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Abstract
The protein sequence space is vast and diverse, spanning across different
families. Biologically meaningful relationships exist between proteins at
superfamily level. However, it is highly challenging to establish convincing
relationships at the superfamily level by means of simple sequence searches. It
is necessary to design a rigorous sequence search strategy to establish remote
homology relationships and achieve high coverage. We have used iterative
profile-based methods, along with constraints of sequence motifs, to specify
search directions. We address the importance of multiple start points (queries)
to achieve high coverage at protein superfamily level. We have devised
strategies to employ a structural regime to search sequence space with good
specificity and sensitivity. We employ two well-known sequence search
methods, PSI-BLAST and PHI-BLAST, with multiple queries and multiple
patterns to enhance homologue identification at the structural superfamily level.
The study suggests that multiple queries improve sensitivity, while a
pattern-constrained iterative sequence search becomes stringent at the initial
stages, thereby driving the search in a specific direction and also achieves high
coverage. This data mining approach has been applied to the entire structural
superfamily database.
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Introduction
Protein sequence databases have grown enormously in recent 
times. Understanding protein homology within such huge sets of 
sequences requires tracing the divergence by mutation, substitution, 
insertion and deletion of residues1,2. Homologous proteins reflect 
similarity at sequence and structural levels, implying functional 
similarity3. This level of similarity broadens into the superfamily 
and the ways to deduce such relationships differ for both protein 
sequence and structure information4,5. There are different databases 
that organize sets of homologous proteins or protein superfamilies 
based on protein sequence and structure. These databases primar-
ily employ protein domain information present in a sequence or 
structure. SCOP is a database that organizes the protein structural 
domain data in different hierarchical levels based on structural 
and functional information6. Many sequence search strategies use 
SCOP domains as a starting point for homology detection, focusing 
mainly at the superfamily level7,8. Structure-based classification is 
helpful to explore sequence space and helps in functional assign-
ments by association of protein sequences9.

Of the several methods developed for protein homology detection, 
the popular BLAST10 algorithm uses heuristics to search sequences 
and is able to detect close homologues, but fails in a few instances 
to establish relationships between distantly related proteins. To detect 
remote homologues, several methods such as, PSI-BLAST10 based 
on profiles, Hidden Markov Model (HMM)-based methods like 
HMMSEARCH and Jackhmmer11,12, pattern-based methods like 
PHI-BLAST13, intermediate sequence search methods such as Cas-
cade PSI-BLAST14 and phylogenetic tree based searches like Tree-
search15 have been developed. Methods such as CHASE incorporate 
some of the above methods in a combined manner to reinforce the 
sequence search16. Each of the above methods can be optimized for 
better performance by customizing their parameters and the way they 
are implemented for sequence searches. For instance, PSI-BLAST is 

an iterative PSSM (Position Specific Scoring Matrix)-based remote 
homology detection method. In Cascade PSI-BLAST the search is 
iterated for several generations in a cascaded manner to improve 
remote homology detection14. It is important to select appropriate 
start points for sequence searches, especially for protein families 
and superfamilies, as different start points can result in different 
coverage. Park and co-workers have shown that remote homology 
detection is enhanced threefold for a set of related sequences in the 
form of a profile than merely searching with a single sequence as 
a query17. Anand and co-workers emphasized the use of multiple 
PSSMs as better detectors of remote homologues compared to a 
single query18. Thus, a search strategy can be designed to improve 
remote homology detection by choosing appropriate method(s) and 
starting point(s) for the search and by further optimizing the 
parameters.

We have considered multi-member superfamilies from the PASS2 
database19. PASS2 is a database of structural alignments of protein 
domains in a SCOP superfamily which share less than 40% mutual 
sequence identity. The strategy lies in using all the members of 
PASS2 superfamily, i.e., multiple members, and searching against 
the NR-Db (Non Redundant Database) available at the NCBI pro-
tein resource. We present our analysis based on a multiple query 
approach (MQ) for PSI-BLAST and PHI-BLAST. While using 
PHI-BLAST, for each query we obtain a set of patterns to initiate 
multiple searches per query, thereby adding an extra dimension for 
multiple patterns. The search approaches are evaluated at different 
coverage levels and a comparison of the two approaches using the 
two methods is presented. The methods are then applied to the entire 
PASS2 database.

Materials and methodology
Dataset
Different structural classes of proteins described in SCOP (version 
1.75) were considered for remote homology detection. PASS219 
based on the SCOP database and the ASTRAL compendium20, uses 
protein structural entries from the SCOP superfamily with less than 
40% mutual sequence identity. Three superfamilies each from four 
structural classes from the PASS2 database (2008 version) were 
selected for this study (Table 1). Each superfamily contains a var-
ied number of members, with some containing a single family and 
others with more than one family. The classification of families is 
based on SCOP hierarchies; PASS2 does not consider this classifi-
cation. Therefore, different members within a PASS2 superfamily 
may be listed in different families in SCOP. The sequence search 
strategy devised, described below, was implemented for data min-
ing the sequence homologues for structural superfamilies. Struc-
tural members from all the 1961 PASS2 superfamilies were used to 
search for sequence homologues.

Homologue detection
Each member of the PASS2 superfamily was selected as a query for 
homologue detection and used to search against the NR-Db availa-
ble at the NCBI ftp site (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/
nr.gz). Two popular methods, PSI-BLAST and PHI-BLAST, from 
the BLAST 2.2.23+ package, were used for sequence searches 
(ftp://ftp.ncbi.nih.gov/blast/executables/blast+/2.2.23/ncbi-blast-
2.2.23+-x64-linux.tar.gz) (see Figure 1 for flow-chart).

      Amendments from Version 1

We have now modified the title in response to comment from 
Dr. Chakrabarti to emphasize that it is a search approach not 
an algorithm. In such repetitive sequence searches, the best 
improvement is not only in high coverage but in achieving it 
with minimal computational time. In this respect, BRS-MP is 
recommended if the searches are likely to be exhaustive with 
multiple queries. Likewise, we mention recommended best 
strategies, such as gathering homologues at 60–90% and to retain 
motifs less than 15 residues, as suggested by Dr. Madhusudhan. 
These are now mentioned in the Conclusions. Since the search is 
against the NR sequence database, there is no firm gold standard to 
recognize false positives (point 3 made by Dr. Saikat Chakrabarti) 
and hence it is hard to compare the performance using traditional 
ROC curves. In response to comment from Dr. Madhusudhan, we 
have now included one more example on a protein superfamily. 
MQ or MPMQ approach, whilst being obvious choices, are also 
computationally demanding and this analysis on 12 superfamilies 
was a conscious attempt to measure the extent of gain/loss of 
coverage. We have now introduced a Venn diagram that provides 
a cumulative measure of coverage of these different approaches 
(Figure 4-A of the revised manuscript). We do find similar trends 
when the improved sequence search approach is applied on 1961 
superfamilies. 

