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Simple Summary: In this review, we describe arginine’s role as a signaling metabolite, epigenetic reg-
ulator and mitochondrial modulator in cancer cells, and summarize recent progress in the application
of arginine deprivation as a cancer therapy.

Abstract: Arginine is an amino acid critically involved in multiple cellular processes including the
syntheses of nitric oxide and polyamines, and is a direct activator of mTOR, a nutrient-sensing kinase
strongly implicated in carcinogenesis. Yet, it is also considered as a non- or semi-essential amino
acid, due to normal cells’ intrinsic ability to synthesize arginine from citrulline and aspartate via
ASS1 (argininosuccinate synthase 1) and ASL (argininosuccinate lyase). As such, arginine can be
used as a dietary supplement and its depletion as a therapeutic strategy. Strikingly, in over 70% of
tumors, ASS1 transcription is suppressed, rendering the cells addicted to external arginine, forming
the basis of arginine-deprivation therapy. In this review, we will discuss arginine as a signaling
metabolite, arginine’s role in cancer metabolism, arginine as an epigenetic regulator, arginine as
an immunomodulator, and arginine as a therapeutic target. We will also provide a comprehensive
summary of ADI (arginine deiminase)-based arginine-deprivation preclinical studies and an update
of clinical trials for ADI and arginase. The different cell killing mechanisms associated with various
cancer types will also be described.

Keywords: arginine; cancer metabolism; epigenetics; arginine-deprivation therapy; ADI; arginase

1. Introduction

An important step in tumor development is a metabolic adaptation to cope with the
demand of rapid cell division as well as a hypoxia, and nutritionally deprived microen-
vironment [1]. Different tumors utilize different strategies to reprogram their metabolic
pathways. In so doing, tumor cells expose specific vulnerabilities, which can be exploited
therapeutically. For instance, tumor cells, not their normal counterparts, are “addicted” to
certain external nutrients including amino acids and amino acid starvation therapy has
gained significant momentum in recent years [2]. One of the most common metabolic
defects of tumor cells is the impaired intrinsic ability to synthesize arginine [3]. Targeting
exogenous arginine by arginine-metabolizing enzymes such as arginase, arginine decar-
boxylase and arginine deiminase (ADI) has received increasing attention as therapies to
treat a variety of cancers [4]. There are a number of excellent reviews on this topic [5–7].
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In this review, we will focus on recent progress in understanding arginine’s role in cancer
metabolism as a signaling metabolite, an epigenetic regulator and an immunomodulator.
As much of the knowledge was derived from characterizing arginine-deprived cancer cells,
we will also update the current status of arginine-deprivation therapy.

2. Arginine and Cancer Metabolism

Arginine is involved in numerous biological functions including cell proliferation,
cell signaling, muscle contraction, immunity, neurotransmission, vasodilation, synthesis
of growth factors and other amino acids [8]. Three major resources of arginine include (1)
arginine-enriched nutrition supplement from dietary intake, such as chicken, pork loin,
pumpkin seeds, peanuts, soybeans and so on (approximately 5 g of arginine per day), (2)
endogenous synthesis from citrulline (15% of the total arginine production) and (3) protein
catabolism (approximately 80% of the circulating arginine) [9]. Arginine is a direct resource
for nitric oxide (NO), ornithine and agmatine through three enzyme reactions. Arginine
is metabolized into NO and citrulline by nitric oxide synthase (NOS), into ornithine and
urea by arginase, and into agmatine by arginine decarboxylase (ADC). NO serves multiple
physiological functions.

Both ornithine and agmatine are the main resources for putrescine, which is a crucial
precursor for polyamines [10] (Figure 1). These metabolites play key functions in cell
physiology and human health so does arginine. Yet, arginine is also considered a “semi-
essential” or “conditional essential” amino acid. This is due to normal cells’ intrinsic
ability to synthesize this molecule from citrulline and aspartate via argininosuccinate
synthase 1 (ASS1) and argininosuccinate lyase (ASL) in the urea cycle [11]. Citrulline can
be synthesized from glutamate [12], proline [13] and glutamine [14]. As such, normal cells
do not completely depend on external arginine. Yet, many cancer cells are “addicted” to
external arginine.

Figure 1. Arginine-related metabolic pathways. In normal cells, arginine can be directly transported into the cell or
synthesized from citrulline and aspartate in the urea cycle. The resources of citrulline include glutamine, glutamate and
proline. Arginine can be converted into nitric oxide (NO), urea and agmatine. Agmatine and ornithine are important
resource for putrescine, which is a key precursor for polyamines. ASS: argininosuccinate synthetase, ASL: argininosuccinate
lyase, ADC: arginine decarboxylase, AGM: agmatinase, ODC: ornithine decarboxylase, ARG: arginase, NOS: nitric oxide
synthase, OCT: ornithine carbamoyl transferase, OAT: ornithine aminotransferase, PDG: phosphate-dependent glutaminase,
P5CS: pyrroline-5-carboxylate synthase, ProDH: proline dehydrogenase.
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Much of our current understanding of the arginine effects on cancer metabolism is
derived from arginine-deprivation studies of ASS1-low cancer cells. The responses depend
on the cell types studied but generally can be put into two categories.

For breast and prostate cancer cells, arginine starvation causes global transcriptional
suppression of metabolic genes including those involved in oxidative phosphorylation
(OXPHOS) and mitochondrial functions, glycolysis, purine and pyrimidine synthesis, DNA
repair genes [15–18], due to epigenetic remodeling [19,20]. Removal of arginine causes
fragmentation of mitochondria and impairment of mitochondrial functions as measured
by OCR (oxygen consumption rate) and membrane potential [15,17,20,21]. The suppressed
transcription of genes involved in mitochondria functions is reflected by the metabolomics
studies which show the general depletion of TCA cycle metabolites such αKG, malate,
fumarate and succinate [17,20]. It was suggested that at least in breast cancer cells, such
depletions are in part due to the ER-stress mediated activation of ASNS (asparagine syn-
thetase), which depletes aspartate and diminishes aspartate-malate shuttle, negatively
impacting TCA [17]. The perturbation of OXPHOS reaction due to metabolite deple-
tion, perpetuated by the transcriptional suppression of nuclear-encoded OXPHOS genes,
generates copious amount of mtROS which leads to DNA damage and eventual cell
death [15–17,20]. Indeed, in these cells, functional knockout of mitochondria prevented
DNA damage and cell death [17]. Additional evidence for impairment of mitochondria by
arginine deprivation includes the morphological changes from hyperfusion at early stage
to fragmentation at late state [17,20]. This transition is caused by the reduced expression of
Mfn2 (mitofusin2) mediated by arginine deprivation-induced p38 activation and KAP-1
phosphorylation [21].

By contrast, arginine deprivation of ASS1-low melanoma and sarcoma cells leads
to downmodulation of glycolysis pathway with increased glutamine anaplerosis and
serine synthesis to sustain the TCA cycle [22,23]. The authors suggest the inhibition of
the Warburg effect is one reason how cancer cells adapt to the stress environment and
eventually become resistant to the treatment. A characteristic of these cells is the activation
of c-myc upon arginine deprivation [24,25], which is not necessarily the case in prostate
and breast cancers described above and may explain the differences in their responses to
arginine deprivation. c-myc is known to upregulate glutaminase and render cells addicted
to glutamine [26]. Accordingly, these types of tumors are synthetic lethal with glutaminase
inhibitor [22].

