Table 1. Estimated yearly incidences of invasive fungal infections.

Fungal Disease Estimated Cases per Year Estimated Mortality Rates
(% of Infected) 1

Cryptococcosis >1,000,000 [6] 20%–70% [6]
Candidiasis >400,000 [7] 10%–75% [8]

Aspergillosis >200,000 [9,10] 30%–95% [1,10–12]
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Table 2. Estimated yearly incidences of invasive fungal infections.

Fungal Disease Estimated Cases per Year Estimated Mortality Rates
(% of Infected) 1

Pneumocystis Pneumonia >400,000 [1,13] 20%–80% [13–15]
Mucormycosis (zygomycosis) >11,000 [16] 30%–90% [16,17]

Endemic/Dimorphic Fungi 2

Blastomycosis ~3000 [4] <2%–68% [1,18,19]
Coccidioidomycosis ~20,000 [20] <1%–70% [21]

Histoplasmosis ~25,000 [22] 28%–50% [5]
Paracoccidioidomycosis ~4000 [23] 5%–27% [23]

Penicilliosis >8000 [1] 2%–75% [24,25]
1 Estimated mortality rates will vary widely depending on the immune competence of the host and geographical
region (adapted from [1], with additional citations listed in the table); 2 estimated cases in endemic regions.
Blastomycosis and histoplasmosis are endemic in the Midwestern U.S. and the Mississippi and Ohio River
Valleys, coccidioidomycosis in the Southwestern U.S., paracoccidioidomycosis in Brazil and penicilliosis in
Southeast Asia.

Generally, IFIs are infections of immunocompromised hosts. The standard definition of the
immunocompromised host is expanding from the traditional set of patients with AIDS, patients with
cancer who are undergoing immunosuppressive chemotherapy or transplant patients whose immune
systems are suppressed to prevent organ rejection [26]. IFIs can also be seen during treatment with
new biologically-active agents, such as TNF-α inhibitors, used to treat autoimmune or inflammatory
diseases. These inhibitors dampen inflammation and help treat disease symptoms, but they can also
lead to opportunistic infections [27]. Additionally, IFIs are also observed in patients who are healthy
and apparently immunocompetent, but who have underlying, asymptomatic conditions that might
alter immune function and predispose toward infection, such as the presence of autoantibodies against
cytokines, such as GM-CSF [28].

Due to the high global health burden associated with fungal disease, the treatment of these
infections needs to be potent and effective. Indeed, many of the currently available classes of antifungal
drugs are highly effective in the appropriate contexts. However, these drugs, as with any therapy,
have limitations and caveats. For example, the toxicities associated with the use of some antifungal
agents can be prohibitive toward use or must be accepted in order to effectively treat the patient.
Additionally, there are few approved antifungal agents in only four drug classes for the treatment
of IFIs. Further limiting is the small number of targets that these drugs act upon, owing to the high
levels of similarity between the eukaryotic fungal pathogens and the human hosts. For example, of the
four classes of antifungal drug approved for treatment of invasive fungal infections, two of these,
polyenes and the azoles, target the same component of the fungal cell membrane [29,30]. This small
number of cellular targets increases opportunities for fungi to develop resistance to one or more of
the available antifungals. Furthermore, few of the currently available drugs are actually fungicidal.
Finally, several of these drugs have limitations in geographic availability, particularly in areas with
high rates of fungal infections [31]. This leads to higher mortality rates for IFIs due to treatment with
less effective antifungal drugs.

Moreover, the problem of antifungal resistance is on the rise: both that which has evolved in
formerly sensitive species, as well as the prevalence of intrinsically-resistant species of fungi. To date,
resistance exists to all of the currently available classes of antifungal agent [32–36]. Candida species
have a high prevalence of azole resistance, largely attributed to the cytostatic nature of these
drugs [37,38]. Similarly, Aspergillus and Cryptococcus strains have recently also demonstrated azole
resistance [35,39–41]. Only a few years ago, echinocandins were considered effective therapy for
most clinically-relevant Candida isolates. However, with increased use of these antifungal agents,
echinocandin resistance in Candida species has also become more prevalent [36]. Additionally,
the intrinsically drug-resistant fungi, such as Scedosporium species, continue to cause a background
of infections in highly immunosuppressed patients, especially those who are heavily treated with
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antifungals. These infections are often associated with poor patient outcomes [42,43]. Due to these
limitations, there is an urgent need for new antifungal agents.

Research goals for novel antifungal agents have emphasized a few major points. First, potency is
a key characteristic of a novel drug. New drugs must be able to effectively control fungal growth in the
context of the patient, at compound levels that are readily achievable at infection sites. Additionally,
ideal novel antifungal agents should possess little to no host toxicity. Selectivity is also crucial, as the
differences between the fungal pathogen and the human host are evolutionarily much smaller than
those between bacterial pathogens and humans. Ideally, novel agents would be broad spectrum and
able to treat multiple species of fungi. However, many antifungal compounds that are in development
have potent, but very specialized, activity.

2. Antifungal Agents Approved for Clinical Usage

Currently, there are four major classes of antifungal drugs that are indicated for the treatment
of invasive fungal infections. When used as indicated, these drugs can be highly effective at treating
IFIs, with significant beneficial effects on patient mortality. A short summary of these drugs and their
primary indications and usages can be found in Table 3.

Table 3. Approved antifungal drugs for the treatment of invasive fungal infections.

