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Abstract
Accurate measurement of respiratory rate (RR) in neonates is challenging due to high neonatal RR variability (RRV). There is 
growing evidence that RRV measurement could inform and guide neonatal care. We sought to quantify neonatal RRV during 
a clinical study in which we compared multiparameter continuous physiological monitoring (MCPM) devices. Measurements 
of capnography-recorded exhaled carbon dioxide across 60-s epochs were collected from neonates admitted to the neonatal 
unit at Aga Khan University-Nairobi hospital. Breaths were manually counted from capnograms and using an automated 
signal detection algorithm which also calculated mean and median RR for each epoch. Outcome measures were between- 
and within-neonate RRV, between- and within-epoch RRV, and 95% limits of agreement, bias, and root-mean-square devia-
tion. Twenty-seven neonates were included, with 130 epochs analysed. Mean manual breath count (MBC) was 48 breaths 
per minute. Median RRV ranged from 11.5% (interquartile range (IQR) 6.8–18.9%) to 28.1% (IQR 23.5–36.7%). Bias and 
limits of agreement for MBC vs algorithm-derived breath count, MBC vs algorithm-derived median breath rate, MBC vs 
algorithm-derived mean breath rate were − 0.5 (− 2.7, 1.66), − 3.16 (− 12.12, 5.8), and − 3.99 (− 11.3, 3.32), respectively. 
The marked RRV highlights the challenge of performing accurate RR measurements in neonates. More research is required 
to optimize the use of RRV to improve care. When evaluating MCPM devices, accuracy thresholds should be less stringent 
in newborns due to increased RRV. Lastly, median RR, which discounts the impact of extreme outliers, may be more reflec-
tive of the underlying physiological control of breathing.
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1 Introduction

Accurate measurement of respiratory rate (RR) in children 
is particularly important in low-resource settings where ill-
ness and deterioration are typically diagnosed based on a 
child’s clinical signs and symptoms [1–3]. To measure RR, 
the World Health Organization (WHO) recommends observ-
ing and counting chest and abdominal movements over a full 
60 s [4]. In practice, this recommendation is frequently mod-
ified to counting respirations over a shorter duration of time 
(e.g., counting breaths for 10 s and multiplying by six). This 
modification can result in up to a 50% discrepancy compared 
to WHO recommendations [5]. In addition to inaccuracy, 
manual breath counting can be influenced significantly by 
counter bias and lacks reproducibility.

In neonates, measuring RR accurately is especially chal-
lenging given high RR and the within-neonate RR variability 
(RRV) [6]. Control of breathing remains immature until after 
the first month of life. Neonates often demonstrate periodic 
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breathing, a benign, regular manifestation of irregular res-
piratory patterns, consisting of contiguous periods of alter-
nating breaths and respiratory pauses. Healthy neonates also 
may exhibit benign irregularly irregular breathing patterns 
with short periods of apnea, similar to the disrupted respira-
tory control and ataxic breathing which is seen with opioid 
administration [7, 8]. These irregular breathing patterns are 
distinct from the regular rhythms of periodic breathing or 
the apnea of prematurity, though there appears to be some 
amount of overlap [9, 10]. In contrast to older infants and 
children, neonates have a marked degree of breath-to-breath 
variability and are also more likely to exhibit episodes of res-
piratory pause associated with stimulation and in response 
to hypoxia [11]. This individual-level, within-neonate RRV, 
adds to the complexity of identifying and reliably measur-
ing true RR [12]. Perturbations, including sighs, swallows, 
and coughs, can affect the duration of individual breaths, 
the resulting RR, and the within-neonate RRV. Given the 
high RRV in neonates, quantifying RR by observing chest 
and abdominal movements as recommended by the WHO is 
fraught with potential inaccuracy [13].

There will always be some level of uncertainty when 
performing manual or automated measurement of RR. All 
potential sources for uncertainty in RR measurement should 
be considered (Table 1). The size and acceptability of the 
resulting uncertainty depend on the conditions and con-
text of the measurement. In some clinical situations, high 
accuracy may not be necessary. However, in the emergency 
department or intensive care unit, when it is crucial to deter-
mine if a patient has crossed a diagnostic threshold, accu-
rate RR measurement can enable early identification and 
expedited management of patient deterioration [14–17]. In 
research laboratories, accuracy and precision are essential 
for determining how a new device or method compares with 
the reference method.

There is growing evidence which suggests including RRV 
in clinical scoring systems may be beneficial for guiding 
escalation and de-escalation of care [18, 19]. Heart rate vari-
ability (HRV), unlike RRV, has been extensively studied and 

is commonly used as a marker of risk for mortality [20–23]. 
HRV is considered to be central in the clinical assessment 
of diverse conditions that include neurological and sleep 
disorders, muscular dystrophy, and diabetes in adults, and 
sepsis in neonates [24, 25]. Like HRV, the identification of 
changes in RRV could be used as an indicator of underlying 
physiological disturbances [18, 19, 26].

Numerous innovative RR monitoring methods and 
devices for both adults and neonates using non-contact 
video, sensors embedded in bedding, motion sensors, 
nanoparticles, and temperature-based methods have been 
reported previously [27–31]. The variety of monitoring 
methods has resulted in various different evaluation methods 
and difficulty when trying to compare results across stud-
ies. A recent systematic review of RR monitoring systems 
suggested standardizing validation frameworks to directly 
compare different RR monitoring methods and systems [32]. 
Fortunately, detailed verification and validation recommen-
dations have been made [33, 34]. If followed, these recom-
mendations may result in future cross-comparable research 
of neonatal RRV. The current research is a result of data 
analyzed during systematic verification conducted within a 
device comparison study.

In our study comparing neonatal multiparameter continu-
ous physiological monitoring (MCPM) devices in Nairobi, 
Kenya we sought to quantify RRV between- and within-
neonates, as well as between- and within-epochs to identify 
the best methods for device comparison studies. We believe 
this RRV quantification will inform management of uncer-
tainty and RRV when designing, developing, and comparing 
RR monitoring devices in neonates.