See referee reports
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PSI-BLAST was used for each query until convergence or a maxi-
mum of 20 iterations. The expectation value threshold (E-value: 
parameter –e) and inclusion threshold (parameter –h) were both set 
to 0.001. In all the iterations, all the alignment regions from each 
of the hit sequences were considered for further validation steps. 
Following this, a set of all unique sequence homologues (hits with a 
unique GenInfo Identifier (GI)) was recorded for each member. Sets 
of hits from all the members in a superfamily were pooled and fil-
tered to generate a cumulative set of unique GIs for each superfamily. 

Employing all members for homology detection for a superfamily 
is essentially the multiple query (MQ) approach in the sequence 
search strategy. For all the PASS2 superfamilies, data mining was 
carried out using this MQ approach and PSI-BLAST on the latest 
NR-Db version (June, 2012 release) to populate a sequence homo-
logue database for structural superfamilies7. PHI-BLAST requires a 
query and a pattern pair as an input. A set of patterns was identified 
for each query and each query-pattern pair was used for the PHI-
BLAST search. The parameters and their values were maintained 

Figure 1. Flowchart of workflow for the sequence search strategy.

Table 1. List of 12 PASS2 superfamilies considered for sequence searches.

Class SCOP Code No. of 
members

No. of SCOP 
families Size Name of superfamily as in 

SCOP database

ALL α 47336 7 3 86 Acyl carrier protein-like

47565 5 1 120 Insect pheromone/odorant-
binding proteins

48345 3 3 230 A virus capsid protein alpha 
helical domain

ALL β 51101 3 1 147 Mannose-binding lectins

50203 10 2 100 Bacterial enterotoxins

51069 4 1 248 Carbonic anhydrase

α AND β 55031 7 1 109 Bacterial exopeptidase dimerisation

55307 5 1 146 Tubulin C-terminal domain-like

55239 4 1 119 RuBisCo-small subunit

α OR β 51971 9 3 243 Nucleotide-binding domain

51679 6 4 343 Bacterial-luciferase-like

51351 3 1 243 Triose phosphate isomerase
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as in PSI-BLAST searches. The use of multiple patterns for all the 
multiple queries (MPMQ approach), for superfamily level homol-
ogy detection was tested on the 12 PASS2 superfamilies.

Pattern generation
Homologues were searched for query sequence patterns, using strin-
gent PSI-BLAST criteria (maximum 10 iterations, 10-10 E-value), 
in NR-Db. A set of hits with 60–90% sequence identity was selected 
for the pattern generation process. For queries with <10 hits, the 
sequence identity window was relaxed to 40–95% so that there were 
enough sequence homologues to deduce a conserved pattern. These 
hits were aligned using ClustalW 2.021. An in-house program, MO-
TIFS (the program can be made available upon request), was used 
to identify motifs from the Multiple Sequence Alignment (MSA). 
The program accepts a MSA of protein sequences as input and 
employs a DAYHOFF-type amino acid exchange matrix to score 
amino acid replacements for every pair of sequences. The average 
pairwise amino acid exchange scores are recorded at every align-
ment position. In general, an alignment position with a high score 
means a highly conserved position. A motif is reported for a stretch 
of three or more consecutive positions with complete conservation 
or favorable substitution (based on an identical or similar residue 
in a given position in the MSA and the average score). For all such 
identified motifs, the stretch of amino acids from all the sequences 
is reported with their length and position corresponding to the first 
sequence in the alignment. The motif generated is screened for the 
following conditions: 

•	 Length	of	the	motif	should	be	≥ 3

•	 At	each	position,	there	should	be	only	≤ 3 different amino acid 
preferences (reported by MOTIFS); if not, then that position 
is denoted as ‘X’, where ‘X’ refers to any amino acid at that 
position

•	 When	there	is	an	occurrence	of	two	consecutive	‘X’s	(variable	
residues), the pattern is divided into two separate patterns

•	 No	pattern	starts	or	ends	with	‘X’

•	 Any	pattern	can	have	a	maximum	length	of	15	amino	acid	posi-
tions, since above this length there is little increment in the 
number of hits obtained. If length of a pattern is >15 amino 
acid positions, it is broken into subsets of patterns which meet 
all the above conditions and has a maximum length of 15.

After the motif passes through all the above filters, it is converted 
into a PROSITE format pattern, and used for PHI-BLAST along 
with its query22.

Validation
The PASS2 database contains structure-based sequence alignments 
which are used to build a HMM for each superfamily. Since these 
HMMs are built using structural alignments, they are highly sensitive 
in validating the sequence homologue obtained for a superfamily 
member as a true positive (TP). A library of all PASS2 superfamily 
HMMs was consulted using HMMSCAN, from the HMMER 3.0 
package (ftp://selab.janelia.org/pub/software/hmmer3/3.0/hmmer-3.0-
linux-intel-x86_64.tar.gz), to validate all the sequence homologues 

through either of the sequence approaches (MQ and MPMQ) dis-
cussed above11. This approach of validation had earlier been effec-
tive in 80% of the examples23.

In the process of data mining for all PASS2 superfamilies using 
the MQ approach, additional validation was used for the homo-
logues which failed to associate with the correct superfamily HMM. 
A single query HMM was built for all PASS2 members which were 
grouped together to generate a library. Thus, an additional valida-
tion using single-query HMM was carried for all PASS2 super-
families. All the HMMSCAN runs were performed with an E-value 
threshold of 0.01.