Drug Indication

Polyenes

Amphotericin B Life-threatening fungal infections, including cryptococcal meningitis,
aspergillosis, blastomycosis and mucormycosis

Azoles

Fluconazole Invasive infections due to susceptible Candida species; cryptococcosis

Itraconazole Blastomycosis, histoplasmosis, aspergillosis in patients refractory to
Amphotericin B

Voriconazole Invasive aspergillosis; non-neutropenic candidiasis; serious
Scedosporium or Fusarium infections refractory to other agents

Posaconazole Prevention of invasive fungal infections in neutropenic or HSC 1

transplant recipients

Isavuconazole Invasive yeast and mold infections, including aspergillosis
and mucormycosis

Echinocandins

Caspofungin Candidemia; refractory aspergillosis
Micafungin Candidiasis

Anidulafungin Candidiasis (adjunctive therapy with voriconazole for aspergillosis)

Anti-metabolites

Flucytosine Adjunctive therapy in Cryptococcus neoformans meningitis and Candida
septicemia and endocarditis (in combination with amphotericin B)

1 HSC = hematopoietic stem cell.

2.1. Polyenes: Amphotericin B and Its derivatives

Amphotericin B and its newer lipid formulations are polyene antifungals that target the fungal
plasma membrane. Recent models posit that these drugs act as “sponges” that bind to and remove
ergosterol from the plasma membrane, reducing membrane integrity [30,44]. Due to its mechanism
of action, amphotericin B is broad spectrum and indicated for the treatment of severe infections
caused by Candida species, Cryptococcus species, Zygomycetes and as an alternative therapy for
aspergillosis [45]. Amphotericin B is also used to treat many life-threatening IFIs due to other
filamentous molds, as well as the thermally-dimorphic fungi, such as Histoplasma, Coccidioides
and Blastomyces. Amphotericin B is cytocidal for most fungi. As amphotericin B is not highly
bioavailable when administered orally, only intravenous (IV) formulations are used clinically. However,
amphotericin B can have severe side effects, such as nephrotoxicity due to off-target binding of host
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membranes, limiting its usage to patients with life-threatening infections [46]. Newer formulations of
this drug, such as the lipid-associated and liposomal formulations, demonstrate more selective fungal
targeting and less host toxicity [46].

2.2. Azoles and Triazoles

Antifungal agents in the azole class target the fungal plasma membrane through inhibition of the
biosynthesis of ergosterol, a fungal plasma membrane component that is similar to cholesterol found
in mammalian cell membranes. This occurs through the inhibition of the sterol 14α-demethylase
(cytochrome P450 51 or CYP51), which catalyzes the final step in ergosterol biosynthesis [29].
The inhibition of this enzyme leads to defects in fungal plasma membrane integrity and cellular
integrity. The most commonly-used azoles for treating IFIs can be functionally divided between agents
with primary activity against yeast-like fungi (yeast-active azoles), and those with expanded activity
against fungi that often grow as molds (mold-active azoles).

Fluconazole is the most widely-used yeast-active azole, and it is often very effective for treating
infections caused by Cryptococcus and Candida species. Importantly, fluconazole resistance can present a
significant clinical issue in systemic candidiasis: some Candida species, such as C. krusei, are intrinsically
resistant to this drug, and other Candida isolates are often susceptible to this drug at high concentrations.
Therefore, precise species identification and targeted antifungal susceptibility testing for clinically-relevant
isolates are very important components of the care of patients with Candida IFIs.

The mold-active azoles include itraconazole, voriconazole, posaconazole and isavuconazole.
In addition to retaining activity against Candida and Cryptococcus yeasts, these agents also inhibit many
filamentous fungi. Itraconazole was the first available azole with significant activity against molds,
such as Aspergillus fumigatus. However, issues with bioavailability and toxicity limit its current use for
IFIs. Two newer agents, voriconazole and posaconazole, are more widely used for these infections,
especially in highly immunocompromised patients. Voriconazole has become the first-line antifungal
drug for treatment of invasive aspergillosis due to Aspergillus fumigatus. Comparative trials indicate
that voriconazole is superior to many other antifungal agents for this infection [47]. Posaconazole is
indicated for the prevention of IFIs, especially in the setting of prolonged neutropenia after high dose
cancer chemotherapy. The use of these drugs has likely greatly improved outcomes in patients with
invasive mold infections. However, both drugs have the potential to interact with other medications
due to their inhibition of hepatic cytochrome P-450-dependent metabolism. Moreover, many azoles can
result in cardiac conduction changes, and the QT interval should be monitored during therapy [48].

Isavuconazole (Cresemba®, Astellas Pharmaceuticals, Tokyo, Japan) is the most recently approved
triazole antifungal drug. It differs from other approved azoles in several clinically-relevant ways.
First, it has expanded in vitro activity that includes the Mucorales molds (Zygomycetes), such as
Rhizopus, Mucor and Cunninghamella species, and it may, therefore, be an effective component of
the complex, medical-surgical treatment of mucormycosis [49]. Additionally, the intravenous (IV)
formulation of isavuconazole lacks cyclodextrin, a solubilizing agent used with other triazoles that is
associated with nephrotoxicity in patients with renal insufficiency. Additionally, unlike other azole
drugs isavuconazole does not appear to exacerbate QT prolongation, and it may actually shorten the
QT interval in some patients [50].

2.3. Echinocandins

The echinocandins represent the newest class of antifungals. Currently, three drugs from this class
are approved for clinical usage: caspofungin, micafungin and anidulafungin. Echinocandins affect cell
wall biosynthesis through the noncompetitive inhibition of β-1,3-glucan synthase [51,52]. This enzyme
is involved in the biosynthesis of one of the most abundant fungal cell wall components. Therefore,
treatment with echinocandins leads to defects in fungal cell integrity. These drugs are primarily used
for the treatment of invasive candidiasis and as an alternative therapy for treatment of aspergillosis [53].
Echinocandins have low host toxicity and few drug interactions. However, they have no activity
against Cryptococcus species, and they are decidedly poor agents for treatment of the endemic mycoses.
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Additionally, they are not orally bioavailable, likely due to their large molecular size, and so, are only
available in IV formulations.