2  Methods

2.1  Setting and participants

We conducted a clinical verification phase of the reference 
RR monitoring device while studying low-cost neonatal 

Table 1  Potential sources of uncertainty in respiratory rate measurement, approximate distribution, and potential solutions

The nature of the distributions is based on knowledge of the underlying processes and has not been validated

Uncertainty Source Distribution Possible solution

Breath-to-breath variation Neonate Normal Random Extended within-neonate observation
Perturbation (e.g., sigh, swallow, cough) Neonate Multimodal Non-random Exclude outliers
Device uncertainty due to inaccurate timing Device Normal Random Repeatability with multiple simultaneous devices
Device uncertainty due to missed breath(s) Device Multimodal Non-random Repeatability with multiple simultaneous devices
Observer error due to inaccurate timing Observer Normal Random Repeatability with multiple simultaneous observers
Observer error due to missed breath(s) Observer Multimodal Non-random Repeatability with multiple simultaneous observers
Rounding error due to counting breaths in a 

time interval
Analysis Normal Random Measure breath interval (not count)
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MCPM devices in Nairobi, Kenya [35]. Study participants 
were spontaneously breathing neonates admitted for obser-
vation and care in the maternity ward, neonatal intensive 
care, and the neonatal high dependency units at Aga Khan 
University-Nairobi (AKU-N) Hospital. Caregivers were 
approached, recruited, and sequentially screened for enroll-
ment by trained study staff during routine intake procedures. 
Final eligibility determination was based on medical his-
tory, physical examination, appropriate understanding of 
the study by the caregiver, and completion of the written 
informed consent process (Table 2).

2.2  Study procedures and data collection

Detailed study procedures are described in the published 
protocol [35]. In brief, term and preterm neonates were 
enrolled in a MCPM accuracy and feasibility evaluation. 
Male or female neonates were eligible if they had a corrected 
age of < 28 days and the caregiver was willing and able to 
provide informed consent and to be available for follow-
up for the planned duration of the study. Neonates were 
excluded if they were receiving mechanical ventilation or 
continuous positive airway pressure, had skin abnormalities 
in the nasopharynx and/or oropharynx or a contraindication 
to the application of skin sensors, a known arrhythmia or 
any medical or psychosocial condition or circumstance that, 
in the opinion of the investigators, would interfere with the 
conduct of the study or for which study participation might 
jeopardize the neonate’s health. Solely for the purposes of 
the study, we used the Masimo Rad-97 with NormoLine 

capnography as a reference device to record and measure 
RR using exhaled carbon dioxide  (CO2) levels. The collected 
continuous capnography data were digitized at approxi-
mately 20 Hz using asynchronous communication with a 
custom software application. Capnography readings were 
collected for a minimum of one hour and continued until the 
neonate was discharged (range 1–6.25 h; median: 3.75 h). 
Demographic and capnography data were entered and stored 
on a secure AKU-N-hosted REDCap server [36].

Sixty-second epochs of capnography data were extracted 
at predetermined time intervals and converted to capnogram 
waveform tracings. Intervals between epochs were predeter-
mined and based on study-related clinical observations: at 
10-min intervals throughout the first hour of participation 
followed by 60-min intervals starting at the second hour 
[35]. The resulting capnogram tracings included a total of 
64 s (Fig. 1); two seconds were added at the beginning and 
end of each epoch to facilitate manual breath counting of 
the epoch.

One of the authors (JMA, an anesthesiologist) reviewed 
all capnogram tracings for quality control; difficult-to-count 
plots were discarded (n = 164; Fig. 2). All remaining epochs 
were included, and breaths were manually counted from cap-
nograms and identified using an automated signal detection 
algorithm. For the manual counting, capnographs were pro-
vided to two trained observers to count all breaths within 
each epoch independently, and the results were averaged. 
A breath was identified using a set of predefined rules cre-
ated by the investigators (Table 3). If the number of breaths 
counted by the two observers varied by more than three 

Table 2  Study definitions and eligibility criteria

Study definitions
Epoch A 60-s period of time
Breath One cycle of neonate-initiated inhalation and exhalation (Table 3)
Breath duration Length of time from the start to the end of a single breath
Breath start End of a waveform trough (low point) where the carbon dioxide level starts to ascend
Respiratory rate Number of breaths initiated within an epoch
Breath rate The number of breaths within an epoch based on the median or mean of the breath duration
Respiratory rate 

variability 
(RRV)

The dispersion of respiratory rate or breath duration (a reciprocal of the respiratory rate) within an epoch or between epochs, calculated as the standard 
deviation expressed as a percentage of the mean; epochs for comparison are defined below

Within-subject RRV RRVbd = Breath duration variability (average within each epoch)
RRVbm = Minute-to-minute variability (average between epochs)
RRV10bd/RRV60bd = Breath duration variability between epochs measured at 10- or 60-min 

intervals
Between-subject RRV RRVbs = Between subject minute-to-minute variability

Neonatal eligibility criteria
Inclusion 

criteria
∙ Male or female neonate, corrected age of < 28 days
Willingness and ability of neonate’s caregiver to provide informed consent and to be available for follow-up for the planned duration of the study

Exclusion 
criteria

∙ Receiving mechanical ventilation or continuous positive airway pressure
∙ Skin abnormalities in the nasopharynx and/or oropharynx
∙ Contraindication to the application of skin sensors
∙ Known arrhythmia
∙ Any medical or psychosocial condition or circumstance that, in the opinion of the investigators, would interfere with the conduct of the study or for which 

study participation might jeopardize the neonate’s health
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breaths per epoch, a third trained observer independently 
counted the plot, and the two closest counts were averaged.

The automatic breath detection method was based on a 
time-domain algorithm that identified regular patterns in 
physiological waveforms [37].

The algorithm was modified to identify unique breaths 
in the  CO2 signal by dividing the waveform in time and 
identifying changes in direction to define segments. Specifi-
cally, an incremental-merge algorithm divided the waveform 
into geometrically similar segments by establishing a line 
between equidistant samples and iteratively merging adja-
cent lines that had the same slope sign into single, longer 
lines. The resulting line segments of alternating slope signs 
defined inhalation and exhalation components, as well as 

artifacts interrupting this sequence. An adaptive threshold 
was applied to the length of these segments to separate arti-
facts and double breaths from regular breathing components 
[37].