Coverage of sequence search approaches
Coverage for both of the sequence search approaches was based on 
different levels. Firstly, a cumulative set of validated hits (Cum-TP) 
obtained for each superfamily should contain all the PASS2 members 
comprising that particular superfamily. Secondly, hits corresponding 
to the sequences of all the SCOP members for a given superfamily 
should be part of the Cum-TP set. Since, PASS2 contains super-
families where no two members within a superfamily had >40% 
sequence identity, the coverage at the SCOP level reflects the sen-
sitivity of the search strategy. Any cross-superfamily hits detected were 
considered as false positives (FP), even if they belong to the same 
fold. Thirdly, since sequences of all structural entries present in 
Protein Data Bank (PDB) obtained as hits are not classified into 
SCOP, all structural entries were inspected through HMM valida-
tion whether they associate to a single PASS2 superfamily HMM 
with no cross-superfamily associations. Finally, all the protein sequence 
homologues devoid of the above mentioned levels, with no struc-
tural information, were validated by HMMSCAN.

In each superfamily, a set of cumulative true positives (Cum-TP) 
was formed with hits having unique GI obtained from different 
members. Therefore, from the set of all hits obtained for a super-
family (All Hits), the number of validated hits, i.e. Cum-TP, was 
used to calculate positive prediction value (PPV) for all 12 super-
families in both approaches. The PPV is calculated as follows:

PPV
Cum
All Hits

TP = 
 





  ∗  100

A member with highest number of TPs was identified as a best 
representing sequence (BRS) and its TP count was also recorded 
(BRS-TP) for all superfamilies. Corresponding to Cum-TP, a ratio 
of BRS-TP/All Hits was also calculated. Using this value and Cum-
TP, a percentage gain in the coverage (PGC) was recorded:

PGC
Cum  BRS

Cum
TP TP

TP

=
−





   ∗  100

The overlap between coverage achieved by the four cases – MPMQ 
approach, MQ approach, BRS from PHI-BLAST and PSI-BLAST 
was assessed by plotting a Venn diagram24. Following these four-
cases, all the validated hits obtained for all the 12 superfamilies 
were segregated into 4 sets and used for plotting the Venn diagram.
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Results
The sequence search strategy devised for remote homology detec-
tion was tested and implemented.

MQ approach for sequence search
Selection of parameters. 12 structural superfamilies were consid-
ered for testing the sequence search strategy. These superfamilies 
span different classes (α, β, α/β, α+β) of proteins, as per the SCOP 
definitions. In the MQ approach, all the members from each of the 
12 selected superfamilies were used as inputs for PSI-BLAST to 
search against the NR-Db. The performance of PSI-BLAST was 
optimized for different parameters. The E-value (parameter –e) and 
inclusion threshold (parameter –h) were optimized to 0.001, after 
testing it on a range of 1 to 10-10. An optimized E-value ensures bet-
ter coverage with fewer FP. The number of iterations (parameter –j) 
was set to 20, after testing for values 5, 10 and 20. Some queries 
may converge within 5 iterations where the superfamily was less di-
verse as in the case of 50203 (Bacterial enterotoxin). However, for 
certain superfamilies like 55239 (RuBisCo-small subunit), none of 
the members could converge searches within 20 iterations explain-
ing the abundance of sequence homologues for such proteins in the 
NR-Db. The rest of the parameters were set to default.

Query retention. In the profile-based iterative (PSI-BLAST) run, 
the sensitivity and specificity depends upon the quality of the PSSM 
generated per iteration. If the PSSM gets corrupted, then the PSI-
BLAST search drifts to FPs by inclusion of non-homologous sequences. 
This can be traced by retention of the query in the PSSM through-
out the iterations of a PSI-BLAST run. A query retained until the 
end reflects good optimization of search parameters and little cor-
ruption of the PSSM. To study the query retention for each member 
in a superfamily, the presence of query was inspected in all itera-
tions for the PSI-BLAST run. The number of iterations was divided 
into four bins as 25%, 50%, 75% and 100% of total iterations for 
which the PSI-BLAST run lasted or converged. If a PSI-BLAST 
run converged at the 16th iteration, upper limits for these four bins 
were 4th, 8th, 12th and 16th iterations, respectively. The query was 

inspected for the occurrence in any of the four bins for all members 
of a superfamily. The frequency of queries last observed in any of 
the four bins is plotted in Figure 2-A. It reflects that out of a total of 
70 queries from all 12 superfamilies, 45 queries were retained until 
the last iteration and 23 queries were not retained beyond 50% of 
iterations. However, it was observed that close homologues of the 
member query (sequence identity >90%) were retained until the last 
bin, thereby driving the PSI-BLAST search in the correct direction. 
Query drift was observed in only two out of the total 70 members 
from 12 different superfamilies.

In the data mining of all structural superfamilies within the PASS2 
database using the MQ approach, a similar trend was observed for 
the entire set of 10569 queries arising from 1961 superfamilies. 
65% of queries were observed in the fourth bin, thereby ensuring 
the parameters selected for this scale-up of a MQ approach were 
acceptable. At times, the loss of query in the PSSM could still be 
beneficial, if the resultant PSSM is enriched by neighboring families, 
thus improving the coverage at the superfamily level. The PASS2 
database includes the classification of superfamilies as single-mem-
ber (SMS), two-member (TMS) and multi-member (MMS) based 
on the number of members in each superfamily. A distribution for 
the query retention in the four bins for these sections is shown in 
Figure 2-B. 68% of MMS queries have >50% query retention. How-
ever, in the MQ approach, few of the members in MMS are retained 
until the fourth bin to ensure better sequence search at the super-
family level.

MPMQ approach for sequence search
Each member and pattern pair was used for sequence searches using 
PHI-BLAST. Similar to PSI-BLAST, the E-value (parameter -e) 
and inclusion threshold (parameter -h) were optimized to 0.001. 
The maximum number of iterations allowed was set to 20. While 
generating the patterns, it was ensured that patterns are specific and 
stringent to query. The length of the patterns generated varies from 
3 to 40 amino acid positions; however during sequence search using 
PHI-BLAST, the pattern length of maximum 15 amino acid positions 

Figure 2. Frequency of retention of query until 25%, 50%, 75% or 100% of iterations of PSI-BLAST is represented as four bins (0–25%, 
26–50%, 51–75%, 76–100% respectively). (A) Number of member queries observed per bin for 12 superfamilies and (B) A stacked bar 
plot for all percentage query retention bins observed for all superfamily members in PASS2 database and also for the different sets of SMS 
(Single-Member Superfamily), TMS (Two-Member Superfamily) and MMS (Multi-Member Superfamily).
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was used. Longer lengths reflect the long conserved stretches in the 
homologues selected for pattern generation. Multiple patterns for 
each query and multiple queries per superfamily (MPMQ approach) 
were used in the sequence searches. This gives rise to multiple start 
points to search in sequence space for each superfamily. Although 
PHI-BLAST essentially follows an iterative protocol like PSI-
BLAST, the hits identified in the first iteration differ as they are 
constrained to have the pattern specified along with the query. This 
ensures that the hits will be used to create the first PSSM for the rest 
of the iterative search process.