2.4. 5-Fluorocytosine

5-fluorocytosine (flucytosine) is a fluoridated pyrimidine analog, which inhibits DNA and
RNA synthesis by incorporating into the growing nucleic acid chain, preventing further extension.
This nucleic acid damage eventually leads to cellular defects in protein biosynthesis and cell division.
This antifungal agent has been attributed with cytostatic effects and high rates of resistance developing
during monotherapy. Therefore, flucytosine is rarely used as a single agent for the treatment of
fungal infections. However, it has been shown in multiple clinical trials to be highly effective
in combination with amphotericin B for the treatment of cryptococcal meningitis [54,55]. Indeed,
amphotericin B plus flucytosine is the first-line treatment for Cryptococcus central nervous system (CNS)
infections [56]. Flucytosine can also be used in combination with other antifungals to treat Candida
infections, though this is a less common practice. Adverse effects for flucytosine include bone marrow
toxicity, especially in the presence of renal impairment. However, one of the truly limiting factors of
this drug is its limited availability in countries with the highest incidence of cryptococcosis [31]. This,
unfortunately, limits the effectiveness of cryptococcal meningitis therapy in those regions of the world
in which it is most prevalent, likely increasing rates of mortality in this disease.

3. Antifungal Agents in Development with Novel Modes of Action

In addition to the currently approved antifungal medications, novel compounds are in various
stages of clinical development for the treatment of IFIs. These new agents have been identified
in large-scale, unbiased screens for antifungal activity, as well as in targeted investigations based
on detailed studies of fungal-specific cellular processes. In this review, we discuss selected novel
antifungal compounds that have either begun to be assessed in clinical trials or that represent novel
biological targets within fungi. These new compounds are discussed based on their known or predicted
molecular target, illustrated in Figure 1. Although many investigators are also studying how to better
harness the host immune response for effective treatment of IFIs, we will be focusing on therapeutics
targeted against the fungal pathogen. A brief summary of the antifungal agents that will be discussed
in this review, along with their activities based on minimum inhibitory concentration (MIC) and
primary indications, can be found in Table 4.
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Table 4. New antifungal agents in development.

Antifungal Compound Indication(s) 1 Activity (MIC) References

AR-12
Cryptococcus neoformans 4 µg/mL

[57]Candida albicans 4 µg/mL

BHBM

Cryptococcus neoformans 0.25–8 µg/mL

[58]

Cryptococcus gattii 0.5–2 µg/mL
Candida glabrata 0.125– >32 µg/mL

Blastomyces dermatitidis 0.5–1 µg/mL
Histoplasma capsulatum 0.125–1 µg/mL
Pneumocystis jirovecii 0.072–0.912 µg/mL 2

CD101
Candidemia 3,* ≤0.008–2 µg/mL 4

[59–61]
Aspergillus species 5 ≤0.008–0.03 µg/mL 4

E1210/1211

Aspergillus species 5 ≤0.008–0.25 µg/mL

[62–65]Candida species 6 ≤0.002–0.25 µg/mL
Scedosporium species 0.03–0.25 µg/mL

Fusarium species 0.015–0.25 µg/mL

F901318 Aspergillus species 5 <0.03 µg/mL [66]

Ilicicolin H
Candida species 7 0.01–5 µg/mL

[67]Aspergillus fumigatus 0.08 µg/mL
Cryptococcus neoformans 0.2–1.56 µg/mL

Nikkomycin Z Coccidioidomycosis * 0.125 µg/mL [68]

Sampangine

Cryptococcus neoformans <0.05 µg/mL

[69]
Candida albicans 3.1 µg/mL
Candida glabrata 3.1 µg/mL
Candida krusei 6.2 µg/mL

Aspergillus fumigatus 6.2 µg/mL

SCY-078
Invasive candidiasis * 0.03–2 µg/mL 8

[70–73]
Aspergillus species 5 0.03–0.25 µg/mL 4

Sertraline Cryptococcus species * 2–6 µg/mL 4 [74]

T-2307

Candida species 9 0.00025–0.0078 µg/mL

[75–77]
Cryptococcus neoformans 0.0039–0.0625 µg/mL
Aspergillus species 5,10 0.0156–2 µg/mL 4

Fusarium solani 0.125 µg/mL
Mucor racemosus 2 µg/mL

Tamoxifen
Cryptococcus neoformans 64 µg/mL

[78]Candida albicans 32 µg/mL
Candida glabrata 8 µg/mL

VL-2397

Invasive aspergillosis * 1–4 µg/mL 4,9

[79]Candida glabrata ≤2 µg/mL
Candida kefyr ≤2 µg/mL

Cryptococcus neoformans ≤2 µg/mL

VT-1129
Cryptococcal meningitis * <0.0001–0.25 µg/mL 4

[80–82]
Candida species 11 <0.0001–1 µg/mL

VT-1598 Coccidioidomycosis NA 12 NA
1 Indication for agents in clinical trials, denoted by *. For preclinical agents, organisms for which there
is significant antifungal activity are listed. 2 IC50 = 50% inhibition. MIC not determined due to culture
conditions. 3 Includes Candida albicans, C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis and
C. orthopsilosis isolates. 4 Represents MIC90, or MIC for ≥90% of isolates tested, with occasional resistant
isolates observed. 5 Includes Aspergillus fumigatus, A. terreus, A. flavus and A. niger isolates. 6 Includes
Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis and C. dubliniensis isolates. 7 Includes Candida albicans,
C. glabrata, C. guillermondii, C. krusei, C. lusitaniae and C. parapsilosis isolates. 8 Includes Candida albicans,
C. glabrata, C. tropicalis, C. parapsilosis and C. krusei isolates. 9 Includes Candida albicans, C. dubliniensis, C. glabrata,
C. guillermondii, C. krusei, C. parapsilosis and C. tropicalis isolates. 10 Includes Aspergillus fumigatus, A. flavus,
A. terreus and A. nidulans isolates. 11 Includes Candida albicans, C. glabrata and C. krusei isolates. 12 NA: MIC
information not publicly available.
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3.1. Cell Membrane as Antifungal Target

3.1.1. VT-1129, VT-1598 and VT-1161 (Viamet Pharmaceuticals)

VT-1129, VT-1598 and VT-1161 are compounds in a novel class of metalloenzyme inhibitors that,
like the azoles and triazoles, inhibit the enzyme responsible for the final step of ergosterol biosynthesis:
the fungal sterol 14α-demethylase (CYP51). These compounds were identified as part of an effort to
decrease off-target binding of human CYP enzymes, including human CYP51. This has been achieved
by identifying molecules, like the Viamet compounds, that are more specific for the fungal enzyme
active site. Additionally, unlike the older generation azoles, whose high affinity for heme groups
led to off-target inhibition of human CYP enzymes, the Viamet compounds have lower affinity for
heme [83]. These features allow VT-1129 and VT-1161 to selectively inhibit fungal CYP51 over human
CYP51. VT-1129 is approximately 3000-fold more selective for the Cryptococcus isoforms of CYP51 over
human CYP51 in vitro, while VT-1161 is greater than 1000-fold more selective for the Candida enzyme.
Theoretically, this increased fungal selectivity may decrease the risk for toxicity at higher doses of
drug [81,84].

