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Abstract: The associations of fetal fatty acids status to immune-related health parameters later in
life are unclear. Our aim is to collect all available information on the relationship between fatty
acid status at birth and allergy in childhood. Systematic literature search was performed on Ovid
MEDLINE, Cochrane Library, and Embase. The search retrieved 897 articles without duplicates;
14 articles remained after excluding those that did not fit into our inclusion criteria. When the
dichotomous parameter of suffering or not from allergic condition in childhood was analyzed, cord
blood eicosapentaenoic acid (EPA) values proved to be significantly lower in allergic than non-
allergic children in four comparisons from three studies. When the linear parameters of odds ratios
and relative risks for allergy were taken into consideration, high cord blood EPA, but also high
docosahexaenoic acid (DHA) and high total n-3 long-chain polyunsaturated fatty acid values were
associated to clinically relevant reduction (at least 38%) in eight comparisons from five studies. Within
the cord blood samples, higher EPA, docosapentaenoic acid, and DHA values were significantly and
negatively associated in eight correlation analyses from three studies with laboratory parameters
considered to reflect allergic trait. The data reported here may provide information for defining
optimal fatty acid intakes for pregnant women.

Keywords: allergy; arachidonic acid; atopy; children; cord blood; docosahexaenoic acid; eicosapentaenoic
acid; eczema; infant; long-chain polyunsaturated fatty acid

1. Introduction

The most important long-chain polyunsaturated fatty acids (LCPUFAs), docosahex-
aenoic acid (C22:6n-3, DHA) and arachidonic acid (C20:4-6, AA), are bioconversion prod-
ucts from the essential fatty acids (EFAs), alpha-linolenic acid (C18:3n-3, ALA) and linoleic
acid (C18:2n-6, LA), respectively. Although the efficiency of the conversion of EFAs to
LCPUFAs is questioned throughout the human lifespan [1], it can be assumed with good
reason that the perinatal period of rapid human growth and development represents the
most critical stage. The need of LCPUFA supply to the human fetus was emphatically put
forward as early as nearly half a century ago [2], and five decades of ongoing research
yielded extensive data in this field.

Overall, 70 randomized controlled trials (RCTs) involving 19,927 pregnant women
and investigating the addition of n-3 LCPUFAs either as supplements or as foods to the
diet were summarized in a relatively recent Cochrane review [3]. Both preterm birth
and early preterm birth [<34 weeks; RR: 0.58; 95% CI: 0.44 to 0.77; 5204 participants] were
significantly lower in women who received n-3 LCPUFA compared with no n-3 fatty acids.
There was also a possibly reduced risk of perinatal death (RR: 0.75; 95% CI: 0.54 to 1.03;
7416 participants) and possibly fewer neonatal care admissions (RR: 0.92; 95% CI: 0.83 to
1.03; 6921 participants). In parallel with reduction in preterm birth and early preterm birth,
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prolonged gestation (>42 weeks) increased in women who received n-3 LCPUFA compared
with no n-3 fatty acids (RR: 1.61; 95% CI: 1.11 to 2.33; 5141 participants). Important
conclusions of this Cochrane review were that: (a) more studies comparing n-3 LCPUFA
and placebo to establish causality in relation to preterm birth are not needed, and (b) further
trials are needed to improve understanding of underlying mechanisms [3].

Development of the immune system is one of the major mechanisms influencing fetal
wellbeing and pregnancy outcome, and patterns of LCPUFA exposure in pregnancy was
reported to influence the fetal immune system. Decreased consumption of n-6 EFA and
LCPUFAs in favor of more anti-inflammatory n-3 EFA and LCPUFAs in modern diets, has
demonstrated the potential protective role of n-3 fatty acids in allergic and respiratory
diseases [4–6]. Moreover, n-3 EFA and LCPUFAs may alter the T helper cell balance by
inhibiting cytokine production and may further modify cellular membrane and induce
eicosanoid metabolism and later gene expression [4,7,8].