In either of the above cases, mitochondria are targeted by arginine deprivation and
arginine represents a major regulator of mitochondrial activities in cancer metabolism.

3. Arginine and Signal Transduction
3.1. Arginine Mediated Signals

There are at least two ways arginine can transmit signals to the cells. The first is
through transporters, solute carriers (SLCs) (Figure 2). As a cationic amino acid, arginine is
mainly imported by two types of SLCs, the cationic amino acid transporters and the system
y+L amino acid transporters [27,28]. It is noteworthy that arginine activates its downstream
mTOR signal via lysosomal SLC38A9 [29]. Arginine is the most consumed amino acid in
the inner necrotic core of tumor mass, indicating its high demand for the survival of tumor
cells [30]. Accordingly, tumor cells frequently overexpress specific types of SLCs such as
SLC6A14, SLC7A3, SLC7A9, etc. to meet their high arginine demand (Table 1). It should be
noted that T cells up-regulate distinct types of SLCs to increase arginine uptake for T cell
activation and anti-tumor functions [31,32] (Table 1). Thus, targeting the tumor specifically
with SCLs, and avoiding those expressed in T-cell and macrophage (e.g., SLC7A1, and A2)
could be a potential strategy for cancer therapy.
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Figure 2. Arginine-related signaling pathways. Arginine can be transported by solute carriers (SLCs),
including lysosomal SLC38A9, to activate the down-stream mTORC1 signaling pathway. In addition,
arginine also can bind G-protein coupled receptor, GPRCA6, to activate down-stream RAS/ERK or
PI3K pathway to reprogram the general.

Table 1. Summary of arginine transporters (solute carriers) in cancer vs. immune cells.

Cancer Immune Cells

SLC Type SLC Type

SLC7A1

Hepatocellular carcinoma
[33], colorectal cancer [34],

breast cancer [35],
leukemia [36]

SLC7A1 memory CD4(+) T cells and
CD8(+) T cells [37]

SLC6A14

Colorectal cancer [38],
cervical cancer [39],
pancreatic ductal

adenocarcinomas [40],
breast cancer [41]

SLC7A2 Macrophage [42]

SLC7A3 Osteosarcoma [43] - -

SLC7A9/SCL3A1 Breast cancer [44] - -

SLC214C1 Endometrial cancer [45] - -

SLC25A2 Colorectal cancer [46] - -

Subsequent to its transport, arginine is able to activate several signal pathways. Chief
among them is mTOR kinase. Arginine is one of only three amino acids that can directly
activate mTOR pathway, a major cellular sensor of nutritional state [47]. The other two are
glutamine and leucine. As such, arginine has profound impacts on protein synthesis, lipid
synthesis and nucleotide synthesis, three anabolic pathways mediated by mTOR [48]. Indeed,
nutrients [49,50]. are as important as growth factors in the activation of mTOR. Upon growth
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factor stimulation, mTOR can be activated through either PI3K (phosphatylinositol 3-kinase)
pathway or MAPK pathway, via the inactivation of TSC (tuberous sclerosis complex), an
mTOR negative regulator [51]. Inhibition of TSC converts the Rheb (RAS homolog enriched in
brain) into active form, resulting in the activation of mTORC1 (mTOR complex 1). There are
at least three ways, arginine can activate mTOR. (1) arginine disrupts the interaction between
TSC and mTORC1, thereby activating mTOR [52]. (2) in the lysosome, arginine interacts with
SLC38A9 and v-ATPase, upstream regulators of mTORC1, leading to the activation of Rag
GTPase that is required for recruitment of mTORC1 complex to the lysosomal surface [53,54].
(3) in the cytosol, arginine interacts with CASTOR1(cytosolic arginine sensor for mTORC1
subunit 1) to disrupt the CASTOR complex, which is a negative regulator of Rag A [55],
allowing Rag A to bind mTORC1 component RAPTOR (Regulatory-associated protein of
mTOR) and redistributes mTORC1 to the lysosome. This may explain why arginine is such a
potent activator of mTOR, and arginine deprivation leads to immediate inactivation of mTOR.

The second means arginine can transmit signal is through binding to L-amino acid
receptor, G-protein coupled receptor GPRCA6 [56]. In human fibroblast, GPRCA6 was
shown to activate PKA (activate protein kinase A), RAS/ERK (extracellular regulated
protein kinases) and PI3K/Akt/mTOR pathways [57,58] and in human prostate cancer
cell line, arginine/GPRCA6 pathway stimulates ERK pathway to mediate its growth and
progression [59].

There are additional ways that arginine may modulate cellular signal pathways.
As mentioned, arginine is a precursor to NO, by the action of NO synthase (NOS) [60].
The duality of NO functions as a signaling messenger in cancer has been noted [61]. NO was
regarded as an anti-tumor reagent due to its antioxidant capacity and radical scavenging
property [62]. Emerging evidence, however, shows a diverse role of NO in tumorigenesis,
including angiogenesis, metastasis, anti-apoptosis, anti-host immune response [63]. The
increased level of NO and NOS expression has been observed in cancer patients, which is
highly correlated with VEGF expression, angiogenesis [64] and metastasis [65]. Induction of
NO and NOS leads to the inactivation of tumor suppressors, such as p53 [66] and pRb [67].
It has also been shown that induction of NOS and cyclooxygenase (COX-2) increased the
level of NO and prostaglandins, which leads to angiogenesis in cancers [68–70]. Another
way NO exerts its effect is through S-nitrosylation of key molecules involved in cancer
induction such as EGFR and TSC2 which impacts mTOR pathway [71,72].

In addition to cell growth, NO affects immune cells in tumor microenvironment and
again, in a dual mode. The dual roles of NO in carcinogenesis notwithstanding, arginine
is generally considered as a tumor-promoting metabolite, very much needed for tumor
growth [73].

3.2. Arginine Deprivation Induced Signals

Consistent with arginine being an activator of mTOR and PI3K pathways, numerous
studies showed that arginine-deprivation suppresses mTOR and p70S6K activation with
consequent inactivation of PI3K/Akt pathway [74,75] (Figure 3). In addition, arginine-
deprivation activates AMPK (5’ adenosine monophosphate-activated protein kinase), due
to the reduced mitochondrial OXPHOS activities and ATP production, which further
suppresses mTOR activities through inactivating phosphorylation [75]. The consequences
of severe mTOR suppression include aggressive autophagy and diminished synthesis of
proteins, lipids and nucleotides [75,76].
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Figure 3. Arginine deprivation signaling pathways. In contrast to arginine stimulation, arginine
deprivation suppresses mTOR pathway via activation of AMPK. Additionally, arginine deprivation
induces p38-signaling pathway, which impairs mitochondria functions. Arginine deprivation also
can induce ER stress via GCN2, resulting in aspartate exhaustion and decreased DNA synthesis.
In general, arginine deprivation causes cancer cell death. EMT: epithelial-mesenchymal transition.

Arginine deprivation also activates stress-response kinase p38, which impacts mito-
chondria functions, by (1) activating KAP1 (KRAB-associated protein 1) and mitochondrial
fission [21] and (2) translocates nuclear TEAD4 (TEA Domain Transcription Factor 4) to
cytosol, resulting in the reduced nuclear OXPHOS gene expression and mitochondrial
functions [19].