These compounds, like many of the azoles, are available in oral and intravenous forms.
VT-1129 inhibits the growth of many Cryptococcus isolates, including both C. neoformans and
C. gattii [80,81,85]. Additionally, in a mouse model of cryptococcal meningitis, treatment with VT-1129
led to dose-dependent clearance of Cryptococcus from the brain, performing better than fluconazole at
similar drug concentrations [86]. Therefore, VT-1129 has been granted Qualified Infectious Disease
Product (QIDP) designation, allowing expedited review for approval. VT-1129 is currently in
phase 1 clinical trials for the treatment of cryptococcal meningitis.

VT-1598 is in preclinical development for treatment of coccidioidomycosis. Additionally, as
part of Viamet’s extended platform, VT-1161, which has been shown to be effective against
fluconazole-resistant Candida isolates, is in phase 2b clinical trials for the treatment of onychomycoses
and recurrent vulvovaginal candidiasis [87].

3.1.2. Inhibition of Membrane-Associated Lipids

N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and 3-bromo-N′-(3-
bromo-4-hydroxybenzylidene) benzohydrazide (D0) represent a new class of antifungal compounds,
termed “hydrazycins”. These agents were identified in a screen of synthetic compounds inhibiting
sphingolipid biosynthesis in C. neoformans, a process demonstrated to be required for fungal
growth in vivo [58]. These compounds inhibit vesicle trafficking of precursor lipids, such as
ceramides, to the cell surface, thereby inhibiting glucosylceramide biosynthesis and cell division.
Additionally, these compounds specifically inhibit fungal, but not human, glucosylceramide synthesis,
suggesting fungal-specific cellular inhibition for this novel class of compounds.

BHBM and D0 were identified in a screen for antifungal activity against C. neoformans at
alkaline, but not acidic pH [88]. BHBM showed promising in vitro inhibitory activity against multiple
isolates of two Cryptococcus species (C. neoformans and C. gattii), as well as Histoplasma capsulatum,
Blastomyces dermatitidis, Pneumocystis murinum and Pneumocystis jirovecii. Notably, the strains tested
included fluconazole-resistant Cryptococcus strains. In vivo activity for BHBM and D0 was assessed in
murine models of infection due to Cryptococcus neoformans, Candida albicans and Pneumocystis murinum,
resulting in significant increases in survival times compared to controls. Additionally, these drugs
showed synergy with both fluconazole and amphotericin B, suggesting potential for combinatorial
therapy. These hydrazycins were well tolerated in animal models of invasive fungal infection,
though some interaction was observed with the immunosuppressive corticosteroid dexamethasone,
which resulted in a decreased compound half-life in vivo [58].
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3.2. Cell Wall Synthesis Inhibitors

3.2.1. CD101 (Biafungin) (Cidara Therapeutics)

CD101, or biafungin, is a novel echinocandin formulated for both intravenous and topical use.
It is similarly effective when compared to anidulafungin and caspofungin against Aspergillus and
Candida species in vitro [59–61]. However, the advantage of CD101 over existing echinocandin drugs
lies in its pharmacokinetics. The half-life of this drug is 81 h in vivo. In contrast, the half-life of
anidulafungin, the longest-acting echinocandin to date, is approximately 24 h [89,90]. This allows
biafungin to potentially be administered with once-weekly intravenous doses, rather than daily doses,
better facilitating patient care and compliance while potentially decreasing drug administration costs.
Biafungin, like other echinocandins, demonstrates few drug interactions and an excellent safety profile.
This drug is currently in phase 2 clinical trials for the treatment of candidemia.

3.2.2. SCY-078 (Scynexis)

SCY-078 is a novel β-1,3-glucan synthase inhibitor that is structurally distinct from the currently
available echinocandin glucan synthase inhibitors. It is derived from enfumafungin, a novel natural
product. Thereby, SCY-078 is a first-in-class, orally-available β-1,3-glucan synthase inhibitor that
has received QIDP designation. An intravenous formulation is also in development. SCY-078
shows in vitro activity against isolates of Candida and Aspergillus species at MIC or MEC (Minimum
Effective Concentration) levels below 0.5 µg/mL, including several fluconazole-resistant strains [70,72].
Additionally, SCY-078 remains active against certain echinocandin-resistant strains of Candida and
Aspergillus [71,73]. When SCY-078 was tested in vitro against non-Aspergillus molds, SCY-078 was
the only β-1,3-glucan synthase inhibitor with activity against the notoriously pan-resistant mold
Scedosporium prolificans [91]. In a murine model of invasive candidiasis, treatment with SCY-078 led
to a dose-dependent decrease in fungal burden in the kidneys across Candida species [72]. This drug
is currently in phase 2 clinical trials in its oral formulation for the treatment of invasive candidiasis,
while the IV formulation is in phase 1 clinical development.

3.2.3. Nikkomycin Z (University of Arizona)

Nikkomycin Z is an older drug that has resurfaced recently due to an increased interest in anti-cell
wall antifungal drugs. Nikkomycin Z is a competitive inhibitor of chitin synthases, acting to decrease
cell wall stability. Recently, it received Orphan Drug Status for its development as a treatment for
coccidioidomycosis. In the past, this drug showed promise against the thermally-dimorphic fungi,
including Coccidioides immitis, Histoplasma capsulatum and Blastomyces dermatitidis [68]. However,
the clinical development of this drug was terminated due to difficulties in production. The drug
was re-licensed to the University of Arizona, allowing for the reinstitution of clinical development.
Nikkomycin Z is currently being tested in phase 1/2 clinical trials for treatment of coccidioidomycosis.