Human studies showed that higher levels of n-3 LCPUFA were associated with re-
duction in neonatal oxidative stress, reduced production of inflammatory leukotriene B4,
and altered T-cell function [9,10]. Inverse correlations between n-3 LCPUFA levels and
neonatal T-cell cytokine production were also reported, consistent with data of adult stud-
ies showing reduction of T-cell cytokine production with fish oil supplementation [9,11].
Moreover, intrauterine LCPUFA supply may be associated with beneficial immunological
consequences also after birth. Studies on supplemental n-3 LCPUFAs in pregnant women
demonstrated reduced sensitization of infants to egg, reduced risk and severity of atopic
dermatitis in the first year of life, and reduced persistent wheeze and asthma at ages of three
to five years [12]. These observations indicate that LCPUFAs play a clinically significant
role in immune development.

Despite encouraging data of the beneficial effects of LCPUFA supplementation to
pregnant women on long-term immunity in the offspring, the exact associations of fetal
fatty acids status to immune-related health parameters later in life are yet to be determined.
Therefore, we decided to carry out a systematic review on objectively assessed neonatal
fatty acids status at birth and occurrence of allergic diseases and clinical signs of atopy in
early childhood.

2. Materials and Methods

This systematic review was registered prospectively in PROSPERO, under: CRD42021281397.
The methodology and the results are reported according to the PRISMA (Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic re-
views [13,14] (Table S1), as well as the guideline of the Cochrane Handbook of Systematic
Reviews and Intervention [15].

2.1. Eligibility Criteria

We included studies on biological samples, allowing evaluation of LCPUFA status
of healthy term newborns at birth (cord blood lipids, cord vessels wall lipids); whereas
fatty acid studies on maternal biological samples obtained at delivery, on human milk
(colostrum), or those on biological samples obtained from the offspring after birth, as well as
data of not healthy infants (including preterm babies) were excluded. We included studies
on fatty acid status but excluded studies on other blood lipids (e.g., HDL, LDL cholesterol,
and triglyceride). Studies on incidence and prevalence of allergies, clinical signs of atopy,
or other immune-related soluble factors in childhood were included, but inflammation
in general or inflammatory factors were excluded. No restriction on clinical study type
(observational or RCT) was applied; we excluded reviews, editorials, and comments not
publishing original data. To sum up, we included studies reporting on fatty acid status
in healthy newborns at birth in correlation with allergy-related data obtained in infancy
or childhood.
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2.2. Literature Search

Electronic literature search was performed on the following databases from the in-
ception of each database up to September 2021: Embase, Cochrane Central Register of
Controlled Trials (CENTRAL), and Ovid MEDLINE. No language restriction was applied.
The search strategy was developed with terms related to newborns, allergy, and fatty
acids. The search strategy on Ovid MEDLINE was as follows: (cord.mp OR newborn.mp
OR infant.mp OR perinatal.mp OR postnatal.mp) AND (immune.mp OR immune*.mp
OR allergy.mp OR allerg*.mp OR atopy.mp OR atopic.mp OR inflammation.mp OR in-
fection.mp) AND (arachidonic.mp OR arachidonic acid.mp OR docosahexaenoic.mp OR
docosahexenoic.mp OR docosahexaenoic acid.mp). The detailed search strategy for Ovid
MEDLINE is available in List S1.

We manually searched the references of the included articles and related reviews for
potentially relevant articles. We also searched grey literature for congress abstracts that
might be relevant. All citations were then combined, and duplicates were excluded.

2.3. Study Selection, Risk of Bias Assessment

Pairs of review authors (B.B., E.M., É.S., T.M.) independently screened the abstract, title,
or both of every record to determine potentially relevant articles. The abstract screening
was performed on an online program (http://abstrackr.cebm.brown.edu; accessed on
15 November 2021) [16]. Then, the pairs of reviewers screened the full-text articles for
inclusion and exclusion criteria independently on Rayyan.ai [17]. Disagreements between
reviewers were resolved by further discussion until consensus. Risk of bias was also
assessed independently by two authors (É.S., T.M.) according to the Cochrane Risk of Bias
2 (RoB2) tool for the RCTs [18], while the cohort studies and case-control studies were
assessed using the ROBINS-I tool [19].