Validation and coverage
The sequence hits obtained through MQ and MPMQ approaches 
were validated for TP and then inspected for the coverage at differ-
ent levels for all 12 superfamilies.

Coverage for PASS2 members. Every member was examined for 
its coverage of all the PASS2 members in the sequence search. All 
the members achieved full coverage when searched in the cumula-
tive set of hits derived from sequence searches of all the PASS2 
members. Every member of the two superfamilies, RuBisCo small 
subunit (SCOP code: 55239) and mannose-binding lectins (SCOP 
code: 51101), could identify all other members. But for the rest 
of the superfamilies, every member was unable to identify all the 
PASS2 members. Although, single members in such instances were 
unable to cover all the PASS2 members cumulatively, presence of 
all members gave rise to 100% coverage, thereby stating the impor-
tance of the use of multiple queries (MQ).

Coverage for SCOP superfamily members. The coverage for all the 
SCOP superfamily members was inspected. The ratio of the number 
of sequence homologues of SCOP superfamily entries identified as 
TP to the total number of SCOP superfamily members is plotted as 

shown in Figure 3 (blue bars). Almost all of the superfamilies obtained 
>90% coverage for all SCOP superfamily members. The only excep-
tion was the Bacterial enterotoxins superfamily with two families 
(SCOP code: 50203), where coverage was 25%. In the PASS2 
database, this superfamily contained nine members from one SCOP 
family, and could identify most of its SCOP family members. But 
none of the members could identify cross-family members. Howev-
er, there was only one member from the other family which was not 
sufficient to identify all the family members. This lack of coverage 
can be overcome if more members are included from the second 
family. For such a diverse superfamily, it is apparent that unless we 
use an MQ approach, it is difficult to achieve a reasonable coverage. 
In the rest of the superfamilies, some members were able to iden-
tify cross-family members while some could not identify any cross-
family member. In either case, all of the SCOP family members 
were covered. Cumulatively, all PASS2 members are strong enough 
to cover most of the SCOP superfamily members underlining the 
high sensitivity of MQ approach.

Coverage for the structural (PDB) entries. The sequences of struc-
tural entries present in PDB were part of the All Hits set. These 
are newer entries which are yet to be accounted in the SCOP data-
base. After PASS2-HMM validation, they were inspected for which 
superfamily they belong to and if they could associate to the query 
member’s superfamily. There were no cross-superfamily connec-
tions, highlighting the specificity of the sequence search through 
the MQ approach.

Coverage with respect to the TP sequence homologues. While 
following the MQ approach over a huge database like NR-Db, it 
is necessary to achieve a maximum number of homologues (TP) 
and minimum unrelated sequences (FP). The use of multiple queries 
ensures a high TP count, while appropriate stringency of the E-value 

Figure 3. Coverage of 12 superfamilies for the PSI-BLAST sequence search. The blue bars correspond to the percentage of SCOP 
members identified as hits. The red bars correspond to percentage ratio of TP (True Positives) identified by BRS (Best Representative 
Sequence) and All Hits (BRS-TP/All Hits). The green bars correspond to percentage ratio of Cumulative TP identified for a superfamily and 
All Hits (Cum-TP/All Hits).
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restricts occurrence of FPs. Following validation based on PASS2 
HMMs, a set of Cum-TP was obtained and a ratio of Cum-TP/All 
Hits was calculated. Similarly, a BRS-TP/All Hits ratio was also 
calculated. Both these values are expressed as percentages as shown 
in Figure 3 (green and red bars respectively). The percentage of 
SCOP entries identified is also represented in Figure 3 for each super-
family. Considering the Cum-TP/All Hits ratio, Figure 3 shows the 
extent of coverage achieved by the BRS. It is clear that none of the 
BRS could achieve more than an 80% TP share of all the TPs identi-
fied at superfamily level. The average coverage for BRS across all 
superfamilies was ~50%. However, the Cum-TP/All Hits ratio was 
>90% for most of the superfamilies. In most of the cases, the false 
positives were hits which could not get associated with any PASS2-
HMM, but did not associate with any other superfamily apart from 
query superfamily. This may partly be due to the fact that the su-
perfamily was so diverse that the PASS2-HMM itself was getting 
noisy due to the diversity or else the hit obtained was too distant 
to get validated using the HMM validation cut-offs. On average, 
false positives were <3%. The results strongly suggest that the MQ 
approach to sequence data mining helps to increase coverage at the 
complete superfamily level. For superfamilies which have multiple 
families (47336, 55031), none of the BRS could obtain a BRS-TP/
All Hits ratio >35%, but cumulative coverage by all queries for a 
complete superfamily is excellent (100% Cum-TP/All Hits ratio). 
Even in the case of a single-family superfamily (55031 - Bacterial 
exopeptidase dimerisation domain superfamily), all the members 
have attained a 100% Cum-TP/All Hits ratio.

MPMQ approach outperforms MQ approach
The coverage of the MPMQ approach for all 12 superfamilies was 
equal to or better than the MQ approach at each level discussed 
above. All the PASS2 members were identified cumulatively by all 
the members. The coverage increased for all the superfamilies with 
respect to the SCOP superfamily (except for the 50203 superfamily 
which performed poorly even in the MQ approach). The sequences 
of structural (PDB) entries identified were associated with the query 
superfamily PASS2-HMM. Similar to PSI-BLAST, PHI-BLAST 
results also revealed that the use of multiple queries are beneficial 
for achieving better coverage at PASS2, SCOP and PDB level.