The renewed interest in Nikkomycin Z reflects momentum exploring the fungal cell wall as an
antifungal target in general. This fungal-specific cellular feature makes for an ideal target for less toxic
antifungal drug development.

3.3. Mitochondria as an Antifungal Target

3.3.1. T-2307 (Toyama Chemicals, Tokyo, Japan)

T-2307 is a novel arylamidine compound that inhibits fungal growth by interfering with
fungal metabolism. This compound specifically collapses fungal mitochondrial membrane potential,
which prevents fungi from performing cellular respiration, thus compromising energy production
for essential cellular processes [92]. Furthermore, this anti-mitochondrial activity is specific to
fungi, and this drug does not collapse mammalian mitochondrial membrane potential at very high
concentrations. The mechanism for this selectivity has been posited to be due to selective uptake of
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this drug by the high-affinity, fungal-specific Agp2 spermine/spermidine transporter [93]. T-2307,
like many available antifungal drugs, has a fungistatic mechanism of action. However, it has potent
in vitro activity against Candida species, Cryptococcus neoformans, Aspergillus species and Fusarium solani,
including echinocandin-resistant Candida isolates [75–77]. The in vitro activity of T-2307 is comparable
to the activity of voriconazole and micafungin for Aspergillus species and more effective at lower
concentrations of drug than fluconazole, voriconazole and micafungin against Candida, Cryptococcus
and Fusarium [75]. Additionally, in a murine model of systemic candidiasis, T-2307 performed as well
as micafungin or amphotericin B, but at lower concentrations of compound [75].

3.3.2. Ilicicolin H

Ilicicolin H acts on the mitochondria by specifically inhibiting the activity of the cytochrome bc1
complex. This inhibition of enzymatic activity decreases fungal mitochondrial respiration, preventing
the biosynthesis of ATP. Based on in vitro data, fungal cytochrome bc1 is 50-fold more sensitive to
ilicicolin H inhibition than the bovine enzyme and 1000-fold more sensitive than rat cytochrome
bc1 [94,95]. Unfortunately, in some cases, resistance to this drug does occur [67]. Yet, this molecule
is a promising starting point for future structural analogs with the potential for more specificity and
potency against mitochondrial processes.

3.4. Other Mechanisms/Unknown Mechanisms

3.4.1. VL-2397 (Vical, San Diego, CA, USA)

VL-2397 represents a new class of antifungal compound that has received QIDP designation for
development for treatment of aspergillosis. Although the mechanism of fungal cell inhibition has
yet to be determined, this compounds exhibits significant in vitro activity against Aspergillus species,
Cryptococcus neoformans, Candida glabrata, Candida kefyr and Trichosporon asahii, as well as modest activity
against Fusarium solani [79]. Additionally, VL-2397 shows fungicidal activity against Aspergillus species.
However, this compound has no activity against other Candida species, including C. albicans, or any of
the Mucorales fungi [79]. Interestingly, the import of the drug into fungal cells requires the siderophore
transporter Sit1. As mammalian cells lack this transporter, this mechanism of entry could result in
specificity for this drug toward fungal pathogens.

VL-2397 has potent in vivo effects against azole-refractory Aspergillus fumigatus in a murine model
of invasive aspergillosis [96]. Treatment with this drug resulted in a significant improvement in survival
in infected mice compared with approved antifungal drugs, such as amphotericin B, posaconazole
and caspofungin alone. Additionally, it is effective in combination with posaconazole in vivo,
and posaconazole does not antagonize VL-2397 activity [96]. VL-2397 is currently in phase 1 clinical
trials for the treatment of invasive aspergillosis. Although it demonstrates fairly narrow-spectrum
activity, VL-2397 shows promise as a novel agent for combinatorial therapy, especially against
Aspergillus species.

3.4.2. AR-12 (Arno Therapeutics, Flemington, NJ, USA)

AR-12 was initially developed as an anticancer agent in 2006. This drug is a potent inhibitor of the
phosphoinositide-dependent kinase PDK1 in humans and induces cell-death promoting endoplasmic
reticulum stress, inhibiting proliferative cell growth [97]. However, AR-12 (OSU-03012) was identified
through a repurposing screen of protein kinase inhibitors looking for agents that induced fungal
cell lysis. This drug was thereby demonstrated to have potent antifungal activity [57]. It has since
been granted the European Orphan Drug Designation for the treatment of cryptococcosis. Though a
strong PDK1 inhibitor in humans, this drug does not inhibit the C. neoformans PDK1 [98]. However,
based on haploinsufficiency profiling in S. cerevisiae and C. albicans (a microbial genetic technique
used to test for potential mechanisms of antifungal action), it is suggested that AR-12 inhibits fungal
carbon metabolism, specifically acetyl-CoA synthetase (ACS2) [98]. Inhibition of ACS2 leads to defects
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in several cellular processes, including histone acetylation, ribosome assembly and regulation of
autophagy, in addition to its roles in carbon metabolism [98]. AR-12 shows activity against C. albicans
biofilms, important structures in mucosal and catheter-associated infections. It is in preclinical
development as an orally-available antifungal for the treatment of cryptococcosis.

3.4.3. F901318 (F2G Ltd., Manchester, UK)

F901318 is a member of the novel orotomide class of antifungal drug that is formulated for
both intravenous and oral delivery. It inhibits pyrimidine biosynthesis by blocking dihydroorotate
dehydrogenase activity, preventing nucleotide biosynthesis. F901318 inhibits the growth of Aspergillus
species in vitro, with MEC levels below 0.5 µg/mL [66]. It is even effective against azole- and
amphotericin B-resistant Aspergillus strains [66]. In a murine model of invasive aspergillosis, F901318
treatment led to reduced galactomannan levels in mice, which has been shown to be associated with
better clinical outcomes in patients [99,100]. F901318 is currently in phase 1 clinical trials assessing the
safety of the IV formulation. Thus far, it has demonstrated an excellent safety profile and was well
tolerated at therapeutically-relevant doses [101].