2.4. Data Extraction and Synthesis

One author (É.S) extracted data from the included articles, while the other author
(T.M.) checked the data for accuracy and completeness. From full-text publications, the
following data were extracted: first author, journal, year of publication, study type, place
of study, type of sample, and reported outcomes. If the study published outcomes for
multiple time points, we extracted data for each time point.

3. Results

After removing duplicates, the search resulted in 897 articles (Figure 1). After ti-
tle/abstract screening, most articles were excluded; full text screening was evaluated on
70 articles. From these articles, eight were duplicates of another publication with the
same population and same time point [20–26] and nine were excluded because they were
reviews [27–31] or in vitro cell studies (cultured cells from cord blood) [32–35]. Further-
more, 27 articles were excluded because they investigated wrong populations; in many
studies, infants were supplemented [36–47], while in others, blood was drawn later than at
birth [48–57]; one study investigated placental lipid fatty acid composition [58], in two other
studies no blood was drawn from the child [59,60], and in two further studies breast milk
fatty acid composition was studied [61,62]. In nine studies, the outcome was not within
our inclusion criteria (there was no direct link between fatty acids and immune-related
factors [63–70], or inflammatory markers were only studied [71]). We also found two
conference abstracts [72,73] and a trial protocol [74] where results have been not published
in full article yet. Finally, 14 articles were included in the analysis (Table 1).

3.1. Description of Included Studies

Most of the included studies were either RCTs (n = 6) [75–80] or birth cohort studies
(n = 5) [81–85]. Three studies were published in two different articles [75,78–82], in that
either the parameters analyzed in cord plasma [78,79] or the follow-up points [75,80–82]

http://abstrackr.cebm.brown.edu
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were different. For the purposes of the present review, we considered these related articles
as independent publications.
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Figure 1. Flow diagram of study selection.

Six studies reported cord blood fatty acid compositional data after maternal fish oil or
n-3 LCPUFA supplementation during pregnancy, while four studies reported cord blood
fatty acid data according to the appearance of allergy/atopy later on. Various cord blood
constituents were used to characterize fatty acid status at birth: total plasma in four studies
alone [78,79,84,86] and in one study in combination with umbilical artery and vein wall
lipids [83], total serum in one study [87], plasma or serum phospholipids in five stud-
ies [76,77,81,82,88], and red blood cell (RBC) membrane lipids in three studies [75,80,85].
We provide detailed description of the type of lipid sample used, the method of fatty
acid determination, and the list of fatty acids published in the given study in Table S2.
Different surrogate parameters of allergy in the offspring were evaluated at birth in five
studies [75,78–80]; we give description of the putative usefulness of these surrogate param-
eters in Table S3. Direct clinical signs and symptoms for allergy were estimated at no less
than 11 different ages from 6 months [84] to 8 years [82].

When we compared the fatty acids identified and reported by the different studies
(Table S2), we found that most of the articles presented fatty acid data as a percentage of to-
tal fatty acids by weight [76,79–85,87,88]. Only one study presented it as µg/106 cells [75],
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one as µmol/L [86], and one as mol% [77]. As for fatty acid determination, most re-
search groups used the generally accepted capillary gas chromatographic (GC) determina-
tion [75,76,80,83,87], mostly with flame-ionization detector (FID) [77,81,84–86], and only a
few determined fatty acids by mass spectrometry (MS) [79,82,88].

Three articles published no information about the family history of allergies [78,79,81],
in two articles some newborns had at least one allergic parent [82,83], and in one article
the number of newborns with a family history of maternal allergy was not described, but
data were controlled for this confounding factor in the multivariate analysis [85]. Only
two studies included healthy mothers with no allergic history [84,86], while in one article
the included mothers were divided into two subgroups based on allergy [87]. The other
articles investigated newborns of allergic mothers [75,80] or high-risk newborns with a
family history of allergic disease [76,77,88]. In the included studies, twelve had moderate
risk of bias, while serious risk of bias was identified in two studies (Tables S4 and S5).

Table 1. Characteristics of the included studies.