The MPMQ approach was contrasted with the MQ approach (Table 2). 
The high PPV value suggests that both approaches were able to 
discern between the TP and FP. The MPMQ approach has relatively 
more start points than the MQ approach, employing pattern-con-
strained PHI-BLAST. The BRS identified in PSI-BLAST was also 
the same in the PHI-BLAST results for most of the superfamilies. 
However, the performance of BRS from PHI-BLAST using mul-
tiple patterns (MP) was even better for some of the superfamilies 
than MQ approach wherein all the queries were used through PSI-
BLAST for sequence search. There was an increase in the number 
of TP identified for BRS PHI-BLAST as against MQ in 5 out of 12 
superfamilies. The TP count for all 12 superfamilies was highest 
for MPMQ with better PPV for 10 out of 12 superfamilies than MQ 
approach.

Corresponding to the four approaches – MPMQ, MQ, BRS PHI-
BLAST and BRS PSI-BLAST, the total hit count with MPMQ was 
highest for each superfamily. Hence, all the hits obtained were com-
bined for all 12 superfamilies together. Following the above mentioned 

four approaches, the total hits-set (36111 hits), was segregated 
into four sets (MPMQ = 35680, MQ = 22744, BRS PHI-BLAST 
= 16909, BRS PSI-BLAST = 9079) and plotted as a Venn dia-
gram (Figure 4-A). The total hit sets obtained by BRS of both 
PSI-BLAST and PHI-BLAST were subsets of the MQ and MPMQ 
approaches, respectively. However, it was interesting to find that 
98% of the hits identified through MQ approach were covered by 
MPMQ, emphasizing the performance of MPMQ over MQ approach. 
Moreover, MPMQ approach covered 37% more hits which were 
not identified by MQ approach. The BRS PHI-BLAST approach 
alone was able to identify 15% more hits than MQ approach, sug-
gesting that employment of BRS PHI-BLAST approach alone can 
augment the MQ approach for a gain in coverage.

The MPMQ approach covers 99% of the total hit set. This was cho-
sen as 100% coverage (% saturation value) to compare performance 
of rest of the 3 cases (viz. MQ approach, BRS PHI-BLAST and BRS 
PSI-BLAST) for each superfamily, separately. The performance 
was compared by plotting percentage coverage achieved using the 
BRS-TP/All Hits and Cum-TP/All Hits (Figure 4-B). The Cum-TP/
All Hits was highest in all superfamilies for the PHI-BLAST runs. 
This was chosen as 100% coverage (% saturation), to compare 
performance of BRS in MQ and MPMQ and Cum-TP/All Hits for 
the MQ approach. The Cum-TP/All Hits (MPMQ) was almost dou-
ble for 55307 and 51971. This difference between MPMQ and MQ 
approaches was >20% for 9 out of 12 superfamilies. Although the 
MPMQ approach has promising results in comparison to the MQ 
approach, it is computationally very expensive. Each member in a 
superfamily generates multiple patterns, hence the higher the num-
ber of query-pattern pairs means the number of PHI-BLAST runs 
to be performed for the given superfamily increases proportionally.

The performance of BRS in both approaches was also inspected. 
BRS for MPMQ achieved close to 80% coverage in 9 out of 12 
superfamilies, with an exceptionally low value of 25% for the 51971 
superfamily (a multi-family superfamily). Considering multi-family 
superfamilies (47336, 50203, 51679, 51971), the BRS of MPMQ 
could not cross 50% coverage compared with the Cum-TP/All Hits 
of MPMQ. This reinforces and lends support to the strategy of using 
multiple queries for sequence searches at the superfamily level. The 
MPMQ BRS was able to identify more TPs than Cum-TP obtained 
through MQ for the 51069, 55239, 51351 superfamilies, which are 
single-family superfamilies. This implies that BRS in isolation, 
through PHI-BLAST, can drive sequence searches attaining better 
coverage in such superfamilies, achieving a trade-off between cov-
erage and computational time. However, performance of BRS is 
highly superfamily-specific.

Implementation of MQ approach for data mining
GenDiS (Genomic Distribution of protein structural domain Super-
families) is our previous database of sequence homologues based 
on PASS2, where sequence homologues for structural members are 
organized with respect to their genomic distribution at the super-
family level7. In an attempt to populate GenDiS, the MQ approach 
was implemented to search in sequence databases starting with all 
the 1961 PASS2 superfamilies. PASS2 classification of SMS, TMS 
and MMS relies on the number of constituent members in a super-
family. For each superfamily a percentage gain in coverage (PGC) 
value due to improvised strategies, in comparison with simple 
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Table 2. Comparison of MQ (Multiple Query) and MPMQ (Multiple Patterns – Multiple 
Query) approaches for 12 superfamilies (SF – Superfamily, TP – True Positive, Cum-TP – 
Cumulative true positives, PPV – Positive Prediction Value, bold faced entries are BRS 
(Best Representative Sequence).

SF Members
MQ MPMQ

Hits TP Cum-TP PPV Hits TP Cum-TP PPV 

48345

d1bvp11 99 97

468 0.99

101 98

502 0.99d1qhda1 356 356 390 390 

d1uf2c1 15 15 16 16

47565

d1c3ya 722 706

1008 0.98

1126 1089

1259 0.95

d1ooha 702 701 1089 1056

d1p28a 807 792 1162 1151 

d1r5ra 731 723 1155 1119

d2p70a1 681 678 1109 1105

47336

d1dnya 857 851

3368 0.99

1328 1328

4595 0.99

d1dv5a 945 944 1494 1491 

d1klpa 814 814 1197 1197

d1nq4a 750 741 1312 1310

d1t8ka 672 672 1153 1153

d1vkua 637 637 10 10

d2pnga1 905 894 1399 1396

51069

d1jd0a 581 581

1032 1

1154 1154

1508 1
d1kopa 627 627 1346 1346

d1luga 572 572 1336 1336

d2znca 638 638 1360 1360 

50203

d1an8a1 94 94

433 0.99

95 95

436 0.99

d1enfa1 220 218 221 221

d1esfa1 220 219 221 221 

d1et9a1 5 5 6 6

d1eu3a1 94 94 58 58

d1m4va1 101 101 102 102

d1prtb1 16 14 17 15

d1ty0a1 94 94 95 95

d1v1oa1 101 101 102 102

d3seba1 185 184 186 186

51101

d1c3ma 599 496

471 0.76

607 501

506 0.81d1ouwa 601 499 597 487

d1ugx1 602 507 616 507 

55307

d1rq2a2 621 585

1977 0.97

1254 1184

3545 0.98

d1tuba2 548 548 1081 1081

d1tubb2 598 598 1093 1093

d1w5ba2 734 723 1291 1279 

d1w5fa2 692 687 1255 1250
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SF Members
MQ MPMQ