3.4.4. E1210/1211

E1210 and E1211, which represent the active compound and its pro-drug, respectively,
are inhibitors of fungal, but not human, glycophosphatidylinositol (GPI) anchor biosynthesis.
This cellular process is required for the anchoring of proteins to both the fungal cell wall and cell
membrane [64]. The anti-GPI activity of E1210 is achieved through inhibition of the fungal Gwt1
protein, which catalyzes an early step in the creation of the GPI anchor, while the human enzyme
appears unaffected [64]. In C. albicans, treatment with E1210 inhibits germ tube formation, as well as
biofilm formation and adherence to plastics [64]. E1210 has activity against Candida, Aspergillus,
Fusarium and even Scedosporium species in vitro, in the ng/mL range for all strains tested [62,65]. E1210
also shows activity against azole- and echinocandin-resistant strains of Candida [102]. At 1–2 µg/mL,
the activity appears to be fungicidal [63].

In a murine model of disseminated candidiasis, orally-administered E1210 had a significant,
beneficial survival effect in animals infected with an azole-resistant strain of C. albicans. It also increased
survival in mouse models of disseminated candidiasis and pulmonary aspergillosis, although this
effect was seen at higher concentrations than that required for caspofungin, liposomal amphotericin
B or fluconazole/voriconazole. E1210 also aided clearance versus an untreated control in a murine
model of disseminated fusariosis [103].

3.4.5. Sampangine

Sampangine is a copyrine alkaloid natural product which inhibits heme biosynthesis
in vivo [69,104,105]. Because of this activity, treatment with this compound leads to defects in all
heme-requiring pathways, including cellular respiration and ergosterol biosynthesis [69]. This natural
product has very low MIC values for Cryptococcus neoformans (0.05 µg/mL), and it demonstrates
inhibitory activity at concentrations of 3–6 µg/mL for Candida and Aspergillus species [69]. Synthesis of
this and other alkaloids has been in development in the search for novel antifungals and antimicrobials,
as specific heme biosynthesis inhibition could prove a potent target for antifungal development [106].
Indeed, some analogs that have been created have potent in vitro activity against C. neoformans and
A. fumigatus [107].

3.5. Old Drugs, New Tricks

As demonstrated above, several avenues of research have identified novel compounds or classes
of compounds that have significant antifungal effects, with the potential to develop toward novel
therapeutics to be applied in a clinical setting. However, given the considerable resources required to
develop completely novel antimicrobial drugs, many investigators have pursued a parallel strategy to
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identify existing medications that have unrecognized antifungal activity. This process of “redirecting”
FDA-approved drugs for new antimicrobial indications holds promise to more quickly bolster our
current, limited therapies for IFIs.

3.5.1. Tamoxifen

Tamoxifen, an estrogen receptor agonist, has been used for decades in the treatment of estrogen
receptor-positive breast cancer. However, in the early 1990s, it was discovered that tamoxifen
has antifungal activity against S. cerevisiae and C. albicans [108,109]. More recently, in a screen of
FDA-approved drugs, tamoxifen and its analog clomiphene were identified to be fungilytic toward
C. neoformans [78]. Additionally, structural analogs of these triphenylethylene drugs were found
to also have potent activity against several Candida and Cryptococcus species [78,110,111]. Using a
yeast genetics system to identify the underlying mechanism behind the antifungal activity of these
drugs, the target was determined to be the calcium-responsive signaling protein calmodulin. In fact,
more potent fungal calmodulin inhibition correlated with more effective inhibition of C. neoformans
growth [78,110]. Looking forward, modification and optimization of the triphenylethylene drugs may
prove a promising avenue for antifungal therapy.

3.5.2. Sertraline

Sertraline is an FDA-approved, selective serotonin reuptake inhibitor. The antimicrobial activity
of sertraline was suggested when use of this antidepressant medication was associated with a
decreased incidence of vulvovaginal candidiasis [112]. Further tests against Candida species revealed
fungicidal activity in vitro, with minimum fungicidal concentrations of less than 29 µg/mL [112].
Minimum fungicidal concentrations (MFC90) for Aspergillus species were much higher (greater than
100 µg/mL) [113]. In 2011, sertraline was identified again in a screen for molecules potentiating
fluconazole activity against a variety of yeasts [114].

Further studies of the antifungal activity of sertraline were conducted in Cryptococcus isolates,
in which the MIC90 was 6 µg/mL or less, with of minimum fungicidal concentration of less than
or equal to 10 µg/mL. In these studies, sertraline showed strain-dependent additivity or synergy
with fluconazole [74]. Sertraline was found to decrease the cryptococcal burden in the brain and
kidney compared to untreated or fluconazole-treated mice [74]. Consistent with previous studies,
sertraline was found to be less potent when treating Candida species than Cryptococcus species, and it
had antagonistic drug interactions with fluconazole in vitro [74]. Mechanistic genetic screening
identified membrane trafficking and protein translation as potential targets of sertraline antifungal
activity [74,114,115]. A clinical study in 2014 revealed faster clearance of fungal burden in the
cerebrospinal fluid of patients with HIV-associated cryptococcal meningitis who were treated with
sertraline in addition to standard antifungal therapy [116]. Sertraline is currently in phase 3 clinical
trials as an adjunctive agent for the treatment of HIV-associated cryptococcal meningitis.