The breath duration was calculated between the begin-
ning of two adjacent regular inhalation components that 
were interrupted by at least one exhalation component 
and no artifact. To investigate the effect of length of time 
between epochs on breath duration variability  (RRVbd), 
epochs were grouped into 10- and 60-min intervals for 
subgroup analysis.

Fig. 1  Example capnograms (carbon dioxide  (CO2) waveform plots) 
before (A) and after (B) algorithm processing. The plotted  CO2 wave-
form shows the breathing pattern of a neonate and algorithm-derived 
identification of breaths (red, vertical lines). Only peaks on the white 
background were included; peaks that fell within the grey zone were 
ignored as they were outside the 60-s epoch. A Plotted waveform 
from example epoch before processing by the algorithm. Each peak 

within the 60-s epoch was counted by one to three trained observers. 
The horizontal blue 15 and 20 lines were used to assist observers dur-
ing irregular or incomplete breaths (not shown). B Plotted waveform 
after processing by algorithm. The red vertical lines show identified 
peaks, with the length and label of the red line representing the calcu-
lated breath rate based on the breath duration
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2.3  Data analysis

Results from the manual and automatic breath detection 
methods were analyzed using STATA 13 and R [38, 39]. 
The coefficient of variation, the standard deviation (SD) 
expressed as a percentage of the mean, was reported as 
RRV between- and within-neonates, as well as between- 
and within-epochs (see Table 2 for definitions).

Agreement between the manual breath counts and the 
algorithm-derived breaths was assessed using the meth-
ods described by Bland and Altman’s Sect. 5.3 on repli-
cated data pairs [40]. Agreement was reported as a mean 
bias with 95% confidence intervals (CIs) and 95% lim-
its of agreement (LOA) and root-mean-square deviation 
(RMSD) [40].

2.4  Sample size

Sample size estimates for method comparison studies typi-
cally depend on the CI required around the LOA, and sample 
sizes of 100 to 200 provide tight CIs [40]. We estimated that 

20 neonates with ten replications each would give the 95% 
CI of LOA between the first and second methods to be ± 0.76 
times the SD of their differences. The study team aimed 
for a sample size of at least 30 neonates to ensure a diverse 
population and sufficient replications for tight CIs.

3  Results

Between June and August 2019, 35 neonates were enrolled, 
and 294 clinical observations were completed. We included 
130 (44.2%)  CO2 waveform plots in this analysis (Fig. 2) 
across 27 neonates, 23 at term (range of gestational age 
32–42 weeks). Four preterm neonates, born before 37 weeks 
gestation, were included. Three of the four preterm neonates 
received caffeine during their admission. There were on 
average 4.8 (range 2–9) epochs per subject.

The mean manual breath count was 48 breaths per minute 
(bpm) (95% CI 31–71) and the median  RRVbm was 25.8% 
(interquartile range (IQR) 22–31.7%; Table 4; Fig. 3A). 

Fig. 2  Recruitment flow 
diagram

Table 3  Rules for identifying breaths based on graphical waveform plots

1. Count peaks (tops) of the waveform that are within the white background. Ignore peaks that are within the grey background on either side of 
the image

2. A peak should be counted as a breath when the peak of the waveform is above 15 mmHg, the lower horizontal blue line
3. If the peak does not reach the lower horizontal blue line at 15 mmHg, to be counted as a breath, the peak should reach at least 50% of the 

mean peak
4. The waveform should dip down to the normal baseline (either below 15 mmHg, the lower horizontal blue line, or based on other breaths). If 

the waveform does not reach below this point, then this is considered part of the same (double) peak and only counted as a breath once
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When grouped by neonate, the mean between-neonate man-
ual breath count was also 48 bpm, while the median  RRVbm 
showed a narrower distribution (12.3%; IQR 9.8–19.4%). 
The median between-epoch algorithm-derived  RRVbd of 
25.1% (IQR 21.1–30.8%) was marginally lower than the 
median manual breath count  RRVbm.

Within neonate RRV increased when observations were 
taken further apart. The median  RRV60bd was 4.6% higher 
compared with the  RRV10bd (28.1% (IQR 23.5–36.7%) vs 
23.5% (IQR 20.5–28.5%)). A graphical representation of 
the within-neonate  RRV10bd and  RRV60bd trends over time 
showed a marked downward trend in  RRV60bd between the 
baseline and one-hour epochs (Fig. 3C); other time periods 
did not show this trend.

Manual breath count and the algorithm-derived breath 
count showed minimal bias (− 0.52) and strong agreement 
(95% lower limit of agreement (LLA) − 2.7, 95% upper limit 
of agreement (ULA) 1.77, RMSD 1.2; Table 5). However, 
the manual breath count had a larger bias (at least − 3 bpm), 
and a larger normalized spread (95% LLA 37.2% and 95% 
ULA 30.4%) compared with both the algorithm-derived 
median and mean breath rates and a small bias and tighter 
spread of 95% LLA and 95% ULA compared with algo-
rithm-derived breath counts (Fig. 4).

LOA were calculated based on log-transformed data 
which were found to be normally distributed as evidenced 
by the histogram and the Shapiro–Wilk test (S1). We also 
calculated a non-parametric version of the LOA (S2), which 
were the values outside which 5% of the observations fell, 
based on a nonparametric approach for comparing methods 
[40] which allows the use of dependent data. All these LOA 
provided qualitatively similar conclusions.

4  Discussion

The results, which showed a range of RRV from 11.5 to 
25.8% within 60-s epochs, were consistent with previously 
published research quantifying RRV in neonates, children, 
and adults, supporting the external validity of the current 
data while also highlighting challenges when performing 
device comparison studies [12, 33, 41–43]. This range also 
suggested the RRV was within a normal range for short-
term neonatal monitoring in relatively healthy neonates; no 
neonates had a deterioration of their condition during or 
immediately following participation in the study.