Hits TP Cum-TP PPV Hits TP Cum-TP PPV 

55031

d1cg2a2 1186 1186 

3629 0.99

2749 2749 

5615 0.99

d1fnoa3 531 530 675 671

d1r3na2 615 615 1284 1283

d1vgya2 657 657 1758 1758

d1ysja2 807 807 1193 1193

d1z2la2 642 642 1156 1155

d2q43a2 941 941 1501 1501

55239

d1bwvs- 691 691 

849 1

1084 1084

1161 1
d1rlbi- 580 580 1093 1093

d1svdm1- 592 592 1115 1115

d1wdds- 596 596 1124 1124 

51351

d1aw1a 819 819 

1356 1

1723 1723

2183 0.99d1hg3a 780 780 1818 1815 

d1n55a 727 727 1578 1578

51679

d1ezwa- 1180 1180

3582 1

2440 2440 

5239 1

d1luca- 1312 1312 2025 2025

d1lucb- 1401 1401 2225 2225

d1nqka- 814 814 1803 1803

d1rhca- 1014 1014 2269 2269

d1tvla 661 661 1172 1172

51971

d1c0pa1 1046 929

4215 0.9

1813 1505

8031 0.9

d1cjca2 966 964 1941 1941

d1h7wa4 864 864 1504 1503

d1i8ta1 631 619 2256 2071 

d1lqta2 1011 1011 2144 2143

d1o94a3 1182 1181 2044 2044

d1ps9a3 577 575 1248 1248

d1usja1 626 615 1772 1674

d1ve9a1 808 722 2168 1646

PSI-BLAST runs, was calculated based on the preliminary results 
on 731 MMS (see Methods). The PGC was divided into four quar-
ters and the frequency of superfamilies belonging to each quarter 
is shown in Figure 5-A. It was found that 532 superfamilies obtain 
>50% PGC. This observation strongly suggests the necessity of the 
MQ approach for remote homology detection, where the BRS alone 
collects fewer homologues. The MQ approach has to be implemented, 
especially for huge databases like NR-Db, to obtain improved cov-
erage at the superfamily level. An inspection of the relation between 
number of members and PGC for MMS is shown in Figure 5-B, 
revealing an increase in PGC value with a rise in the number of 
members. The PGC values are extremely high for diverse and large 
superfamilies with more than 30 members.

Discussion
We have employed structural entries from the PASS2 database to 
understand and improve sequence data mining techniques, where the 
searches are specifically meant for detection of distant homologues19. 

SCOP is a good benchmark dataset to evaluate many homology 
detection methods6, but removing redundancy with respect to simi-
lar entries reduces the search time. However, with the use of the MQ 
approach for searching sequence space there is substantial improve-
ment in coverage, albeit with an increase in search time. Use of 
PASS2 superfamily members as query is a trade-off, between use 
of all the SCOP members as query (ideal for best coverage) and a 
single query for the entire structural superfamily (ideal for saving 
computational time).

MQ grants an additional advantage of coverage, which is revealed 
by considering coverage at different levels. A multi-member SCOP 
superfamily like 48345 (a virus capsid protein alpha helical do-
main), with multiple families (Orbivirus capsid [SCOP code: 
48346], Phytoreovirus capsid [101395] and vp6, the major capsid 
protein of group A rotavirus [63596]), where each query gives an 
exclusive set of hits for each query (representing its SCOP family) 
through both the methods, use of multiple queries is inevitable to 
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Figure 4. (A) Venn diagram representing four sets MPMQ (Multiple Pattern-Multiple Query), MQ (Multiple Query), BRS (Best Representative 
Sequence) from PHI-BLAST and BRS from PSI-BLAST comprising of all hits combined for 12 superfamilies. (B) Comparison of MPMQ and 
MQ with respective BRS-TP (Best Representative-True Positives). The blue and green bars correspond to TP obtained for BRS (BRS-TP) and 
cumulatively (Cum-TP) using all queries in the superfamily respectively using PSI-BLAST. The red and purple bars correspond similarly to 
TP obtained for BRS (BRS-TP) and cumulatively (Cum-TP) for all queries in the superfamily respectively using PHI-BLAST. All values are % 
saturation considering Cum-TP for PHI-BLAST (highest number of TP) as the saturation value for each superfamily.

Figure 5. (A) Frequency of superfamilies based on PGC (Percentage Gain in Coverage) value divided into 4 bins (0–25%, 26–50%, 51–75%, 
76–100%). (B) The PGC value plotted against number of members for all superfamilies.
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achieve a better or even complete coverage. Similarly, another multi- 
member, multi-family superfamily 51971 (Nucleotide-binding domain) 
contains nine PASS2 members divided among three SCOP families 
(N-terminal domain of adrenodoxin reductase-like [SCOP code: 
51972] - five members, D-aminoacid oxidase, N-terminal domain 
[51979] - two members and UDP-galactopyranose mutase, N-terminal 
domain [69427] - two members). In this superfamily, PASS2 mem-
bers of one family could not identify PASS2 members from other 
family. Owing to the diverse nature of this superfamily, it is neces-
sary to adopt the MQ approach for achieving better coverage. Fur-
ther, for this superfamily, MPMQ approach provided multiple start 
points and a two-fold increase in coverage as compared to MQ 
approach. However, it was not possible for PASS2 members to 
establish a cross-family connection. Therefore, choice of multiple 
queries with inclusion of their respective multiple patterns increases 
the overall coverage for diverse superfamilies. These findings com-
ply with previous findings based on different search methods17,25.

To date, many methods and approaches have been standardized for 
sequence searches at different levels of database complexity8,16–18,25. 
PSI-BLAST is in many instances a primary choice for homology 
detection. Efforts by different groups have enhanced the usage of 
PSI-BLAST, improving its sensitivity in remote homology detec-
tion14,26. PHI-BLAST, employing an initial pattern–hit initiation, 
enhances the search method before continuing over profile-based 
searches in subsequent iterations25. In the present study this has 
been shown to increase the coverage by >20% for many of the 
selected superfamilies. The simultaneous use of different methods 
greatly improves coverage, and the combinations of other methods 
needs to be investigated.