3.5.3. Amphotericin B: New Compounds and Formulations

Amphotericin B is a highly effective fungicidal compound. However, it has had its history
of significant toxicity in patients. As mentioned above, liposomal formulations of amphotericin B
have decreased toxicity associated with treatment, but the potential for side effects remains even
with these new formulations. However, new initiatives have focused on enhancing the safety of
this important, broad-spectrum antifungal while maintaining efficacy. For example, REVOLUTION
Medicines (Redwood City, CA, USA) has developed a platform, REVBLOCKS, by which it can
rapidly modify and optimize natural products, such as amphotericin B, making novel synthetic
compounds [117,118]. By functional group analysis, the Burke group (REVOLUTION) worked
to understand the mechanisms by which amphotericin B kills yeast cells, as well as human cells.
They identified functional groups that specifically bound fungal ergosterol, those that bound human
cholesterol and those required for membrane pore formation. In this manner, it was discovered that
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ergosterol binding, but not pore formation, is the key fungicidal feature of amphotericin B [30,119,120].
This knowledge and their unique experimental platform enabled the design and synthesis of new
amphotericin B analogs that specifically bind fungal ergosterol, but lack the pore-forming ability of the
starting compound [30,120]. Certain urea-functionalized analogs of amphotericin B showed promise
in a mouse model of candidemia, reducing fungal burden and mortality [118]. Preclinical studies are
ongoing to identify promising candidate analogs of amphotericin B to move into further antifungal
drug development.

In addition to these structural modifications, researchers have also been working on alternative
forms of delivery for amphotericin B in order to aid in targeting of the drug to fungal pathogens,
and not humans, as well as facilitating administration of this drug. For example, METAmphizon
(nanomerics) is a nanoparticle formulation of amphotericin B that is currently in development.
This drug formulation uses nanomerics’ Molecular Envelope Technology to encase cargo, such as
a drug, in a self-assembling amphiphilic polymer. In the case of METAmphizon, the nanoparticle
allows better organ targeting than amphotericin B to sites such as the lung, liver and spleen where
fungal infections might reside [121]. Additionally, METAmphizon is available orally, unlike traditional
amphotericin B formulations, and oral administration is similarly effective to both IV liposomal
amphotericin B and IV METAmphizon in murine models of aspergillosis and candidiasis [121].

Other research has been looking at amphotericin B conjugates that take advantage of the “sterol
sponge” activity of amphotericin B, while minimizing host toxicity from this molecule [30,44,122].
By conjugating amphotericin B with a “molecular umbrella”. It was possible to prevent amphotericin
B from forming non-specific, membrane-disrupting aggregates at active concentrations while
maintaining this drug’s ability to bind ergosterol [122]. The molecular-umbrella-amphotericin B
conjugate displayed antifungal activity approaching that of the native compound. Importantly,
the ability of the conjugate to lyse red blood cells and kidney cell lines in vitro was nearly abolished,
results that show promise for in vivo experiments [122].

3.5.4. Polymyxin B

Polymyxin B is a cationic lipid oligopeptide antibiotic that was identified in a screen of approved
drugs for activity against Aspergillus nidulans [123]. However, upon further investigation, it was found
to have relatively little effect on the fungal pathogens tested except for Cryptococcus neoformans,
upon which it had a potent fungicidal effect and showed synergistic activity with fluconazole.
Further study showed a potential mechanism for this species specificity, suggesting that the
characteristic Cryptococcus polysaccharide capsule, an important virulence factor, is the target for
the activity of polymyxin B [124]. In a mouse model of pulmonary cryptococcosis, polymyxin B
reduces lung fungal burden alone, and more so in combination with fluconazole [124]. There has
also been some investigation of the activity of other cationic peptide antibiotics against other fungal
species [125–128].

4. Encouraging Targets from the Fungal Field

As our understanding of fungal pathogenesis has increased, the importance of certain virulence
factors has become more apparent. The increase in knowledge about fungal virulence has led to further
inquiry into how these virulence factors or processes could be leveraged as targets for antifungal drug
design. In this case, the keys to antifungal drug design are to either identify processes that are specific
to the fungal pathogen and that do not exist in the human host or to identify processes that may be
conserved, yet have fungal-specific characteristics that can be manipulated for therapy. Though many
potential “druggable” fungal targets have been identified, we will outline only a few in this article.

The idea of fungal-specific targets has been highly attractive, due to the low potential for
off-target effects in the human host. Such has been the case with the cell wall-inhibiting echinocandins.
Recent research has explored the trehalose biosynthesis pathway as a fungal-specific process required
for virulence. Previous studies have shown that trehalose production is required for the virulence of
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several fungal species. For example, disruption of both Candida albicans TPS1 and TPS2, the genes
encoding trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase, respectively,
leads to decreased growth at high temperatures, as well as a hyphal formation defect [129,130].
In Aspergillus fumigatus, the homolog to TPS2, the second gene in the trehalose biosynthetic pathway,
is required for virulence, but has no impact on trehalose biosynthesis [131]. Other investigators
determined that trehalose biosynthetic genes are required for high temperature growth and stress
protection in both Cryptococcus neoformans and C. gattii [132,133]. Furthermore, deletion of the second
gene involved in trehalose biosynthesis, TPS2, led to the accumulation of trehalose-6-phosphate and cell
death, suggesting that blockade of biosynthesis at this point could provide a potent effect for treatment
due to intermediate metabolite toxicity for the pathogen [133]. The recent determination of a crystal
structure for C. albicans Tps2 allows for deeper understanding and modeling of compound-enzyme
interactions, allowing for the identification of potential inhibitors that specifically bind to this unique
target for antifungal drug development [134].