Manually counting breaths from a capnogram is a labor-
intensive process commonly used in clinical RR measure-
ment. However, due to its limited temporal precision, man-
ual breath counting does not provide for the precise breath 
durations required when estimating within-epoch mean or 
median RRV, or breath rate variability. Human observers are 
not precise enough to identify the exact breath duration dif-
ferences required to objectively discern accurate variation. 
An accurate breath identification algorithm can both identify 
individual breaths and breath lengths from raw waveform 
data extracted from the capnogram and can be automated. 
The algorithm used in the current study showed a high level 
of accuracy for the algorithm-derived breath count as com-
pared to the manual breath count, evidenced by the small 
bias, tight 95% LLA and ULAs, and a small RMSD across 
all epochs, and was confirmed by plotting each breath in the 
capnograms. These results suggested that this algorithm cor-
rectly identified individual breaths and could identify breath 
duration and RRV. Each source of uncertainty (Table 1) 

Table 4  Respiratory rate (RR) median and median coefficient of variation between- and within-neonates, as well as between- and within-epochs

Sub-group analysis includes algorithm-derived RR grouped by length of time between epochs. Sub-group analysis excludes neonates with fewer 
than two time-relevant epochs

Epochs
(n)

Median respiratory or 
breath rate (interquartile 
range)

Median respiratory or breath rate 
coefficient of variation (interquartile 
range)

Between-neonates Manual count 130 46.7 (43.1–52.0) 12.3% (9.8–19.4%)
Algorithm-derived 130 51.2 (45.1–61.8) 17.6% (10.7–24.2%)

Within-neonate Manual count 130 46.8 (42.5–55.0) 11.5% (6.8–18.9%)
Algorithm-derived 130 51.0 (45.1–59.3) 17.5% (8.8–24.1%)

Between-epochs Manual count 130 47.0 (39.0–56.0) 25.8% (22.0–31.7%)
Algorithm-derived 130 47.5 (40.0–56.0) 25.1% (21.1–30.8%)

Within-epoch Manual count N/A N/A N/A
Algorithm-derived 130 50 (41.4–57.1) 20.8% (13.6–27.3%)

Sub-group
Epochs at 10-min intervals Algorithm-derived (18 neonates) 63 46.1 (38–53) 23.5%

(20.5–28.5%)
Epochs at 60-min intervals Algorithm-derived (19 neonates) 52 50.2 (38.5–60) 28.1%

(23.5–36.7%)
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Fig. 3  Graphic representations of respiratory rate variability in all 
epochs (n = 130). A Histogram showing respiratory rate variability of 
all epochs. B Manual breath count for all epochs, grouped by neonate. 
Within-neonate variability is identified in each individual boxplot 
identifying the mean manual breath count and interquartile range. 
Between-neonate variability is identified by comparing the boxplots. 

C Graphical representations of the within-neonate respiratory rate 
variability trends over time for epochs at 10-min and 60-min inter-
vals. Each line represents a neonate’s trend line showing the normal-
ized within-epoch coefficient of variation or respiratory rate variabil-
ity over time across subsequent epochs

Table 5  Bland–Altman analysis results comparing manual breath count with algorithm-derived breath counts, median and mean breath rates

Bias (normalized) 95% Upper/lower 
limits of agree-
ment

Spread of upper and lower 95% 
limits of agreement (normal-
ized)

RMSD (normalized)

Manual breath count vs algorithm-derived 
breath count

 − 0.52 (− 1.1%)  − 2.7/1.66 4.37 (9.1%) 1.2 (2.5%)

Manual breath count vs algorithm-derived 
median breath rate

 − 3.16 (− 6.6%)  − 12.12/5.8 17.92 (37.2%) 5.5 (11.4%)

Manual breath count vs algorithm-derived 
mean breath rate

 − 3.99 (− 8.3%)  − 11.3/3.32 14.62 (30.4%) 5.5 (11.4%)

Algorithm-derived breaths vs algorithm-
derived median breath rate

 − 2.64 (− 5.4%)  − 11.54/6.27 17.82 (36.6%) 5.2 (10.7%)
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increased the challenge in estimating the true RR, and RRV 
should be considered when comparing MCPM devices.

The marked within-epoch  RRVbd that was identified 
highlights the challenge of performing accurate clinical RR 
measurements in neonates. Both RR and RRV will be sig-
nificantly affected by the timing of the start of the epoch 
analysed. RRV also needs to be reflected in typical clinical 
decision-making thresholds. A longer measurement period, 
for example, 60 or 120 s compared to 15 or 30 s, is likely to 
make the RR more accurate due to the marked short-term, 
breath-by-breath variability. It is also critical when perform-
ing device comparison studies to use the exact same breaths. 
This requires a high degree of device time synchronization.

Healthy adults have mean RRs that range between 12 and 
20 per minute, a 67% difference between lower and upper 
‘normal’ values. Healthy neonates have a mean RR of 30 to 
60 bpm, a 100% difference [41]. Some healthy neonates have 
an upper RR range as high as 72 bpm [42]. The substantial 

neonatal RRV identified in theses results has significant 
implications for the use of guidelines, setting clinical thresh-
olds, and when comparing RR measurement devices. The 
United Nations International Children's Emergency Fund 
(UNICEF) recommended a maximum RRV of no more than 
two bpm in accuracy for diagnostic device comparisons of 
acute respiratory infection is not appropriate for neonates 
[44]. For a neonate with a RR of 70 bpm, this recommenda-
tion equates to 2.9% variability, somewhat stricter than any 
of the within-neonate or between-neonate RRV identified 
in our results. In an adult, a two bpm difference at ten bpm 
could be an important difference (20%), but a two bpm dif-
ference in a neonate typically breathing at 60 bpm (3.3%) 
would be less clinically relevant.

Furthermore, there is substantial RRV across individual 
neonates over time. The algorithm-derived breath counts 
identified changes in neonatal  RRV10bd and  RRV60bd and 
across all epochs. RRV was higher within  RRV60bd epochs 

Fig. 4  Bland–Altman plots comparing manual breath count vs algo-
rithm-derived breath count (A), manual breath count vs algorithm-
derived median breath rate (B), manual breath count vs algorithm-

derived mean breath rate (C), and algorithm-derived breath count vs 
algorithm-derived median breath rate (D)
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compared with  RRV10bd. Previous research looking at 
pediatric populations has suggested RRV could be used to 
diagnose sleep apnea–hypopnea syndrome [19]. In adults, 
within-subject RRV might be useful as a predictor of subse-
quent intensive care unit admission [18]. In neonates, RRV 
may be used to improve clinical care, but more research is 
needed.