The choice of BRS identified from MQ may provide a better option 
to run PHI-BLAST for a single query. This is beneficial consider-
ing an increase in coverage, but it is necessary to acknowledge that, 
multiple queries and their multiple patterns increase computational 
time tremendously for a given superfamily. Although for a multi-
member, multi-family superfamily, this may not effectively work, 
this approach can serve as a good trade-off between coverage and 
computational time for a superfamily with a single family. Also, for 
a very large superfamily (>20 members), the BRS-PHI-BLAST will 
be a good option to choose, however the choice of any of the discussed 
approaches for sequence search becomes superfamily specific.

Conclusion
In the post-genomic era, there is a strong need to devise sequence 
search strategies for effective functional annotation. Functional anno-
tation transfer and convincing establishment of sequence relation-
ships are bottlenecks at low sequence identities. Hence, there is a 
constant quest for a robust computational program which is greedy 
on coverage and stringent in eliminating false positives. Remote homol-
ogy detection through sequence searches has been addressed by 
various methods and approaches. Considering a protein structural 
superfamily, when an attempt to view its spread in the sequence space 
is made, one can resort to various methods and approaches. This 
study shows that a MQ approach proves beneficial for increasing 

the coverage. The PASS2 database, which accounts for SCOP super-
family members that are structurally aligned, becomes a good start 
point to scan sequence space for good coverage at the complete 
SCOP superfamily level. Instead of using all SCOP members, 
using only PASS2 members with a MQ gives rise to good cover-
age in remote homology detection. In this paper, we have further 
compared the MQ approach using PSI-BLAST to a MPMQ using 
PHI-BLAST. The MPMQ approach totally outperforms the MQ 
approach. Use of patterns makes the initial pattern-hit initiation 
stringent, thus elevating the specificity of the search25. The study also 
indicates that a best representative sequence performs better with 
the PHI-BLAST than the BRS PSI-BLAST while better or equiv-
alent to the MQ PSI-BLAST approach for certain superfamilies. 
Therefore the use of BRS PHI-BLAST can help save computational 
time and achieve better coverage. But this is superfamily-specific 
and for multi-family superfamilies, a query from one family may 
not be sufficient to associate with hits obtained from a query of a 
different family within a given superfamily. It is, therefore, neces-
sary to resort to a MQ or MPMQ approach for getting reasonable 
coverage. The PGC obtained from data mining for all multi-member 
superfamilies from PASS2 points to the necessity of using multiple 
queries. The MQ approach is the easiest to follow for an end-user 
to achieve good coverage at superfamily level, while using MPMQ 
approach will improve the extent of sequence coverage. However, 
if there are many members (>10) in a superfamily, MQ approach 
alone can be adopted. Alternatively, for representative sequenc-
es, multiple pattern based PHI-BLAST can be used to achieve a 
trade-off between computational time and coverage. Thus, differ-
ent methods and different approaches can be used to improve the 
sequence searches during remote homology detection.
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  28 July 2014Referee Report:
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The authors have successfully addressed most of the questions raised during the review of version 1. The
representation of the data in version 2 explains the outcome of the experiments more satisfactorily.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 I have co-authored papers with the corresponding author Dr. R. Sowdhamini, theCompeting Interests:
last of which was published in 2008.

Referee Responses for Version 1
 Mallur Srivatsan Madhusudhan

Indian Institute of Science Education and Research, Pune (IISER), Pashan, Pune, India

Approved: 17 April 2014

  17 April 2014Referee Report:
 doi:10.5256/f1000research.1249.r3320

In this study the authors have sought to improve the alignment protocols that make use of standard tools
such as PSI-BLAST and PHI-BLAST to find protein sequences that are remotely related to a query
sequence. These distant relationships would be useful in annotating protein functions and designing
experiments.

The authors of this study use multiple queries (MQ) as a starting point to detect protein homologous
relationships. The results from MQ are compared against another search that makes use of multiple
patterns deduced from multiple queries (MPMQ). The protocol has been benchmarked on a set of 12
superfamilies consisting of different fold types. The manuscript is clearly presented and the plots and
tables make their points clearly and unambiguously.

I wish that the authors would clarify the following points:
For any given query sequence what would be the best strategy to adopt: MQ or MPMQ? How
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For any given query sequence what would be the best strategy to adopt: MQ or MPMQ? How
would a potential user make this judgement? The prescriptions (conclusions section) from the text
are a little ambivalent, especially to a non-expert user/reader. 
 
Demonstrating the efficacy of the search protocol over only 3 examples of each type of fold (alpha,
beta, alpha/beta and alpha+beta) may not be sufficient. The authors should look to increase the
benchmark size or show that that the current benchmark is statistically representative. While the
authors have not discussed this in depth, the implication appears to be that the search results
appear to be independent of fold type. Could the authors comment on whether this is true for other
types of SCOP fold families (trans-membrane proteins etc)?
 
In the two parts of Figure 2, it is apparent that most PSSMs diverge (non-retention of query), if at
all, within the first 50% of the iterations. Only very seldom does this happen afterwards. Is there a
lesson one can learn from this result? Could future search strategies make use of this observation?
Admittedly not all divergent PSSMs are detrimental to the finding of homologues, but is there a way
one can control for this during the search?
 
It would be instructive to have a somewhat more quantitative description of the process in the
abstract. I think that reader would benefit in knowing how much better the two protocols are (‘X’
more sequence homologues identified; or TP rate goes up by ‘X’ and FP rate reduces by ‘Y’ - or
something along these lines).The same quantifiable measures should also be mentioned in the
concluding section.

Minor points
In the pattern generation sub-section of the Methods section, the authors say that in the event of
inadequate number of hits they relax the stringent criteria of allowing hits between 60-90% in
sequence identity to include sequences in the range 40-95%. Why is the range 40-95% not used
uniformly? Is it the case that the pattern recognition program suffers from a drastic decrease in
efficiency when decreasing sequence identity from 60 to 40%?
 
What happens in cases where patterns are >15 amino acids in length? How does the program deal
with this? Does it break the patterns into subsets of lengths that have a maximum length of 15?

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

1 Comment

Author Response

, National Centre for Biological Sciences, IndiaRamanathan Sowdhamini
Posted: 11 Jun 2014

We thank Dr. Madhusudhan for providing constructive comments and interests. We had applied
these enhanced sequence search strategies to 1961 superfamilies and we find similar trends. We
have now mentioned recommended strategies and parameters in the Conclusion section. Having

said that, some of the strategies, search directions and parameters depend on the sequence
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said that, some of the strategies, search directions and parameters depend on the sequence
dispersion and population of families and few decisions are highly family-specific.