Arginine deprivation in the form of nutritional stress-mediated GCN2 (general con-
trol nonderepressible 2) activation and ER stress pathway, leading to ATF4 (activating
transcription factor 4) and ASNS activation and increased consumption of aspartate. As-
partate exhaustion is one reason arginine-deprivation causes the death of ASS1-low cancer
cells [17].

4. Arginine and Epigenetic Regulation

Recent studies showed that arginine can act as an effective epigenetic modulator [19].
In cancer cells, arginine is a strong inducer of histone acetylation, globally enhancing the ex-
pression of metabolic, mitochondrial and DNA repair genes. Histone acetylation involves
the transfer of acetyl group from acetyl-CoA to histone mediated by HATs (histone acetyl-
transferases) and KATs (lysine acetyltransferases), which is counteracted by deacetylation
enzymes such as HDACs (histone deacetylases) and SIRTs (sirtuins). Several enzymes
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including ACLY (ATP citrate synthase), ACSS1 (Acyl-coA synthetase short-chain family
member 1) and ACSS2 (Acyl-coA synthetase short-chain family member 2) contribute to
the synthesis of acetyl-CoA. In arginine stimulated cells, the acetyl-CoA level significantly
increases so do the expression levels of ACLY, ACSS2 and the majority of HATs and KATs.
By contrast, the expressions of several of the HDACs and SIRTs are decreased. These results
together could account for the increased global histone acetylation observed. Since mTOR
is known to activate ACLY and ACSS [77,78], arginine stimulation of histone acetylation
is in part attributed to the activation of mTOR. The global increase of histone acetylation
however is not random but has region specificity, which is dictated by several transcription
factors including TEAD4, STAT3 (signal transducer and activator of transcription 3), WT1
(Wilms’ tumor 1) and TFAM (mitochondrial transcription factor A).

Conversely, arginine deprivation leads to depletion of α-KG, which has profound effects
on epigenetic regulation. As described above, arginine deprivation immediately affects
mitochondrial functions [15,17,20,21] with consequent depletion of mitochondrial metabolites
including α-KG. Alpha-KG is a cofactor of jumonji domain C containing histone demethylases
(KDMs). As such, histone methylation generally increases during arginine deprivation. Most
prominent are H3K9me3 and H3K27me3, two repressive marks contributing to gene silencing.
These marks decorate genes involved in mitochondrial functions including OXPHOS, purine
and pyrimidine synthesis, DNA repair, etc. (Figure 4). The consequence of such epigenetic
repression is mitochondrial dysfunction, generation of reactive oxygen species (ROS), DNA
damage and slow DNA repair, features which figure prominently in arginine-deprived tumor
cells [15,17,20].

Figure 4. Arginine acts as an epigenetic regulator. In the presence of arginine, mTOR induces
the ACLY and ACSS2 to increase the level of acetyl-CoA, which is the main resource of histone
acetyl-transferases (HATs). Increased histone acetylation induces the chromatin-remodeling and
gene activation. Conversely, arginine deprivation causes metabolites depletion, including alpha-
ketoglutarate (α-KG), which down-regulates lysine-demethylases (KDMs) and induces globe repres-
sive histone methylations.



Cancers 2021, 13, 3541 8 of 29

5. Arginine and Genome Integrity

Sufficient arginine is required for maintaining nucleotide pool and DNA repair capac-
ity. Although arginine is not directly involved in the synthesis of nucleotide, arginine can
be converted to glutamine, proline and serine, precursors of pyrimidine and arginine abun-
dance affects genome integrity. As described above, arginine augments the transcription
of genes involved in purine and pyrimidine synthesis. In addition, by virtue of activat-
ing mTOR/S6K pathway, arginine promotes the phosphorylation and oligomerization
of CAD complex (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and
dihydroorotase) to enhance pyrimidine synthesis [79,80]. On the other hand, both argi-
nine and pyrimidine syntheses require aspartate and they “compete” for this metabolite.
Tumor cells often augment pyrimidine synthesis by suppressing arginine synthesis via
epigenetic silencing of ASS1 [81,82], the basis of arginine-deprivation therapy. As described
above, arginine deprivation also activates ATF4/ASAN which converts aspartate to as-
paragine causing depletion of nucleotide pool. In this scenario, the cell death caused by
arginine-deprivation can be partially rescued by the addition of aspartate or nucleotide
precursors [17].

In addition to arginine’s ability to epigenetically regulate the transcription of DNA
repair genes, arginine affects DNA repair through the synthesis of polyamines. Polyamines
interact with negatively charged DNA and plays a key role in maintaining the genome
stability [83]. Polyamine depletion impairs DNA repair [84] and sensitizes cancer cells to
genotoxic reagents [85,86]. Consistently, arginine deprivation which significantly reduces
the polyamine levels [87] synergizes with polyamine inhibitors in the killing of cancer
cells [87].

As arginine deficiency both depletes nucleotide pool and slows down DNA repair
in tumor cells, it is no surprise that arginine starved tumor cells exhibit extensive DNA
damages [16,17,20]. In ASS1-low pancreatic ductal adenocarcinoma, arginine deprivation
exacerbates the HDAC inhibition-induced downregulation of C-terminal-binding protein-
interacting protein (CtIP), a key protein for homologous recombination, leading to DNA
damage and cell death [82]. In prostate and pancreatic cancer cells, arginine-starvation
induced caspase-independent autophagic cell death with the appearance of nuclear DNA
leakage and chromatin-autophagy (chromatophagy) [16]. This is caused by mitochondrial
dysfunction and ROS production in the presence of excessive autophagy. Depletion of
mitochondria or removal of ROS by NAC attenuates the DNA leakage phenotype and cell
death [17]. In a study of ASS1-low melanomas, regardless of the BRAF status, arginine
deprivation down-modulates FANCD2 and p-ATM, which are important initiators for
DNA double strand break repair [88]. Although in this cell type, arginine deprivation alone
does not induce DNA damage, combined treatment with cisplatin increases DNA double
breaks, possibly due to persistent downregulation of DNA repair machinery caused by
arginine deprivation. Taken together, arginine affects nucleotide synthesis/DNA repair in
a complex way. The nucleotide insufficiency and down-modulated DNA repair machinery
may underlie the arginine deprivation-induced DNA damage and its deficiency impairs
this process and causes death of tumor cells.

6. Arginine and Immunomodulation

Arginine is a crucial immune-modulating amino acid for both innate and adaptive
immunity [89,90]. It is involved in the activation of T-cell via the upregulation of T-cell
receptor [91] and accelerating cell cycle progression [32]. Depletion of arginine has been
used by tumor cells to generate an immunosuppressive micro-environment. Cancer cells
release factors (G-CSF, GM-CSF, CCl2, etc.) to convert myeloid cells into immunosuppres-
sive phenotypes (e.g., MDSC, myeloid-derived suppressive cells, or M2 macrophages) [92].
These cells are characterized by the expression and release of arginase [93]. Arginase pro-
duced by macrophages and MDSCs depletes extracellular arginine and hence suppression
of T cell proliferation [94,95]. Supplement of arginine rewires T cell metabolism from glycol-
ysis to OXPHOS and promotes its survival and anti-tumor ability [96]. Arginase inhibitors
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thus have been developed and under clinical trials as cancer therapy to counteract such
immune suppression [97]. This presents an interesting duality of arginase as cancer therapy.
On the one hand, arginase itself can effectively starve ASS1-low tumor cells to death. On
the other, arginase inhibitor could help boost the immune defense system to suppress the
growth of cancer cells. Arginine also affects innate immunity primarily via the synthesis
of NO. Besides acting as a neurotransmitter and vasodilator, at high concentration, NO’s
radical property enables spontaneous reactions with oxygen to form reactive nitrogen
oxide species (RNOS) [98]. These RNOS reacts with DNA, protein and lipid causing DNA
damage, protein dysfunction, and lipid peroxidation, which contributes to the antimi-
crobial and tumoricidal activities [99]. NO’s synthesis is limited by arginine availability.
NO is synthesized by inducible nitric oxide synthase (iNOS) in M1 macrophages, which
converts arginine into citrulline and NO (Figure 1). NO induces metabolic rewiring in M1
macrophages [100], and inhibition of iNOS induces M1 polarization into M2 type [101].
Indeed, the two arginine-metabolizing enzymes, iNOS from M1 macrophage and arginase
from M2 macrophage compete for arginine to modulate innate immune responses [90].
In addition to cancer cells, several infectious bacteria and parasites also utilize the same
strategy to create immunosuppressive niche by enhancing arginase expression in M2
macrophages, such as mycobacteria, Helicobacter pylori and Leishmania major [102–104].