First Author,
Year of Publication Study Type Place of Study Subgroup of Infants Type of Sample

Investigated
Immune-Related
Diseases/Factors

Barden AE, 2004 [75] RCT Subiaco, Australia

Maternal fish oil or
olive oil
supplementation
during pregnancy

Cord blood RBC Cord plasma
F2-isoprostanes

Barman M, 2019 [81] Birth cohort study Sweden Mothers living on a
farm/not Cord blood serum PL Allergy at 18 and

36 months

Barman M, 2020 [82] Birth cohort study Sweden Mothers living on a
farm/not Cord blood serum PL Allergy at 1, 3, 5, and

8 years

Best KP, 2018 [76] RCT Australia
Maternal n-3
LCPUFA or placebo
supplementation

Cord blood
plasma PL

Allergic symptoms at
1, 3, and 6 years

Byberg K, 2008 [86] Nested
case-control study

Stavanger,
Norway Atopic/non-atopic Cord blood plasma Atopy, sCD23, and

IgE at 3 years

Dirix CEH, 2009 [83] Birth cohort study Maastricht, The
Netherlands No

Cord blood plasma
PL; umbilical artery
and vein walls PL

Immune-related
measurements at

7 years

Furuhjelm C, 2011 [77] RCT Sweden
Maternal n-3
LCPUFA or placebo
supplementation

Cord blood
plasma PL

Allergic symptoms
up to 2 years

Galli E, 1994 [88] Cohort study Rome, Italy Atopic/non-atopic Cord blood serum PL Atopy in the first
12 months

Montes R, 2013 [84] Birth cohort study Sabadell, Spain Atopic/non-atopic Cord blood plasma Atopic eczema at
6 and 14 months

Mozurkewich EL, 2016 [78] RCT Michigan, USA
Maternal
EPA/DHA/placebo
supplementation

Cord blood plasma

Specialized
pro-resolving

mediators in cord
plasma

Mozurkewich EL, 2018 [79] RCT Michigan, USA
Maternal
EPA/DHA/placebo
supplementation

Cord blood plasma Cytokines in cord
plasma

Newson RB, 2004 [85] Birth cohort study UK No Cord blood RBC PL
Wheezing and

eczema at 18–30 and
30–42 months

See VHL, 2017 [80] RCT Subiaco, Australia

Maternal fish oil or
olive oil
supplementation
during pregnancy

Cord blood RBC
Pro-resolving

mediators at birth
and 12 years

Yu G, 1996 [87] Case-control
study

Linköping,
Sweden Allergy: yes/no Cord blood serum PL Allergy during the

first 6 years

DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid, LCPUFA: long-chain polyunsaturated fatty acid,
PL: phospholipids, RBC: red blood cells, RCT: randomized controlled trial.



Life 2022, 12, 526 6 of 15

3.2. Fatty Acid Status at Birth and Development of Allergy in Childhood

Fatty acid status at birth was compared between children who developed and did
not develop allergy in seven studies [77,81,82,84,86–88](Table 2). EPA values at birth
were significantly lower in children who developed allergy in three studies [77,82,86] that
addressed the ages of birth to 2 years [77], 3 years in two studies [82,86], and 8 years [82].
Significantly higher AA/EPA ratio was reported for the ages of birth to 2 years in children
who developed allergy in one study [77]. In apparent contrast, significantly lower dihomo-
gamma-linolenic acid (C20:3-n-6) and AA values were reported in one study [88] for
children who were diagnosed with allergy at the age of 12 months; however, neither EPA
nor DHA values were reported in this study.

Table 2. Comparison of fatty acid status at birth between allergic and non-allergic children.

First Author,
Year of Publ.

Age at Allergy
Investigation Type of Sample Type of Allergy Fatty Acids in Allergic

Patients

Yu G, 1996 [87] in the first 6 years Cord blood serum PL Allergic disease LA, DHGLA, AA:→;
EPA, DPA, DHA:→

Byberg K, 2008 [86] 3 years Cord blood plasma Atopy LA, GLA, DHGLA, AA:→;
EPA: ↓; ALA, DHA:→

Montes R, 2013 [84] 14 months Cord blood plasma Atopy LA, GLA, DHGLA, AA:→;
ALA, EPA, DPA, DHA:→

Barman M, 2019 [81] 36 months Cord blood serum PL Allergy AA:→

Barman M, 2020 [82]