Additionally, there has been much interest in leveraging important, conserved signaling molecules
for antifungal drug development by exploiting fungal-specific aspects of the components of these
pathways. As an example, research on the Ras GTPases, though highly conserved among eukaryotes,
has proven a promising avenue for antifungal drug development. In fungi, Ras GTPases play
major roles in virulence. For example, in C. neoformans, Ras proteins are required for growth at
high temperatures, a feature necessary for proliferation in the human host [135]. Additionally,
in humans, mutations in Ras proteins are associated with many malignancies. Therefore, several
inhibitors of Ras function are being actively explored as treatments for various cancers. These agents
could serve as starting points to identify potent antifungal agents. For example, prenylation is a
post-translational modification that is required for proper Ras protein localization and function in
both mammals and fungi. Farnesylation is required for attachment of the RAS protein to cellular
membranes and proper cellular localization [136–138]. Farnesyltransferase inhibitors (FTIs) have
arisen somewhat recently as a promising class of anticancer drugs that would inhibit Ras activity due
to protein mislocalization [139]. It has been proposed that some of these FTIs that have activity against
cancer cell lines might also have antifungal activity [140]. As crystal structures are now available for
both the mammalian and fungal farnesyltransferases, it is possible to apply this knowledge about
these proteins toward developing therapeutics with specificity for either the human or the fungal
enzyme [140–142]. These studies have shed light on structural and mechanistic differences in how the
fungal and mammalian farnesyltransferases work, specifically during substrate binding, that can be
leveraged toward the specific design of antifungal agents.

Other conserved eukaryotic pathways and proteins are being pursued as potential antifungal drug
targets. Calcium/calmodulin signaling has shown promise as a target for antifungal therapy. In fungi,
calcium/calmodulin signaling is an important regulator of stress responses, such as the response
to high temperature, as well as, in some cases, resistance to antifungal drug treatment [143–147].
Additionally, calcineurin inhibitors, such as tacrolimus (Prograf/FK506), are already in use as
immunosuppressants and have potent antifungal activity [148–150]. However, immunosuppression in
the context of fungal infection is less than ideal. Development of non-immunosuppressive calcineurin
inhibitors is an exciting avenue for antifungal agents.

Additionally, another conserved protein being explored as an antifungal drug target is the Hsp90
heat shock protein. This Hsp90 molecular chaperone is involved in protein folding in response to many
cellular stresses. Fungal Hsp90 is notably involved in resistance to antifungals, including both azoles
and echinocandins, in Candida albicans, C. glabrata and Aspergillus fumigatus [151]. Hsp90 inhibitors exert
potent activity in combination with other antifungals. For example, the Hsp90 inhibitor geldanamycin
has a potent fungicidal effect against azole-resistant A. fumigatus when used in combination with
caspofungin or the calcineurin inhibitor FK506 [152]. Hsp90 inhibitors also potentiate the activity
of the echinocandin micafungin, and they are fungicidal in combination with fluconazole against
C. albicans in vitro and in an invertebrate model of candidiasis [153,154].
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5. Promising Molecular Approaches to Antifungal Drug Discovery: Moving beyond Screening
of Natural Products

In recent years, as seen above, there has been a push toward repurposing off-patent or
FDA-approved drugs as antifungal agents. Researchers have also been working toward the
identification of compounds that potentiate currently approved antifungal agents. Additionally,
the concept of applying chemical genomics and large, high-throughput screening toward the goal of
antifungal drug discovery has opened up promising avenues of study.

Multiple groups have been using small molecule libraries to screen for antifungal activity in a
high-throughput manner. The Krysan group has developed an in vitro assay for rapidly assessing loss
of cellular integrity, which measures the extracellular activity of the cytoplasmic enzyme, adenylate
kinase, as a simple marker of cell lysis and fungal cell killing [155]. This assay has been used in
multiple contexts to identify novel agents that disrupt cellular integrity in C. neoformans, some of which
have been discussed above [78,156,157]. Other groups have used the alamarBlue® assay in a similar
manner to identify drugs that are fungicidal against C. neoformans [158] or to search for compounds
that affected the viability of Candida biofilms [159].

Through a different approach, the Wright laboratory performed a screen for the potentiation of
fluconazole activity against C. neoformans, C. gattii, C. albicans and S. cerevisiae [114], identifying several
FDA-approved compounds that have synergy with fluconazole and potent activity against the fungi
tested. More recently, this group has developed an Antifungal Combination Matrix, which arose from
a screen of 3600 small molecules tested in combination with six approved antifungal compounds
against four species of fungi: a dataset consisting of nearly 230,000 data points and around 86,000
chemical interactions [160]. This massive dataset can be leveraged toward identifying new agents that
can increase the potency of existing antifungal agents.

The Madhani group took a chemical genomics approach to a similar problem, using a large
gene deletion library in C. neoformans to identify gene-drug interactions that could be leveraged
toward antifungal therapy [161]. They identified gene-drug interactions for over 80% of the nearly
1500 gene deletion strains tested. They also defined the O2M algorithm, a decision-guiding process to
analyze this gene-drug interaction data, in order to identify drugs that might act synergistically against
C. neoformans. They used this “chemogenomic” profiling technique in comparison with S. cerevisiae
datasets to identify conserved fungal responses. Interestingly, they found minimal conservation
between the C. neoformans and S. cerevisiae datasets.

These studies bring an important point to light: there seems to be limited interspecies overlap
of potentiators of fluconazole or other antifungals, nor was a significant amount of overlap found
between S. cerevisiae and C. neoformans chemical genomics data. These data suggest that focusing
on antifungal development that is geared toward particular pathogens, rather than focusing only on
broad-spectrum activity, may lead to more potent and effective therapies for IFIs.

6. Conclusions

Invasive fungal infections represent a pressing global health problem. Although effective therapies
exist for treatment of these diseases, resistance is common, and the mortality rates for IFIs are still
unacceptably high. However, promising advances are being made in antifungal drug development,
both through the development of novel compounds with potent antifungal activity and through
the repurposing of previously described compounds for new uses as antifungal agents. Moreover,
our expanding insight into the cellular processes required for fungal survival is now being translated
to the specific identification of new therapeutic targets. Together, these efforts will greatly expand the
currently limited number of drugs that we have to treat patients with life-threatening fungal infections.
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Abbreviations

The following abbreviations are used in this manuscript:

IFI Invasive fungal infection
IV Intravenous
CYP Cytochrome P450
CNS Central nervous system
MIC Minimum inhibitory concentration
QIDP Qualified Infectious Disease Product
BHBM N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide
D0 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide
GPI Glycophosphatidylinositol
MEC Minimal effective concentration
MFC Minimal fungicidal concentration
FTI Farnesyltransferase inhibitor
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