Although the correlation between arginine removal by arginase and T cell suppression
has been well established, how systemic removal of arginine affects the tumor microenviron-
ment and tumor growth remains poorly understood. In a study of the effect of autophagy
on tumor growth, it was found that autophagy-negative (Atg-/-) mouse released abundant
arginase in the serum with consequent systemic depletion of arginine [73]. In these mice,
ASS1-low syngeneic murine melanoma cells failed to grow with the infiltration of CD8
positive cells, indicating the T cell immune response is not severely affected by systemic
depletion of arginine.

In another study, when human peripheral blood mononuclear cells (PBMCs) are
stimulated by anti-CD3/CD28 antibodies, co-treatment with ADI-PEG20 does not block T
cell activation; instead, arginine deprivation sustains the CD69+ T cells up to 72 h [105].
In the meantime, the induction of CTLA4 and PD-1 in activated T cells is blunted by
arginine deprivation, and arginine deprivation also prevents Treg cells differentiation.
Although arginine deprivation decreases cell proliferation of activated T cell as shown by
previous studies, T cell infiltration is not compromised in syngeneic models [73,105].

Furthermore, using murine MC38 colon cell model, it was shown that ADI-PEG20 is
able to induce apoptotic and immunogenic cell death with the phenotypes of cell exposure
of calreticulin, the release of HMGA1 and ATP, which is enhanced by N-acetylcystein [106].
These “eat me” signals resulted in increased phagocytosis by bone marrow-derived den-
dritic cells. Another intriguing study shows that upon ADI-PEG20 treatment, the sur-
rounding human T cells, which express ASS1, are still able to proliferate by taking up
citrulline from the byproduct of ADI reaction and generate arginine intracellularly [107].
These studies, taken together, suggest arginine deprivation, despite its ability to suppress
T-cells, are able to elicit immune responses.

More and more studies reveal that innate immunity is also crucial for anti-tumor
responses [108], such as NK cell-mediated immunosurveillance [109]. In this regard, it is
interesting that a recent study showed that arginine-deprivation activated innate immune
response and turned “cold” tumors “hot” [20]. This is caused by cGAS-STING activation
triggered by nuclear DNA leakage caused by arginine-starvation induced chromatin-
autophagy. Preclinical models further showed the enhanced infiltration of immune cells
in dietary arginine restricted animal model and this process is dependent on the activ-
ity of cGAS. Thus, arginine’s role in immunomodulation is complex and under certain
circumstances, it may enhance the anti-tumor immunity.

Increasing evidence shows that arginine deprivation induces autonomous cancer cell
death and enhances immune response. Dietary arginine-restriction offers a promising
option for prevention and intervention.
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Hitherto, we narrated the significance of arginine from the perspective of its role
in tumorigenesis which reveals the potential of arginine deprivation as cancer therapy.
In the ensuing sections, we will focus on arginine-deprivation therapy. We will first
describe how arginine deprivation induces cancer cell death via different mechanisms and
comprehensively summarize the current applications of arginine deprivation therapy on
various cancers and discuss the associated challenges.

7. Arginine Deprivation and Cell Killing

Arginine deprivation suppresses the growth and induces cell death of ASS1-low
cancer cells. The general mechanisms associated with cell killing have been studied in a
number of systems (Figure 5).

Figure 5. Arginine deprivation-induced types of cell death. The general cell-killing mechanisms by arginine depriva-
tion include caspase-dependent apoptosis, caspases-independent apoptosis, caspase-independent autophagic cell death
and necorptosis.

7.1. Caspase-Dependent Apoptosis

This is the major mechanism associated with arginine-deprivation induced cell death,
which operates in many cancer types including pleural mesothelioma cells [110], lymphoma
cells [111], pancreatic cancer cells [82,112], ovarian cancers [113], sarcoma cells [114],
T-lymphoblastic leukemia cells [115], liver cancer cells [116] and melanoma [117].

7.2. Caspase-Independent Apoptosis

Syed N et al. and Kelly MP reported that in some glioma cells and small cell
lung carcinoma respectively, arginine deprivation-induced apoptosis, but it is caspase-
independent [118,119]. The detailed mechanism remains to be elucidated.

7.3. Caspase-Independent Autophagic Death

Arginine deprivation inhibits mTOR, which is a negative regulator of autophagy. Ac-
cordingly, arginine deprivation is often accompanied by aggressive autophagy. Autophagy
is a major means to regenerate arginine, which protects cells from nutrient stress. However,
prolonged arginine deprivation leads to excessive and aberrant autophagy. This, coupled
with ROS-induced DNA damage, leads to chromatin-autophagy or chromatophagy, where
autolysosome fused with nuclear membrane and “extracts” broken chromatin out of nu-
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cleus [16], eventually leading to caspase-independent cell death. This was observed in
prostate cancer cells [16], breast cancer cells [15]; hepatocellular carcinoma cells [120] and
pancreatic cells [121].

In general, arginine deprivation initially induces autophagy to protect cells from
starvation and at the same time, generates ROS (due to mitochondria impairment) and
DNA damages which trigger apoptosis. During this early phase, an autophagy inhibitor
such as chloroquine would increase cell death and enhances the drug efficacies [121].
For some cancer cells, however, autophagy persists and captures damaged broken DNA,
leading to nuclear DNA leakage and cell death [20].

7.4. Necroptosis

As described above, arginine-deprivation induces autophagy which initially exerts
a protective role and co-treatment with the autophagy inhibitor, chloroquine, and can
facilitate the cell death [75,111,114,118]. In one study [114], it was shown such a treatment
activates RIP kinase cascade, leading to necroptosis. Genetical knock-down of RIP1 or RIP3
or pharmaceutical treatment with necroptosis inhibitor, necrostatin, can protect against the
co-treatment mediated cell death [114].