A common dilemma encountered when performing stud-
ies of RR measurement is the definition of a ‘true’ breath 
[45]. Various methods have been used to estimate RR across 
devices that result in the measurement of different respira-
tory events as breaths. Small ineffectual respiratory efforts 
are commonly seen in neonates and may not be consistently 
accepted or rejected as breaths. Capnograms show many 
different patterns, including small-amplitude ineffective 
breaths, double breaths (two peaks in a single breath), sub-
sequent breaths starting before the waveform reaches the 
trough or baseline value, pauses, catch-up rapid breathing, 
sighs, and sharp rapid cycles as seen with coughs (Fig. 1; 
Table 3). Further investigation into the identification and 
inclusion of abnormal respiratory events during respiratory 
device accuracy comparison studies are needed.

The clinical implication of this high degree of RRV, even 
in neonates with regular breathing, is that clinicians should 
be aware of the inherent uncertainty of clinical decisions 
made based on selected threshold values. It would be advis-
able to use repeated observations before making critical 
clinical decisions and ideally to use continuous monitoring 
devices and values summarized over more than one minute.

When conducting device comparison studies, accuracy 
thresholds should be adapted to a neonate’s baseline RR. 
Therefore, we suggest that an accuracy threshold should be 
normalized as a percentage of the baseline value and not 
more restrictive than the within-neonate RRV. This aligns 
with a previous proposal to use a percentage error threshold 
for LOA to determine the acceptability of a new technique 
in cardiac measurement and is also relevant when compar-
ing RR measurement technologies [46]. When conducting 
RR accuracy testing, precise synchronization between inves-
tigational and reference devices will ensure that the same 
breaths are compared between devices. Measuring RR in a 
calm child, as recommended by WHO, will also minimize 
variability. However, following the WHO recommenda-
tions for RR measurement results in a rounding-down to 
the nearest breath and assumes the mean breathing rate is 
the most important clinical variable [47]. Instead, a median 
RR, unaffected by cough or pause, may be more reflective of 
the underlying physiological control of breathing and more 
clinically relevant than a mean breath count over 60 s.

We did not study the full range of RRV in real-world 
settings, particularly among critically ill neonates. The 
RRV identified in our study likely under-represents the true 
RRV present in neonates given the data selection used only 

capnograms with easy-to-identify breaths in the manual 
breath count and algorithm-derived breath count processes. 
Epochs that were excluded from analysis were not evenly 
distributed across neonates and poor data quality was the 
most common reason for exclusion. Selecting good quality 
capnograms likely increased the observed agreement within 
the Bland–Altman analysis. Expansion of the data quality 
thresholds for data inclusion would likely result in wider 
CIs and increased RRV.

The capnogram  CO2 sampling rate was approximately 
20 times per second or 20 Hz which is likely sufficient for 
an adult breathing at 10 to 20 breaths per minute. However, 
sampling frequency inaccuracies are more apparent at higher 
breath rates, such as those seen in distressed neonates (which 
may exceed 80 breaths per minute). When working with neo-
nates or other populations expected to have high breath rates, 
sampling rates of 100 Hz, and even as high as > 200 Hz, are 
suggested [48]. These higher sampling rates would avoid 
any aliasing effects, enable oversampling to accommodate 
filtering to remove artifacts, and ensure precision in  RRVbd 
estimation.

In the current study, the resulting algorithm-derived 
breath count had closer agreement with the manual breath 
count than either the algorithm-derived mean or median 
breath rates. This finding highlights the impact that smooth-
ing, averaging, normalizing, or other post-processing pro-
cedures may have on RR measurement. Most devices will 
provide a processed result rather than a count, so consid-
eration as to the impact these post-processing decisions are 
critically important when evaluating automated devices. 
The critical question that remains as yet unresolved, is the 
clinical importance of count or the mean/median as a rep-
resentation of disease severity? RR is often averaged across 
multiple breaths, resulting in additional uncertainty when 
making clinical decisions and when comparing devices.

These results identify the range and sources of RRV 
found between- and within-neonates, as well as between- 
and within-epochs. RR is traditionally measured by counting 
the number of breaths within 60 s. While manual counting 
may seem to be a practical clinical approach, it has limita-
tions, especially when compared to RR measurement with 
digital devices. Large within-neonate RRV will also impact 
the application of RR thresholds in MCPM devices and their 
clinical applications. For devices that estimate RR, we pro-
pose a median value of inter-breath intervals within 60 s to 
remove any extreme outliers and to minimize the effect of 
rounding.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10877- 022- 00840-2.

Acknowledgements We thank the dedicated staff at Aga Khan Uni-
versity-Nairobi Hospital for providing patient care, and the study par-
ticipants, their caregivers, and the local community in Nairobi, Kenya, 

https://doi.org/10.1007/s10877-022-00840-2


1878 Journal of Clinical Monitoring and Computing (2022) 36:1869–1879

1 3

for their participation. Additionally, we would like to acknowledge 
Prof. Guy A Dumont from UBC’s Electrical and Computer Engineer-
ing department for his support with the terminology and concepts con-
tained within the manuscript.

Author contributions ASG and JMA conceived of the study and ASG 
obtained the funding. WM, ASG, and JMA designed and provided 
oversight for the administration and implementation of the study. JC 
contributed to implementation of the study and DD wrote the appli-
cation used to collect data from the reference device, WK wrote the 
application used to analyse some of the processed data. WM, RO and 
DC collected the data. JC, JMA, and DD verified the underlying data. 
JC and GZ performed data analysis and WK and GZ provided statistical 
analysis guidance. JC, ASG, and JMA wrote the draft of the manuscript 
with critical input from all co-authors. All authors edited and reviewed 
the final manuscript.

Funding This study was funded by Bill & Melinda Gates Foundation 
grant OPP1196617.