3 years

Cord blood serum PL Allergy

EPA: ↓;
ALA, DPA, DHA:→;
LA, DHGLA, AA:→

8 years
EPA: ↓;

ALA, DPA, DHA:→;
LA, DHGLA, AA:→

Galli E, 1994 [88] 12 months Cord blood serum PL Atopy LA:→; DHGLA, AA: ↓

Furuhjelm C, 2011 [77] 0–24 months Cord blood
plasma PL >1 Allergic symptoms EPA: ↓; DHA:→; AA/EPA: ↑

AA: arachidonic acid, ALA: alpha-linolenic acid, DHA: docosahexaenoic acid, DHGLA: Dihomo-gamma-linolenic
acid, DPA: docosapentaenoic acid, EPA: eicosapentaenoic acid, GLA: gamma-linolenic acid, LA: linoleic acid,
PL: phospholipids, ↑: significantly higher values in allergic patients,→: no significant difference between allergic
and non-allergic patients, ↓: significantly lower values in allergic patients.

3.3. Relationship of Fatty Acid Status at Birth to Odds Ratios and Relative Risks of Allergy in Children

The wide variety of parameters characterizing fatty acid status and the widely different
time points of evaluating allergy rendered it impossible to carry out formal meta-analysis
within the present systematic review. However, odds ratios (ORs) or RRs of allergy re-
ported in the studies reviewed allow some comparative mathematical representation of
the results (Table 3). Altogether, 10 significantly different ORs or RRs for allergy were
reported from five studies [76,82,84–86]. In four studies including altogether 1042 par-
ticipants, n-3 LCPUFA supplementation during pregnancy [76] as well as high DHA or
n-3 LCPUFA [84] or high eicosapentaenoic acid (EPA, C20:5n-3) in cord plasma [82,86]
were associated with significantly reduced RRs or ORs of various clinical manifestations
of allergy (Table 3). The extent of the reduction in ORs or RRs for allergy in favor of
n-3 fatty acids was at least one third (highest OR or RR reported: 0.62). In a sub-study with
1191 participants of the Avon Longitudinal Study of Parents and Children [85], high RBC
AA/EPA ratios were associated with enhanced OR of eczema at the age of 18 to 30 months,
high AA/ALA ratios with enhanced OR of wheezing at the age of 30 to 42 months, whereas
high ALA/n-3 LCPUFA ratios were marginally, but significantly associated with decreased
OR of wheezing (Table 3).
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Table 3. Significantly different odds ratios/relative risks in the included studies.

First Author,
Year of Publ. Group Age at Investigation Type of Allergy RR/OR

Best KP, 2018 [76]
n-3 LCPUFA

supplementation

1 years Wheeze symptoms with
sensitization adjusted RR: 0.52 (p = 0.03)

1 years Egg sensitization adjusted RR: 0.62 (p = 0.02)

6 years D. farinae sensitization adjusted RR: 0.62 (p = 0.02)

Barman M, 2020 [82] Cord blood EPA 3 years Allergy OR: 0.20 (p = 0.045)

Byberg K, 2008 [86] High EPA in cord
blood (upper quartile) 3 years Atopy RR: 0.3 (p = 0.03)

Montes R, 2013 [84]
Cord plasma DHA

6 and 14 months Eczema

adjusted OR: 0.50 (p = 0.01)

Cord plasma n-3
LCPUFA adjusted OR: 0.49 (p = 0.00)

Newson RB, 2004 [85]

Cord RBC AA/EPA 18–30 months Eczema adjusted OR: 1.14 (p = 0.044)

Cord RBC LA/ALA
30–42 months Wheezing

adjusted OR: 1.04 (p = 0.019)

Cord RBC ALA/n-3 adjusted OR: 0.98 (p = 0.040)

AA: arachidonic acid, ALA: alpha-linolenic acid, DHA: docosahexaenoic acid, EPA: eicosapentaenoic acid,
LA: linoleic acid, LCPUFA: long-chain polyunsaturated fatty acid, OR: odds ratio, RBC: red blood cells,
RR: relative risk.