8. Arginine Deprivation and Cancer Therapy

The suppressed expression of ASS1, mainly due to promoter methylation [111], is
making it the most prevalent metabolic deficiency of cancer and rendering cancer cells “ad-
dicted” to external arginine [122]. Given the importance of arginine in cellular processes and
being the most consumed amino acids in the inner mass of tumors, it is counter-intuitive
that ASS1 is epigenetically suppressed in cancer cells. As described above, one possible
explanation is that ASS1 diverts aspartate to arginine synthesis from pyrimidine/purine
synthesis which is much needed for tumor cells [81]. In addition, recent reports that ASS1
has other tumor suppressor functions such as inhibiting AKT activity [15,16,123]. Several
studies showed that overexpression of ASS1 in tumor cells suppresses cell growth and
ASS1 behaves as a tumor suppressor [17,124]. At any rate, ASS1 deficiency is a selective
trait of tumor cells, making arginine deprivation a highly promising therapeutic strategy.
Currently, there are two arginine deprivation therapies under clinical trials: ADI-PEG20 (pe-
gylated arginine deiminase) and PEG-BCT-100 (pegylated recombinant human arginase1).
A comparison of these two reagents is shown in Table 2.

Table 2. Comparison of arginine-depleting enzymes.

Comparison of the
Enzymatic Properties

Pegylated Arginine
Deiminase (ADI-PEG20)

Pegylated Recombinant
Human Arginase I

(PEG-BCT-100)

Reaction products L-citrulline + ammonia L-ornithine + urea

Arginine affinity High (Km~0.1–1 mM) Low (Km~2.9mM) [125]

Half-life 7 days [126] 2~3 days [125]

Time requires to maximal
arginine depletion in plasma 4 days [127] 4 h [125]

Origin of enzyme [4] Mycoplasma Human

Immunogenicity [128] Antigenic (requires
pegylation) No

Clinical trials
(Clinicaltrials.gov)

25 trials
Phase I, II, III

10 trails
Phase I, II

They both are effective in depleting serum arginine, yet they are not completely in-
nocuous. As discussed above, ADI-PEG20 generates citrulline and ammonia, and citrulline
is able to affect the surrounding immune cells to generate arginine. PEG-BCT-100 produces

Clinicaltrials.gov
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ornithine and urea, and ornithine can fuel tumor cells to generate polyamines. The concen-
trations of ammonia and urea also need to be monitored during treatment. Nevertheless,
these reagents have been shown to be effective and safe. The promising prospect of using
arginine deprivation to starve cancer cells to death has in recent years, fueled the preclinical
studies, in vitro (cell lines) and in vivo (xenografts) on a variety of ASS1-low tumors.

8.1. Preclinical Studies

Table 3 is an updated summary of publications on the application of ADI to different
cancer cell lines. While the detailed cell killing mechanisms may vary among different cell
types (see next section), ADI effectively inhibits the growth and survival of ASS1-low tumor
cells, and in those cases tested, the susceptibility to ADI is inversely correlated with the level
of ASS1. Resistance to ADI is related to recovery of ASS1 expression. These studies provide
strong evidence that ASS1 expression level is a predictor for arginine-deprivation therapy.
The table also listed combination treatments of chemotherapeutic agents with ADI on
different cell lines. ADI synergizes with cisplatin, oxaliplatin, docetaxel, gemcitabine, TMZ
to enhance the killing effects and in some cases, help overcome resistance to these drugs.

Table 3. ADI preclinical studies.

ADI as a Single Agent

Type of Cancer Cell Line Remarks Ref

Bladder cancer T24, J82, UM-UC-3, 5637,
RT112, and RT4

ADI-PEG20 reduces the colony formation and cell viability
by caspase-independent apoptotic cell death in

ASS1-deficient cell lines.
[129]

Breast MDA-MD-231, ZR-75, T47D,
MCF-7, SK-BR-3, MCF-10A

ADI-PEG20 induces the autophagy-dependent cell death,
leading to mitochondrial dysfunction and growth

inhibition.
[15]

Cholangiocarcinoma HuCCA, RmCCA-1, BJ-1 ADI-PEG20 treatment reduces cholangiocarcinoma cell
viability and proliferation. [130]

Colon carcinoma,
Bladder carcinoma HCT116, UMUC3 ADI-PEG20 reduces hypoxia-induced NO pathway and

vascular perfusion. [131]

Head and neck cancer
FaDu, HONE-1, KB, OEC-M1,

UMSCC-1, SCC-4, SCC-15,
SCC-25

ADI-PEG20 inhibits the proliferation of head and neck
cancer cells. [132]

Lymphomas NcNc, Karpas-422, MyLa ADI-PEG20 induces the caspase-dependent apoptosis in
ASS1-methylated lymphoma cell lines. [111]

Melanoma A2058, SK-Mel-2, A375 ADI resistant cell lines are preferentially sensitive to
glycolytic inhibitors and glutaminase inhibitors [23]

Melanoma A375, A2058, SK-MEL-2 ADI-resistance is due to the induction of ASS1 expression
via c-Myc/HIF-1α/Sp4 pathway [133]

Melanoma, Breast
cancer

UCSD354L, UACC62,
UACC257, MEL1220, A20558,
A375, SK-MEL-2, SK-MEL-5,
SK-MEL-624, WM35, WM46,
WM1799, WM2664, WM3248,
SB-2, MDA-MB-231, SKOV3

ADI-resistance is due to the induction of ASS1 expression
via Gas6/Axl/Shp2 signal. [134]

Melanoma, Breast
cancer

A2058, A375, BJ-1, WM2664,
BT20, BT549, Hs578T,

MDA-MB-157, MDA-MB-231,
MDA-MB-436, MDA-MB-453,

MDA-MB-468, HCC70,
HCC38, HCC1806

Knockdown of GLS increase the sensitivity to ADI-PEG20 [135]

Myxofibrosarcoma OH931, NMFH-1, and
NMFH-2

ADI-PEG20 attenuates the cell viability in ASS1-deficient
myxofibrosarcoma cells [124]
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Table 3. Cont.

ADI as a Single Agent

Type of Cancer Cell Line Remarks Ref

Ovarian cancer
OVCAR3, CAOV3, OVCAR4,
IGROV1, TOV112D, OVCAR8,

OV90, ES2, TOV21G

The ASS1 expression levels in ovarian cancer cell lines are
inversely correlated with the susceptibility to ADI-PEG20 [136]

Pancreatic cancer
MiaPaCa-2, AsPc-1, BxPc-3,

Capan1, HPAC, SW1990,
L3.6pl, Panc-1

ADI-PEG20 enhances the radio-sensitization by triggering
the ER stress pathway, resulting in apoptosis in pancreatic

tumor cells.
[137]

Pancreatic cancer
BxPC-3, Capan-I, HPAC,

HFAF-II, L3.3, MIA-PaCa-2,
Panc-1

ADI-PEG20 inhibits the pancreatic cancer cell growth via
induction of apoptosis [112]

Prostate cancer CWR22 ADI-PEG20 induces the mitochondrial dysfunction, nuclear
DNA leakage, and chromatin autophagy [16]

Renal cell carcinoma UOK262 ADI-PEG 20 inhibits the cellular proliferation in fumarate
hydratase-deficient cells [138]

Small-cell lung cancer

GLC1, GLC8, NCI-H1092,
NCI-H2141, SBC4, NCI-H82,

NCI-H524, NCI-H446,
NCI-H889, NCI-H69,

NCI-H1963, H1048, DMS53

MYC-driven human SCLC is preferentially sensitive to
ADI-PEG20 in vivo [139]

Small-cell lung cancer

SW1222, SK-LC-13, SE1271,
NCI-H82, NCI-H146,

NCI-H209, SHP-77, NCI-H740,
NCI-H889, NCI-H526,

NCI-H69

ADI-PEG20 induces apoptosis and autophagy in
ASS1-negative SCLC cell lines [119]