Data availability Data will be made available on completion of the 
secondary analyses of the data. We have ethics approval to deposit the 
data in an open-access repository upon completion of the study.

Code availability N/A.

Declarations 

Conflict of interest All authors declare no competing interests.

Ethical approval The study was conducted per the International 
Conference on Harmonisation Good Clinical Practice and the Dec-
laration of Helsinki 2008. The protocol and other relevant study 
documents were approved by Western Institutional Review Board 
(20191102; Puyallup, Washington, USA), Aga Khan University Nai-
robi Research Ethics Committee (2019/REC-02 v2; Nairobi, Kenya), 
Kenyan Pharmacy and Poisons Board (19/05/02/2019(078)), and Ken-
yan National Commission for Science, Technology and Innovation 
(NACOSTI/P/19/68024/30253).

Consent to participate Written informed consent was obtained in Eng-
lish or Swahili by trained study staff from each neonate’s caregiver 
according to a checklist that included ascertainment of caregiver com-
prehension.

Consent for publication N/A

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Palafox M, Guiscafré H, Reyes H, Munoz O, Martínez H. Diag-
nostic value of tachypnoea in pneumonia defined radiologically. 
Arch Dis Child. 2000;82:41–5. https:// doi. org/ 10. 1136/ adc. 82.1. 
41.

 2. Amirav I, Lavie M. Rethink respiratory rate for diagnosing child-
hood pneumonia. EClinicalMedicine. 2019;12:6–7. https:// doi. 
org/ 10. 1016/j. eclinm. 2019. 06. 013.

 3. Fieselmann JF, Hendryx MS, Helms CM, Wakefield DS. Respira-
tory rate predicts cardiopulmonary arrest for internal medicine 
inpatients. J Gen Intern Med. 1993;8:354–60. https:// doi. org/ 10. 
1007/ BF026 00071.

 4. World Health Organization. Integrated management of childhood 
illness: caring for newborns and children in the community; 2011.

 5. Simoes EA, Roark R, Berman S, Esler LL, Murphy J. Respiratory 
rate: measurement of variability over time and accuracy at differ-
ent counting periods. Arch Dis Child. 1991;66:1199–203. https:// 
doi. org/ 10. 1136/ adc. 66. 10. 1199.

 6. Daw W. Medical devices for measuring respiratory rate in chil-
dren: a review. J Advs Biomed Eng Technol. 2016. https:// doi. org/ 
10. 15379/ 2409- 3394. 2016. 03. 01. 04.

 7. Walker JM, Farney RJ, Rhondeau SM, Boyle KM, Valentine K, 
Cloward TV, et al. Chronic opioid use is a risk factor for the devel-
opment of central sleep apnea and ataxic breathing. J Clin Sleep 
Med. 2007;3:455–61.

 8. Del Negro CA, Funk GD, Feldman JL. Breathing matters. 
Nat Rev Neurosci. 2018;19:351–67. https:// doi. org/ 10. 1038/ 
s41583- 018- 0003-6.

 9. Eichenwald EC, Committee on Fetus and Newborn, American 
Academy of Pediatrics. Apnea of prematurity. Pediatrics. 2016. 
https:// doi. org/ 10. 1542/ peds. 2015- 3757.

 10. Mohr MA, Fairchild KD, Patel M, Sinkin RA, Clark MT, Randall 
Moorman J, et al. Quantification of periodic breathing in prema-
ture infants. Physiol Meas. 2015;36:1415–27. https:// doi. org/ 10. 
1088/ 0967- 3334/ 36/7/ 1415.

 11. Al-Hathlol K, Idiong N, Hussain A, Kwiatkowski K, Alvaro RE, 
Weintraub Z, et al. A study of breathing pattern and ventilation in 
newborn infants and adult subjects. Acta Paediatr. 2007;89:1420–
5. https:// doi. org/ 10. 1111/j. 1651- 2227. 2000. tb027 69.x.

 12. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. 
Variability of resting respiratory drive and timing in healthy sub-
jects. J Appl Physiol. 1988;65:309–17. https:// doi. org/ 10. 1152/ 
jappl. 1988. 65.1. 309.

 13. Marjanovic N, Mimoz O, Guenezan J. An easy and accurate 
respiratory rate monitor is necessary. J Clin Monit Comput. 
2020;34:221–2. https:// doi. org/ 10. 1007/ s10877- 019- 00357-1.

 14. Saria S, Rajani AK, Gould J, Koller D, Penn AA. Integration 
of early physiological responses predicts later illness severity in 
preterm infants. Sci Transl Med. 2010. https:// doi. org/ 10. 1126/ 
scitr anslm ed. 30013 04.

 15. Warburton A, Monga R, Sampath V, Kumar N. Continuous 
pulse oximetry and respiratory rate trends predict short-term res-
piratory and growth outcomes in premature infants. Pediatr Res. 
2019;85:494–501. https:// doi. org/ 10. 1038/ s41390- 018- 0269-4.

 16. Jain D, Bancalari E. Neonatal monitoring during delivery room 
emergencies. Semin Fetal Neonatal Med. 2019;24:101040. https:// 
doi. org/ 10. 1016/j. siny. 2019. 101040.

 17. Chung HU, Rwei AY, Hourlier-Fargette A, Xu S, Lee K, Dunne 
EC, et  al. Skin-interfaced biosensors for advanced wireless 
physiological monitoring in neonatal and pediatric intensive-
care units. Nat Med. 2020;26:418–29. https:// doi. org/ 10. 1038/ 
s41591- 020- 0792-9.