3.4. Correlation between Fatty Acids and Allergy-Related Laboratory Parameters at Birth

Statistically significant correlations were reported between cord blood fatty acid val-
ues and some laboratory parameters considered by the authors of the given papers to
be immunologically relevant (F2-isoprostanes, soluble CD23 receptors, interleukin (IL)
1β, 4-hydroxy-DHA, 14-hydroxy-DHA, 17-hydroxy-DHA, and 18-hydroxy-EPA) in five
studies [75,78–80,86] (Table 4). In a study on 83 pregnant atopic women, cord red blood cell
(RBC) EPA values were significantly and inversely associated to both cord blood plasma
and urinary F2-isoprostanes, whereas cord blood RBC DHA values were significantly and
inversely correlated with urinary F2-isoprostanes only [75]. Cord blood plasma EPA, docos-
apentaenoic acid (DPA), DHA, and total n-3 PUFA values were significantly and negatively
correlated with soluble CD23 receptor levels in another study investigating 35 children
who subsequently developed allergic sensitization and atopic dermatitis before the age of
3 years [86].

Table 4. Significant correlations between fatty acids and allergy-related laboratory parameters at birth.

First Author, Year of Publ. Age at Investigation Fatty Acid Dependent Variable β or r (p)

Barden AE, 2004 [75] Birth
Cord RBC EPA Cord plasma F2-isoprostanes r = −0.351 (p = 0.001)

Cord RBC EPA Urinary F2-isoprostanes r = −0.290 (p = 0.017)

Cord RBC DHA r = −0.241 (p = 0.05)

Byberg K, 2008 [86] Birth

n-3 PUFA

sCD23

r = −0.28 (p = 0.018)

DHA r = −0.26 (p = 0.031)

EPA r = −0.26 (p = 0.03)

DPA r = −0.2 (p = 0.026)

Mozurkewich EL, 2018 [79] Birth Cord blood DHA IL 1β Neg. corr. (p = 0.03)

Mozurkewich EL, 2016 [78] Birth Log cord plasma DHA *
log 4-HDHA r = 0.51 (p < 0.001)

log 14-HDHA r = 0.47 (p < 0.001)

log 17-HDHA r = 0.34 (p < 0.02)

See, 2017 [80] Birth Cord RBC EPA 18-HEPE B = 151.4 (p < 0.001)

DHA: docosahexaenoic acid, DPA: docosapentaenoic acid, EPA: eicosapentaenoic acid, 4-HDHA: 4-hydroxy-
docosahexaenoic acid, 14-HDHA:14-hydroxy-docosahexaenoic acid, 17-HDHA: 17-hydroxy-docosahexaenoic acid,
18-HEPE: 18-hydroxy-eicosapentaenoic acid, log: logarithm-transformed values, PUFA: polyunsaturated fatty
acid, RBC: red blood cells, sCD23: soluble CD23 receptor, *: maternal and cord plasma samples pooled together.
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Cord blood plasma DHA values were significantly and inversely correlated to IL 1β
concentrations in a study on 118 women participating in a n-3 LCPUFA supplementa-
tion trial [79]. In contrast, pooled maternal and cord plasma DHA values significantly
and positively correlated with 4-hydroxy-DHA, 14-hydroxy-DHA, 17-hydroxy-DHA, and
18-hydroxy-EPA in a n-3 LCPUFA supplementation study in 60 pregnant women [78],
whereas cord RBC EPA values significantly and positively correlated with 18-hydroxy-EPA
values in another supplementation study including 83 participants [80] (Table 4).

4. Discussion

Recent developments in infant nutrition put further emphasis on the question of the
role of LCPUFA supply to the fetus. Both a Cochrane Database Systematic Review on
LCPUFA supplementation trials in infancy [89] and a systematic review and meta-analysis
of fatty acid compositional data of human milk in various populations [90] substantially
underpinned the importance of preformed DHA in infant nutrition. Today, DHA is a
mandatory constituent of infant formula within the European Union [91], and mandatory
inclusion of also AA is under vivid discussion in the medical literature [92,93]. If the diet
of infants must contain preformed LCPUFA, it is logical to consider recommending for
pregnant women the intake of certain amounts of certain type(s) of EFAs and/or LCPUFAs.
Before embarking on recommendations, however, it is essential to better understand the
potentially different effects of different LCPUFAs on various aspects of fetal development.