Combination treatment with ADI-PEG20

Co-targeting
reagent(s) Type of cancer Cell line Remarks Ref

Chloroquine Glioblastoma

DBTRG, GAMG,
SNB19, U87, U118, CCF,

LN229, 8MG, T87G,
MO59J, MO59K, 42MG

Combination of chloroquine
inhibits autophagy and

accelerates ADI-PEG20 induced
cell death

[118]

Chloroquine Sarcoma

Osteosarcoma (U-2 OS,
MNNG/HOS, MG-63,

NOS-1, HuO 9N2),
Leiomyosarcoma

(SK-LMS-1, SK-UT-1,
SK-UT-1B), Synovial

sarcoma (SYO-1, Fuji),
Chondrosarcoma
(HCH-1), Ewing’s

sarcoma (LUPI, RD-ES,
SK-ES), Alveolar soft

part sarcoma (ASPS-1)

The combination of chloroquine
with ADI-PEG20 causes

synthetic lethality via
necroptosis in sarcoma cell lines

[114]

Cisplatin Bladder cancer T24, J82, RT4

Ass1 is down-regulated in
cisplatin-resistant bladder cancer

cells. The combination with
ADI-PEG20 increases the
susceptibility and induces

apoptosis in cisplatin-resistant
cancer cells.

[140]
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Table 3. Cont.

ADI as a Single Agent

Type of Cancer Cell Line Remarks Ref

Cisplatin Hepatocellular carcinoma

Sk-Hep1, Huh7, Tong,
HCC36, Hep3B,

Malhavu, PLC5, Huh6,
HepG2, SNU398 and

SNU182

The combination of cisplatin
with ADI-PEG20 suppresses
ASS1 expression in HCC cell

lines

[141]

Cisplatin Melanomas A375, Sk-Mel2, A2058,
Mel1220

The combination of cisplatin
with ADI-PEG20 enhances the

cell death via apoptosis in
melanoma cells

[142]

Cisplatin

Small-cell lung cancer, Ovarian
cancer, Ovarian

adenocarcinoma, Glioblastoma,
Melanoma

SCLC, S, H465, SR2,
A2780, A2008, A172,

A2058

The combination of cisplatin
with ADI-PEG20 induces

synergistical lethality
[143]

Docetaxel Sarcoma, pancreatic cancer,
and melanoma

SK-LMS-1, SK-UT-1,
HTB-93, HT-1080,

SK-MEL-2, AS-Pc-1,
MiaPaCa-2, MNNG,

RDES, and RD HPAC,
SYO-1 and FUJI, LUPI,

RH28

The combination of docetaxel
with ADI-PEG20 overcomes the

gemcitabine resistance
[144]

5-Flurouracie Hepatocellular carcinoma
(HCC)

BJ1, A2058, Mel1220,
SNU398, SNU387,

HepG2, Huh-1

The combination of ADI-PEG20
with 5-FU improves the

anti-tumor effect in
ASS1-negative HCC cells

[145]

Gemcitabine Pancreatic cancer MIA-PaCa2, PANC-1,
L3.3

The combination of gemcitabine
synergistically enhances

ADI-PEG20 anti-tumor effect
[146]

Oxaliplatin Colorectal cancer HCT116, SW480, RKO,
HT29

The combination ADI-PEG20
with Oxaliplatin shows the

synergistic growth inhibition in
the ASS1-negative cell lines

CRCs

[147]

Paclitaxel Prostate cancer CSR22Rv1, PC3,
LNCaP

The combination of paclitaxel
with ADI-PEG20 retards

CWR22Rv1 tumor growth
in vivo

[75]

Temozolomide Glioblastoma LN229 and U87

The combination of ADI-PEG20
with Temozolomide suppresses
the tumor growth irrespective of

ASS1 status

[148]

TNF-related
apoptosis-inducing

ligan (TRAL)

Malignant pleural
mesothelioma (MPM)

H211, H290, H2052,
H2373, GARD REN,

BJ-1

The combination of TNF-related
apoptosis-inducing ligan (TRAL)
enhances ADI-PEG20 mediated

apoptosis in MPM cells

[149]

TNF-related
apoptosis-inducing

ligan (TRAL)
Melanoma A375, A2058

The combination of TRAIL with
ADI-PEG20 accelerates the cell

death in melanoma cell lines
[150]

HAT inhibitor(s) Melanoma A2058, K-Mel-2, RCC4
The combination of HAT

inhibitors enhances ADI-PEG20
cell killing effect.

[151]
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Table 3. Cont.

ADI as a Single Agent

Type of Cancer Cell Line Remarks Ref

HDAC inhibitor(s) Pancreatic cancer

Panc1, MiaPaca2,
Panc02.03, HS766t,

HPAF-II, Suit2, Su8686,
Panc03.27, Panc10.05

The combination of HDAC
inhibitors with ADI-PEG20

induces the degradation of DNA
repair enzyme,

C-terminal-binding protein
interacting protein (CtIP),

resulting in DNA damage and
apoptosis.

[82]

BET bromodomain-
targeting c-Myc

inhibitor
Melanoma A2058

The combination of ADI-PEG20
with JQ1, a BET

bromodomain-targeting c-Myc
inhibitor, significantly enhances
the killing effect in ADI-resistant

cells

[152]

Polyamide inhibitor Mesothelioma MSTO, Ju77, H28, H226

The combination of polyamide
inhibitor with ADI-PEG20

causes synthetically lethal effect
in MPM cells

[87]

PHGDH or GLS
inhibitor Leiomyosarcoma, Melanoma SKLMS1, SKUT1,

SKMEL2

The combination of ADI-PEG20
with PHGDH or GLS inhibitor

significantly increases cell death
[22]

N-acetylcysteine Breast MDA-MD-231
Combination of N-acetylcysteine

with ADI-PEG 20 induces the
immunogenic cell death.

[106]

PI3K/AKT inhibitor Melanoma, Breast cancer
A2058, SK-MEL-2,
MDA-MB-231, and

A375

The combination of PI3K/AKT
inhibitor enhances

ADI-PEG20–mediated cell
apoptosis.

[24]

8.2. Clinical Trials

Indeed, among the AA (amino acid) deprivation therapies, arginine deprivation is
the most advanced (Table 4). The first-generation arginine-deprivation therapy was based
on arginase which suffers from the low enzymatic activity and sub-optimal pH [7,153].
The second-generation arginine-deprivation therapy, include human-recombinant arginase I
(PEG-BCT-100) and pegylated-ADI (ADI-PEG20) showed significant promises [126,154,155].
Considering the adverse effects of arginase I on immunity described above, the arginase
inhibitor (CB-1158) is being evaluated in vivo [97] and clinical trials (Table 4). We will update
the clinical trials of both ADI-PEG20 and PEG-BCT-100 in Table 4. There are more than 20
clinical trials of ADI-PEG20 on more than 12 types of cancer, which have been completed or are
ongoing. In most cases, phase I/II were completed with an excellent safety profile (Table 4).
Co-targeting with other anti-cancer therapy is being developed. Trials on hepatocellular
carcinoma and mesotheliomas are the most advanced and have reached phase III. The phase
III mesothelioma trial involving pemetrexed, cisplatin and ADI-PEG20 is ongoing and actively
recruiting. The phase III hepatocellular carcinoma trial with ADI-PEG20 as monotherapy
did not reach the intended goal [156]. One of possibilities is the treatment induces anti-ADI-
PEG20 antibody, which neutralized the ADI-PEG20 [157]. Another possibility is due to the
re-expression of ASS1 with prior treatment, such as sorafenib, which may reduce the efficacy
of ADI-PEG20 [156]. The possible mechanism of drug resistance is discussed in the following
section. Arginase clinical trials are mostly in phase I and II. In Table 4, we also included
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clinical trials for arginase inhibitors, which are intended to enhance the T-cell functions and
anti-tumor activities.