 18. Garrido D, Assioun JJ, Keshishyan A, Sanchez-Gonzalez MA, 
Goubran B. Respiratory rate variability as a prognostic factor in 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1136/adc.82.1.41
https://doi.org/10.1136/adc.82.1.41
https://doi.org/10.1016/j.eclinm.2019.06.013
https://doi.org/10.1016/j.eclinm.2019.06.013
https://doi.org/10.1007/BF02600071
https://doi.org/10.1007/BF02600071
https://doi.org/10.1136/adc.66.10.1199
https://doi.org/10.1136/adc.66.10.1199
https://doi.org/10.15379/2409-3394.2016.03.01.04
https://doi.org/10.15379/2409-3394.2016.03.01.04
https://doi.org/10.1038/s41583-018-0003-6
https://doi.org/10.1038/s41583-018-0003-6
https://doi.org/10.1542/peds.2015-3757
https://doi.org/10.1088/0967-3334/36/7/1415
https://doi.org/10.1088/0967-3334/36/7/1415
https://doi.org/10.1111/j.1651-2227.2000.tb02769.x
https://doi.org/10.1152/jappl.1988.65.1.309
https://doi.org/10.1152/jappl.1988.65.1.309
https://doi.org/10.1007/s10877-019-00357-1
https://doi.org/10.1126/scitranslmed.3001304
https://doi.org/10.1126/scitranslmed.3001304
https://doi.org/10.1038/s41390-018-0269-4
https://doi.org/10.1016/j.siny.2019.101040
https://doi.org/10.1016/j.siny.2019.101040
https://doi.org/10.1038/s41591-020-0792-9
https://doi.org/10.1038/s41591-020-0792-9


1879Journal of Clinical Monitoring and Computing (2022) 36:1869–1879 

1 3

hospitalized patients transferred to the intensive care unit. Cureus. 
2018;10:e2100. https:// doi. org/ 10. 7759/ cureus. 2100.

 19. Barroso-Garcia V, Gutierrez-Tobal GC, Kheirandish-Gozal L, 
Alvarez D, Vaquerizo-Villar F, Del Campo F, et al. Usefulness of 
spectral analysis of respiratory rate variability to help in pediat-
ric sleep apnea-hypopnea syndrome diagnosis. Conf Proc IEEE 
Eng Med Biol Soc. 2019;2019:4580–3. https:// doi. org/ 10. 1109/ 
EMBC. 2019. 88577 19.

 20. Tsuji H, Venditti FJ Jr, Manders ES, Evans JC, Larson MG, Feld-
man CL, et al. Reduced heart rate variability and mortality risk 
in an elderly cohort. The Framingham Heart Study. Circulation. 
1994;90:878–83. https:// doi. org/ 10. 1161/ 01. cir. 90.2. 878.

 21. Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne 
CA, et al. Low heart rate variability in a 2-minute rhythm strip 
predicts risk of coronary heart disease and mortality from several 
causes. Circulation. 2000;102:1239–44. https:// doi. org/ 10. 1161/ 
01. CIR. 102. 11. 1239.

 22. Fairchild K, Aschner. HeRO monitoring to reduce mortality in 
NICU patients. RRN. 2012. https:// doi. org/ 10. 2147/ RRN. S32570.

 23. Malik M, Bigger JT, Camm AJ, Kleiger RE, Malliani A, Moss AJ, 
et al. Heart rate variability: standards of measurement, physiologi-
cal interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

 24. Cygankiewicz I, Zareba W. Heart rate variability. Handb Clin 
Neurol. 2013;117:379–93. https:// doi. org/ 10. 1016/ B978-0- 444- 
53491-0. 00031-6.

 25. Fairchild KD, Schelonka RL, Kaufman DA, Carlo WA, Kattwin-
kel J, Porcelli PJ, et al. Septicemia mortality reduction in neo-
nates in a heart rate characteristics monitoring trial. Pediatr Res. 
2013;74:570–5. https:// doi. org/ 10. 1038/ pr. 2013. 136.

 26. Kumar N, Akangire G, Sullivan B, Fairchild K, Sampath V. 
Continuous vital sign analysis for predicting and preventing neo-
natal diseases in the twenty-first century: big data to the fore-
front. Pediatr Res. 2020;87:210–20. https:// doi. org/ 10. 1038/ 
s41390- 019- 0527-0.

 27. Massaroni C, Nicolò A, Lo Presti D, Sacchetti M, Silvestri S, 
Schena E. Contact-based methods for measuring respiratory rate. 
Sensors. 2019;19:908. https:// doi. org/ 10. 3390/ s1904 0908.

 28. Al-Halhouli A, Al-Ghussain L, El Bouri S, Liu H, Zheng D. Fab-
rication and evaluation of a novel non-invasive stretchable and 
wearable respiratory rate sensor based on silver nanoparticles 
using inkjet printing technology. Polymers. 2019;11:1518. https:// 
doi. org/ 10. 3390/ polym 11091 518.

 29. Hurtado DE, Abusleme A, Chávez JAP. Non-invasive continu-
ous respiratory monitoring using temperature-based sensors. J 
Clin Monit Comput. 2020;34:223–31. https:// doi. org/ 10. 1007/ 
s10877- 019- 00329-5.

 30. Rossol SL, Yang JK, Toney-Noland C, Bergin J, Basavaraju C, 
Kumar P, et al. Non-contact video-based neonatal respiratory 
monitoring. Children. 2020;7:171. https:// doi. org/ 10. 3390/ child 
ren71 00171.

 31. Joshi R, Bierling B, Feijs L, van Pul C, Andriessen P. Monitor-
ing the respiratory rate of preterm infants using an ultrathin film 
sensor embedded in the bedding: a comparative feasibility study. 
Physiol Meas. 2019;40:045003. https:// doi. org/ 10. 1088/ 1361- 
6579/ ab1595.

 32. Vanegas E, Igual R, Plaza I. Sensing systems for respiration 
monitoring: a technical systematic review. Sensors. 2020;20:5446. 
https:// doi. org/ 10. 3390/ s2018 5446.

 33. Goldsack JC, Coravos A, Bakker JP, Bent B, Dowling AV, Fitzer-
Attas C, et al. Verification, analytical validation, and clinical 
validation (V3): the foundation of determining fit-for-purpose for 
Biometric Monitoring Technologies (BioMeTs). NPJ Digit Med. 
2020;3:55. https:// doi. org/ 10. 1038/ s41746- 020- 0260-4.

 34. Godfrey A, Goldsack JC, Tenaerts P, Coravos A, Aranda C, Hus-
sain A, et al. BioMeT and algorithm challenges: a proposed digital 
standardized evaluation framework. IEEE J Transl Eng Health 
Med. 2020;8:0700108. https:// doi. org/ 10. 1109/ JTEHM. 2020. 
29967 61.