The major finding of the present review is the clear preventive relation between
higher n-3 LCPUFA status at birth and the occurrence of allergy in childhood. When
the dichotomous parameter of suffering or not from allergic condition in childhood was
analyzed, EPA proved to be distinctive fatty acid in cord blood lipids. When the linear
parameters of ORs and RRs were taken into consideration, besides EPA, DHA and total
n-3 LCPUFA values were also significantly associated to clinically relevant reduction
(more than 33%) in allergy. At birth, i.e., within the cord blood sample itself, higher EPA,
docosapentaenoic acid, and DHA values were significantly and negatively associated with
various laboratory parameters considered to reflect allergic trait.

Although it is generally accepted that DHA is the paramount LCPUFA in infant
nutrition, based on the data obtained in the present systematic review it might be tempting
to speculate that for the nutrition of the fetus, EPA may play an equally important role, at
least as far as the intrauterine programming of the immune system is concerned. EPA will
be converted by the cyclo-oxygenase and lipoxygenase enzymes into three and five series
of prostaglandins and leukotrienes, which have less inflammatory effects than the two and
four series of eicosanoids synthesized by the same enzymes from AA [94]. Furthermore,
EPA serves as precursor for resolvins and maresins with anti-inflammatory effects [95].
However, data from animal studies indicate that tissue accretion of EPA is several folds
lower than that of DHA or AA [96]. Therefore, isolated or unbalanced administration
of EPA during pregnancy would not fit to the physiological fetal fatty acid accretion
profiles. The data generated in the present systematic review cannot be directly translated
into dietary advice but can serve as background for optimizing the design of further
supplementation studies.

Among the seven studies comparing fatty acid status at birth between allergic and
non-allergic children in our present systematic review, significantly lower contributions of
EPA to cord blood lipids were reported in parallel with lack of difference in DHA values
in three studies [77,82,86], whereas significant difference in DHA was not reported in any
of the studies. However, the mostly observatory nature of the data reviewed here allows
more to generate ideas than to support them.

It is to be noted that the appearance of allergic or atopic symptoms in the offspring
may be differently related to LCPUFA status at birth in different groups of mothers. In
the children of mothers with no allergy, LCPUFA supplementation in infancy significantly
reduced the hazard ratios of any allergic diseases and skin allergic diseases, but failed
to influence the hazard ratio of wheeze/asthma [41]. In the same study, in children of



Life 2022, 12, 526 9 of 15

mothers with allergy, LCPUFA supplementation in infancy reduced the hazard ratio of
wheeze/asthma but failed to influence the hazard for all allergic illnesses and skin allergic
illness [41]. Moreover, population-specific associations were reported between blood
parameters and asthma subtypes in a study involving altogether 3738 African American,
Mexican American, and Puerto Rican children with median ages of 12 to 14 years [97].

Our present approach to try to differentiate between the effects of different n-3 LCPU-
FAs does not stand in the literature. Effects on n-3 LCPUFA supplementation either in the
form of DHA or in the form of EPA were compared both in RCTs and in meta-analyses. In a
randomized, crossover, head-to-head study in 154 healthy women and men with abdominal
obesity and low-grade systematic inflammation, supplementation with DHA compared
with supplementation with EPA resulted in significantly greater reduction in IL-18 values
(DHA versus control: −18.15 ± 6.25 pmol/L, EPA versus control: −2.12 ± 6.29 pmol/L,
mean ± SEM, DHA versus EPA: p = 0.01), whereas changes in C-reactive protein, IL-6, and
tumor necrosis factor-α (TNF-α) were not significantly different [98]. The greater effect
of DHA than that of EPA is in line with a meta-analysis showing that a major part of
anti-inflammatory effects of marine-derived mixed n-3 LCPUFA can be attributed to DHA
[99]. Gene expression analyses in 44 participants of the above-mentioned supplementation
study showed no difference between EPA or DHA treatment on the expression of IL-10,
IL-1β, and TNF-α genes [100]. Comparison in a 6-week trial of two different doses of EPA
(600 mg/day or 1800 mg/day) with DHA (600 mg/day) in 121 healthy subjects showed
no difference in IL-6, TNF-α, and vascular cell adhesion molecule 1 values among the
three supplementation groups [101]. The anti-inflammatory effects of DHA and EPA were
compared also in a recent pairwise and network meta-analyses of 5 and 20 RCTs including
data from 411 and 1231 participants, respectively [102]. In both pairwise and network
meta-analyses of these supplementation trials, EPA and DHA had similar effects on plasma
C-reactive protein, IL-6, and TNF-α concentrations [102].