Table 4. Clinical trials for arginine-depletion enzymes and an arginase inhibitor.

Start Date NCT Number Type of Cancer Treatment Phase Status Ref

Trials for pegylayed arginine deimnase

Jun-2020 NCT04587830
Glioblastoma
Multiforme

(GBM)

ADI-
PEG20|Temozolomide Phase 1 Recruiting

Apr-2019 NCT03922880 Uveal
Melanoma

ADI-
PEG20|Nivolumab|

Ipilimumab
Phase 1 Active, not

recruiting

Jun-2018 NCT03498222
Carcinoma,

Non-Small-Cell
Lung

ADI-
PEG20|Atezolizumab|
Pemetrexed|Carboplatin

Phase 1 Withdrawn

May-2018 NCT03449901

Soft Tissue
Sarcoma|

Osteosarcoma|
Ewing’s

Sarcoma|
Small Cell Lung

Cancer

ADI-
PEG20|Gemcitabine|

Docetaxel
Phase 2 Active, not

recruiting

Aug-2017 NCT02709512 Mesothelioma
ADI-PEG20

|Pemetrexed and
Cisplatin

Phase 2|
Phase 3 Recruiting

Jul-2017 NCT03254732 Advanced Solid
Cancers

ADI-
PEG20|Pembrolizumab Phase 1 Active, not

recruiting

Jan-2017 NCT02875093 Acute Myeloid
Leukemia

ADI-
PEG20|Cytarabine Phase 1 Terminated [158]

Jan-2015 NCT01910012 Acute Myeloid
Leukemia ADI-PEG20 Phase 2 Completed [159]

Nov-2014 NCT02101580
Advanced
Pancreatic

Cancer

ADI-PEG20 Plus
Nab-Paclitaxel and

Gemcitabine
Phase 1 Completed [160]

Nov-2014 NCT02101593 Hepatocellular
Carcinoma ADI-PEG20|Sorafenib Phase 1 Completed

Nov-2014 NCT02102022

Advanced Gas-
trointestinal

(GI)
Malignancies|
Hepatocellular

Carci-
noma|Gastric

Can-
cer|Colorectal

Cancer

ADI-PEG20|modified
FOLFOX6

Phase 1|
Phase 2 Terminated [161]

Oct-2014 NCT02006030
Unresectable

Hepatocellular
Carcinoma

ADI-
PEG20|Transarterial
chemoembolization

Phase 2 Completed
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Table 4. Cont.

Start Date NCT Number Type of Cancer Treatment Phase Status Ref

Apr-2014 NCT02029690

Pleural
Mesothelioma
Malignant Ad-

vanced|Peritoneal
Mesothelioma

Malignant
Advanced|Non-

squamous
Non-small Cell

Lung Carci-
noma|Uveal

Melanoma|Hepatocellular
Carci-

noma|Glioma|Sarcomatoid
Carcinoma

ADI-PEG20 With
Pemetrexed and

Cisplatin
Phase 1 Terminated [162,

163]

Apr-2014 NCT01948843
HER2 Negative

Metastatic
Breast Cancer

ADI-
PEG20|Doxorubicin Phase 1 Completed

Dec-2013 NCT01910025 Non-Hodgkin’s
Lymphoma ADI-PEG20 Phase 2 Completed

Sep-2012 NCT01665183

Cutaneous
Melanoma,

Uveal
Melanoma,

Ovarian
Carcinoma or

Other
Advanced Solid

Tumors

ADI-PEG20|Cisplatin Phase 1 Completed [164]

Dec-2011 NCT01528384
Arginosuccinate

Synthetase
Deficient

ADI-PEG20 Phase 1 Completed

Sep-2011 NCT01497925

Solid Tu-
mors|Prostate
Cancer|Non-

Small Cell Lung
Cancer

ADI-PEG20|Docetaxel Phase 1 Completed [165]

Jul-2011 NCT01287585 Hepatocellular
Carcinoma ADI-PEG20 Phase 3 Completed [156]

Jan-2011 NCT01266018 Small Cell Lung
Cancer ADI-PEG20 Phase 2 Terminated

Jan-2011 NCT01279967
Malignant

Pleural
Mesothelioma

ADI-PEG20 Phase 2 Unknown
status [166]

Jul-2007 NCT00520299

Metastatic
Melanoma|Skin

Can-
cer|Neoplasm

ADI-PEG20 Phase 1|Phase
2 Completed [127]

Jun-2004 NCT00450372 Melanoma
(Skin) ADI-PEG20 Phase 2 Completed [167]

Sep-2002 NCT00056992 Carcinoma,
Hepatocellular ADI-PEG20 Phase 2 Completed
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Table 4. Cont.

Start Date NCT Number Type of Cancer Treatment Phase Status Ref

Sep-2001 NCT00029900
Melanoma|
Neoplasm
Metastasis

ADI-PEG20 Phase 1 Completed

Trials for pegylated recombinant human arginase and arginase-1 peptide vaccine

Dec-2018 NCT03689192

Non Small Cell
Lung Can-

cer|Urothelial
Carci-

noma|Malignant
Melanoma|Ovarian

Can-
cer|Colorectal
Cancer|Breast

Can-
cer|Squamous
Cell Carcinoma
of the Head and
Neck|Metastatic

Cancer

Arginase-1 Peptide
Vaccine

(ARG1-18,19,20)
Phase 1 Recruiting

Aug-2018 NCT03455140

Cancer|Pediatric
Solid Tu-

mor|Pediatric
AML|Pediatric

ALL

Pegylated
Recombinant Human
Arginase (BCT-100)

Phase 1|
Phase 2 Recruiting

Sep-2016 NCT02899286

Relapsed or
Refractory

Acute Myeloid
Leukemia

Pegylated
Recombinant Human
Arginase (BCT-100)

Phase 2 Unknown
status

Aug-2016 NCT02732184

Acute Myeloid
Leukemia|

Myelodysplastic
Syndrome

Co-ArgI-PEG modified
human arginase I Phase 2 Completed

Nov-2014 NCT02285101
Melanoma|

Prostate Adeno-
carcinoma

Pegylated recombinant
human arginase
(PEG-BCT-100)

Phase 1 Completed [168]

Apr-2014 NCT02089763 Hepatocellular
Carcinoma

Pegylated recombinant
human arginase Phase 2 Terminated

Apr-2014 NCT02089633 Hepatocellular
Carcinoma

Pegylated recombinant
human

arginase|Oxaliplain
|Capecitabine

Phase 2 Completed

Apr-2012 NCT01551628 Leukemia|
Lymphoma

Recombinant human
arginase 1 Peg5000 Phase 1 Terminated

Mar-2010 NCT01092091
Neoplasm|

Hepatocellular
Carcinoma

Pegylated
Recombinant Human

Arginase I
(BCT-100-002)

Phase 1|
Phase 2 Completed [125,

169]

May-2008 NCT00988195
Neoplasm|

Hepatocellular
Carcinoma

Pegylated
Recombinant Human

Arginase
I|Doxorubicin

Phase 1 Completed

Trials for arginase inhibitor (INCB1158)
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Table 4. Cont.