 35. Ginsburg AS, Nkwopara E, Macharia W, Ochieng R, Waiyego M, 
Zhou G, et al. Evaluation of non-invasive continuous physiologi-
cal monitoring devices for neonates in Nairobi, Kenya: a research 
protocol. BMJ Open. 2020;10:e035184. https:// doi. org/ 10. 1136/ 
bmjop en- 2019- 035184.

 36. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. 
Research electronic data capture (REDCap)–a metadata-driven 
methodology and workflow process for providing translational 
research informatics support. J Biomed Inform. 2009;42:377–81. 
https:// doi. org/ 10. 1016/j. jbi. 2008. 08. 010.

 37. Karlen W, Ansermino JM, Dumont G. Adaptive pulse seg-
mentation and artifact detection in photoplethysmography 
for mobile applications. Conf Proc IEEE Eng Med Biol Soc. 
2012;2012:3131–4. https:// doi. org/ 10. 1109/ EMBC. 2012. 63466 
28.

 38. StataCorp LP. Stata statistical software: Release 13. Statacorp lp 
College Station, TX; 2013.

 39. R Core Team. R: A language and environment for statistical com-
puting. Vienna, Austria: R Foundation for Statistical Computing; 
https:// www.r- proje ct. org/

 40. Bland JM, Altman DG. Measuring agreement in method compari-
son studies. Stat Methods Med Res. 1999;8:135–60. https:// doi. 
org/ 10. 1177/ 09622 80299 00800 204.

 41. Sepanski RJ, Godambe SA, Zaritsky AL. Pediatric vital sign dis-
tribution derived from a multi-centered emergency department 
database. Front Pediatr. 2018;6:66. https:// doi. org/ 10. 3389/ fped. 
2018. 00066.

 42. Tveiten L, Diep LM, Halvorsen T, Markestad T. Respiratory rate 
during the first 24 hours of life in healthy term infants. Pediatrics. 
2016. https:// doi. org/ 10. 1542/ peds. 2015- 2326.

 43. Bonafide CP, Brady PW, Keren R, Conway PH, Marsolo K, Day-
mont C. Development of heart and respiratory rate percentile 
curves for hospitalized children. Pediatrics. 2013;131:e1150–7. 
https:// doi. org/ 10. 1542/ peds. 2012- 2443.

 44. UNICEF Supply Division. Target Product Profile: Acute Respira-
tory Infection Diagnostic Aid (ARIDA). 2014 Nov. https:// www. 
unicef. org/ video audio/ PDFs/ ARIDA_-_ Target_ Produ ct_ Profi le_ 
(2). pdf

 45. Jaffe MB. What is a “valid” breath?-Methodological issues. 
Anesth Analg. 2011;113:5.

 46. Critchley LA, Critchley JA. A meta-analysis of studies using bias 
and precision statistics to compare cardiac output measurement 
techniques. J Clin Monit Comput. 1999;15:85–91. https:// doi. org/ 
10. 1023/a: 10099 82611 386.

 47. World Health Organization. Pocket book of hospital care for chil-
dren: guidelines for the management of common childhood ill-
nesses. Geneva: World Health Organization; 2013.

 48. Schmalisch G. Current methodological and technical limitations 
of time and volumetric capnography in newborns. Biomed Eng 
Online. 2016;15:104. https:// doi. org/ 10. 1186/ s12938- 016- 0228-4.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.7759/cureus.2100
https://doi.org/10.1109/EMBC.2019.8857719
https://doi.org/10.1109/EMBC.2019.8857719
https://doi.org/10.1161/01.cir.90.2.878
https://doi.org/10.1161/01.CIR.102.11.1239
https://doi.org/10.1161/01.CIR.102.11.1239
https://doi.org/10.2147/RRN.S32570
https://doi.org/10.1016/B978-0-444-53491-0.00031-6
https://doi.org/10.1016/B978-0-444-53491-0.00031-6
https://doi.org/10.1038/pr.2013.136
https://doi.org/10.1038/s41390-019-0527-0
https://doi.org/10.1038/s41390-019-0527-0
https://doi.org/10.3390/s19040908
https://doi.org/10.3390/polym11091518
https://doi.org/10.3390/polym11091518
https://doi.org/10.1007/s10877-019-00329-5
https://doi.org/10.1007/s10877-019-00329-5
https://doi.org/10.3390/children7100171
https://doi.org/10.3390/children7100171
https://doi.org/10.1088/1361-6579/ab1595
https://doi.org/10.1088/1361-6579/ab1595
https://doi.org/10.3390/s20185446
https://doi.org/10.1038/s41746-020-0260-4
https://doi.org/10.1109/JTEHM.2020.2996761
https://doi.org/10.1109/JTEHM.2020.2996761
https://doi.org/10.1136/bmjopen-2019-035184
https://doi.org/10.1136/bmjopen-2019-035184
https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.1109/EMBC.2012.6346628
https://doi.org/10.1109/EMBC.2012.6346628
https://www.r-project.org/
https://doi.org/10.1177/096228029900800204
https://doi.org/10.1177/096228029900800204
https://doi.org/10.3389/fped.2018.00066
https://doi.org/10.3389/fped.2018.00066
https://doi.org/10.1542/peds.2015-2326
https://doi.org/10.1542/peds.2012-2443
https://www.unicef.org/videoaudio/PDFs/ARIDA_-_Target_Product_Profile_(2).pdf
https://www.unicef.org/videoaudio/PDFs/ARIDA_-_Target_Product_Profile_(2).pdf
https://www.unicef.org/videoaudio/PDFs/ARIDA_-_Target_Product_Profile_(2).pdf
https://doi.org/10.1023/a:1009982611386
https://doi.org/10.1023/a:1009982611386
https://doi.org/10.1186/s12938-016-0228-4

	Assessment of neonatal respiratory rate variability
	Abstract
	1 Introduction
	2 Methods
	2.1 Setting and participants
	2.2 Study procedures and data collection
	2.3 Data analysis
	2.4 Sample size

	3 Results
	4 Discussion
	Acknowledgements 
	References