Growing interest and accumulating evidence in the immunological role of intrauterine
LCPUFA status gave rise to systematic overviews of the effect of n-3 LCPUFA supplementa-
tion on childhood allergy as well [103,104]. Systematic review of five RCTs with altogether
949 participants showed that n-3 LCPUFA supplementation during pregnancy reduced
12-month prevalence of positive egg skin prick test (OR: 0.33; 95% CI: 0.16 to 0.70) and
childhood asthma (OR: 0.35; 95% CI: 0.15 to 0.79), and significantly reduced cord blood
IL-13 levels [103]. However, in two of the five studies reviewed by Klemens et al. [103],
intrauterine LCPUFA supplementation was followed by similar supplementation during
lactation, thus the findings reported cannot be attributed solely to the intervention dur-
ing pregnancy. Five years later, another systematic review identified five prenatal and
one prenatal/postnatal RCTs (including four out of the five in the review of Klemens
et al. [103]) addressing the question of LCPUFA supplementation in pregnant women on
allergy outcomes in their children [104]. N-3 LCPUFA (EPA and DHA) supplementation
showed a clear reduction in medically diagnosed IgE mediated allergy in children aged
12 to 36 months (RR: 0.66; 95% CI: 0.44 to 0.98; 2 RCTs; 823 participants), but not beyond
36 months, or if allergy diagnoses on the basis of parental reports were included [104].
Seven RCTs involving 2047 children were included into a more recent systematic review
and meta-analysis on the effects of n-3 LCPUFA supplementation during pregnancy on
asthma or wheeze of children [105]. N-3 LCPUFA supplementation reduced significantly
the incidence of wheeze/asthma (RR: 0.81; 95% CI: 0.66 to 0.99), while the incidence of
childhood asthma was not significantly reduced (RR: 0.89; 95% CI: 0.67 to 1.17) [105].The
above-mentioned systematic reviews [103,104] were aimed to obtain data on the clinical ef-
ficacy of n-3 LCPUFA supplementation during pregnancy, thus they included RCTs only. In
the present systematic review, we addressed the question of the relationship of cord blood
fatty acid status at birth (as surrogate cumulative parameter of fetal fatty acid status) to the
development of allergy in childhood, thus we included all types of studies. Furthermore,
characterization of LCPUFA status at birth was among the eligibility criteria in the present
study, whereas it was no prerequisite in the previous systematic reviews. Consequently,
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from the 14 studies included into the present review, only one [77] was included into the
previous reviews.

The present systematic review has various limitations which usually accompany
studies relating fatty acid status to clinical diagnoses and/or to surrogate biochemical pa-
rameters of clinical outcomes. First, chromatographic methods of fatty acid determination
are far from being standardized; there are differences in the type of sample analyzed, in
the palette of the fatty acids reported, and in the way the results are expressed. Second,
identical diagnostic expressions, such as “allergy” or “atopy”, might cover slightly different
meanings in different studies. Third, laboratory parameters considered immune-related or
allergy-related by the authors of the studies reviewed here may characterize fairly different
degrees as well as different aspects of the development of allergy. Although our supplemen-
tary tables showing detailed description of the methods of fatty acid analyses as well as the
rationality behind using a given laboratory parameter as immune- or allergy-related may
underpin the reliability of our conclusion, there remains some methodological uncertainties
that should be considered at the evaluation of the data reported.

EFA and LCPUFA intake of pregnant women is a practical question. Existing evidence
suggest that some enhancement of EFA and LCPUFA intake of pregnant women may
beneficially influence some pregnancy outcomes. The findings of our present systematic
review may provide useful information for defining optimal EFA and LCPUFA intakes for
pregnant women.
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