Start Date NCT Number Type of Cancer Treatment Phase Status Ref

Sep-2019 NCT03837509

Relapsed or
Refractory
Multiple
Myeloma

INCB001158|
Daratumumab SC

Phase 1|
Phase 2 Recruiting

Jul-2019 NCT03910530

Advanced Solid
Tu-

mors|Metastatic
Solid Tumors

Retifanlimab|INCB001158|
Retifanlimab +
INCB001158

Phase 1 Active, not
recruiting

Mar-2018 NCT03361228 Solid Tumors
INCB001158|
Epacadostat|

Pembrolizumab

Phase 1|
Phase 2 Terminated

Nov-2017 NCT03314935

Biliary Tract
Can-

cer|Colorectal
Can-

cer|Endometrial
Can-

cer|Gastroesophageal
Can-

cer|Ovarian
Cancer|Solid

Tumors

INCB001158|
Oxaliplatin|Leucovorin|

5-Fluorouracil|
Gemcitabine|

Cisplatin|
Paclitaxel

Phase 1|
Phase 2

Active, not
recruiting

Sep-2016 NCT02903914

Metastatic
Cancer|Solid

Tu-
mors|Colorectal
Cancer|Gastric
Cancer|Head

and Neck
Cancer|Lung
Cancer|Renal

Cell Carci-
noma|Bladder

Can-
cer|Urothelial

Can-
cer|Mesothelioma

INCB001158|
Pembrolizumab

Phase 1|
Phase 2

Active, not
recruiting

9. Arginine Deprivation and Therapy Resistance

One of the challenges in ADI-based therapy is the development of intrinsic resis-
tance [170]. A common mechanism is the restoration or upregulation of ASS1 expression
to provide much-needed arginine in starved cancer cells (Figure 6). For tumors (e.g.,
lymphomas, bladder, mesothelioma, prostate cancer) where ASS1 was silenced by methy-
lation, demethylation of ASS1 promoter is the solution [87,111], although what triggers
demethylation is not clear. For tumors of which the ASS1 promoter is not methylated (e.g.,
melanoma and sarcoma), the activation of c-Myc oncogene which drives the expression of
ASS1 appears to be the underlying cause [22,23]. In the latter case, Gas6/Axl activation by
arginine deprivation-induced ROS triggers PI3K/Akt/GSK3B activation, leading to the up-
regulation of c-Myc oncogene [152]. The studies by the lab of MT Kuo and his collaborators
further demonstrated how c-Myc could replace negative regulator HIF-1a, which compet-
itively occupied the same E-box of the ASS1 promoter to restore ASS1 expression [133].
On the other hand, c-Myc upregulation is not universally seen in all ADI-resistant cancer
cells (e.g., prostate and breast cancer) and c-Myc overexpression does not always confer
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ADI resistance [18]. Interestingly, in lung cancer, Myc overexpression actually confers
sensitivity, rather than resistance, to ADI treatment [139]. These studies suggest that while
restoration of ASS1 expression seems to be necessary to provide the much-needed arginine
during therapy, the contributing mechanisms vary and there are other context-dependent
cellular factors associated with resistance. As mentioned above, ASS1 has been shown to
repress Akt activities [123] and behaves as a tumor suppressor [15,124]. Other pathways
are needed to offset its tumor suppressive properties. In melanoma, ADI-resistant cells,
enhanced AXL and EPH2 tyrosine kinase activities and the activation of down-stream
PI3K/AKT signaling are observed [152]. In breast and prostate cancer ADI-resistant cells,
Chu et al., [18] using unbiased CRISPR/cas9 loss of function screening uncovered aberrant
activation of TREM1/CCL2 is necessary to confer full resistance. TREM1, a receptor nor-
mally expressed in myeloid cells, activates tyrosine kinase Syk which turns on PI3K/Akt
and STAT3/NFKB, leading to the activation of CCL2. CCL2, a chemokine known to confer
drug resistance to a variety of cancer cells, further enhances the activation PI3K/Akt and
STAT3/NFkB pathways [18]. As direct targeting ASS1 may affect the metabolism of normal
cells, these resistant factors and their associated pathways offer additional opportunities as
targets to overcome ADI resistance.

Figure 6. Therapy-resistance machinery. Upon arginine-depletion, TAM receptor, Axl, is activated by the growth arrest-
specific protein 6 (Gas6), resulting in the activation of downstream signaling cascades. The activation of signaling
pathways leads to MYC-induced ASS1 restoration and cell survival. In addition, the TREM1 induces CCL2 expres-
sion via ERK/AKT/mTOR/ STAT3 pathway, which leads to cell survival in ASS1-restoration cells, which also leads to
the therapy-resistance.

Khadeir et al. [170] further considered the factors which may compromise therapy
efficacies in vivo, and suggests that in addition to ASS1 upregulation, protective autophagy
which regenerates arginine, development of antibodies against pegylated ADI and the
uptake of arginine released from stromal cells. Measures to counteract these resistant
factors are being actively pursued to improve arginine-deprivation therapy.



Cancers 2021, 13, 3541 21 of 29

10. Conclusions

As summarized in this article, arginine, in addition to being a building block of protein,
can be a signaling metabolite, a transcriptome reprogrammer and a therapeutic target.
Recent insights that arginine is a mitochondria and genome protector are exciting, with clin-
ical implications. As a semi-essential amino acid, arginine deprivation based on biologicals
which metabolize arginine has been a staple of starvation therapies for years. While the
safety profiles for both arginine depletion remedies are generally excellent, as a monother-
apy agent, it has not reached the intended potency. Combinations with other targeted
or chemotherapies as well as immune checkpoint inhibitors are being actively pursued.
Since the cell-killing mechanisms associated with starvation therapies (e.g., autophagic
death, caspase-independent apoptosis, necroptosis, etc.) could be quite different from those
associated with genotoxic agents (e.g., caspase-dependent apoptosis, mitotic catastrophe),
arginine-deprivation should synergize well with other cancer therapies and potentially
overcome the resistance of the latter. In addition, an arginine restriction diet also deserves
serious attention as a complementary tool for cancer therapy. Unlike using metabolizing en-
zymes as depletion agents, dietary restriction does not have the complication of metabolic
products. Dietary restriction has been widely applied in various metabolic diseases such
as obesity, diabetes, rheumatoid arthritis, hypercholesterolemia, etc., and it has gained
significant momentum for cancer therapies. Recent work showed that arginine-free diet
effectively retards the growth of prostate and breast cancer xenografts in the mouse models.
Previous studies of arginine and precursor (glutamate, proline and aspartate)-free diet for
4 weeks showed no side effect in healthy adults, which sheds a light on arginine-restriction
diet for cancer therapy. While it may be impractical to follow a strict arginine-free diet,
arginine-light diet (such as vegetables, fruits and milk products) could be an alternative
choice. It is hoped that an arginine-restricted diet could significantly slow down the growth
of ASS1-low tumors and offers benefit in lowering the toxicity of combined chemo- or
radio-therapies. Finally yet importantly, as we discussed in the beginning of this review,
different tumors utilize different strategies to cope with the nutrient demand or stress,
exploring the metabolic heterogeneity of various cancer types definitely is required for
personalized medicine [171].
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