We have the following responses to specific comments:
 

 The MQ approach is easiest to follow as the user needs only the input sequencesMajor query 1:
for a given superfamily. If the superfamily is very diverse with many members (>10), the MQ
approach can be adopted, perhaps for representative sequences, to achieve a trade-off between
computational time and coverage. We have now mentioned this in Conclusions of the revised
manuscript.

 It is difficult to obtain patterns qualifying stringent cut-offs followed (please refer toMinor query 1:
Methods section) when the sequence identity is reduced to 40% that will be applicable for all the
superfamilies. It was important to ensure that patterns do reflect conservation, thereby rendering
specificity to the PHI-BLAST searches. However, in cases where there were few homologues to
deduce a conserved pattern even at 60% sequence identity, 40% sequence identity cut-off had to
be employed.
 

:If a pattern is >15 amino acids in length, the long pattern is broken into subsets ofMinor query 2
patterns which qualify all the stringent cut-offs and have a maximum length of 15. 

 No competing interests were disclosed.Competing Interests:

 Saikat Chakrabarti
Structural Biology & Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, West Bengal,
India

Approved with reservations: 11 March 2014

  11 March 2014Referee Report:
 doi:10.5256/f1000research.1249.r3732

Concept and strategy of the work:

In this study the authors have chosen 12 superfamilies from PASS2 database and collected the unique
sets of hits generated by PSI-BLAST and PHI-BLAST against the non-redundant protein database
(NR-Db) and checked how many of the sequences from the same superfamily are returned. There are
quite a number of already published reports that dealt with the same problem but used different dataset
and search algorithms. The same research group has already published a report where they have worked
improvement of PSI-BLAST using different parameters . Though neither the concept nor the strategy is
novel, the search for a reliable method for detection of remote homologues is crucial. The report provides
good information about the performance of PSI-BLAST and PHI-BLAST with a defined set of parameters
and also compares their performance. This could be useful information for future researchers who want to
use the same homology search algorithm. I believe clarification of the following points will improve the
article.
 
Major Comments:

The strategies (MQ) and (MPMQ) are not selected by choice. It is an obvious process. If one wants

1,2
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The strategies (MQ) and (MPMQ) are not selected by choice. It is an obvious process. If one wants
to check the remote homologues in a superfamily level; one has to take all the sequences of the
superfamily. Also MP is an obvious requirement for PHI-BLAST. So MPMQ and MQ are rather
obvious requirement for running the programs effectively. But it has been reported other way
round. 
 
The authors have used a small fraction of the total dataset (12 out of 1961 PASS2 super-families)
for demonstration of their algorithm. Testing the algorithm on a larger dataset will be helpful for
establishing the efficacy of the algorithm. As mentioned in the manuscript, the result for 1961
families should be produced. Also the basis for choosing only those 12 superfamilies is not clearly
mentioned. Would the result be similar for any random 12 superfamilies? Also, will this process
return the same robustness if we use the same superfamilies from SCOP, where the number of
sequences is greater?
 
The authors have demonstrated the efficacy of the two methods by means of bar graphs (figures 3
and 4), which represent the coverage percentage of each of the approaches of MQ and MPMQ. It
would be more informative if the authors provided receiver operating characteristics (ROC) plots to
show the rate of detection true positives (TPs) and false positives (FPs) by the methods.
 
In reference to figure 4, the authors should explain a little more about why they have considered
the coverage percentage of MPMQ approach as the saturation percentage. In this way the analysis
is biased towards PHI-BLAST. In my opinion, the representation of the true coverage in percentage
for both methods would be more informative.
 
It is commendable how the authors have been able to identify all possible patterns that might be a
property of a superfamily. However, my suggestion would be to use other third party motif-finding
programs (apart from MOTIFS for which no published references were provided) and consider the
consensus motif predicted by all such software for a particular super-family. Information about
those motifs will be helpful. Care should be taken to ensure that the motifs are biologically and
statistically relevant.
 
In the Validation section, HMM profiles for all PASS2 superfamilies were made and homologues
were scanned against the HMM. The filtering criteria here are not mentioned. They also mention
that they have used two-step validations. But actually the second step is used for the hits which fail
to associate with any superfamily by level 1 search. So the validation is not two-step but one-step
for each set.
 
The title states “Improved performance of sequence search algorithms in remote homology

” but there is no improvement measure taken for enhancing the performance. And bothdetection
the algorithms are well established and widely used for remote homology search.  So what is the
new improvement of the algorithms made by the authors?
 
On page 6 maximum length of motif is mentioned as 40 and in the Materials and
methodology section (page 4) the same is mentioned as 15. Which one has actually been used?
 
In figure 5b, where increase in PGC is compared with number of member in families, the relation
between the two is not clear. There are few families with more than 30 members. But only those
few families have very high PGC. So a statistical relation is required. From the graph it looks like
the algorithm is biased towards multi-member families which contain a high number (more than 30)

of members. The efficiency of the program must be tested on single member, two-member and

Page 17 of 19

F1000Research 2014, 2:93 Last updated: 31 JUL 2014



F1000Research

9.  

1.  

2.  

3.  

4.  

5.  

6.  

of members. The efficiency of the program must be tested on single member, two-member and
those multimember families which have less than 30 members.

Minor Comments:-
The authors could throw some light on the fact as to why they have not used all the family
members of a SCOP superfamily as has been mentioned in PASS2.  For example, in table 1 the
number of families mentioned by the authors for SCOP superfamily 47336 is 7, whereas PASS2
lists at 8.
 
It is not really clear what the coverage of the Best Representative Sequence (BRS) of a
superfamily dataset says about the performance of the method.
 
In the collection of the hit pool, unique sets of homologues (hits) for each superfamily were taken.
That means each protein in the sets of hits is associated with one query protein of the superfamily
protein only. How is that done? The method is not clear.
 
In graph 2A and 2B the y-axes are comparable so they should be in same scale.
 
 Both in figure 3 and 4 if the one-member, two-member and multi-member families were marked
separately the result would be more prominent.
 
In the explanation of coverage, where the differences of the superfamilies are explained in terms of
their constituent families, actual examples or a case study may be more helpful.
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I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 I have co-authored papers with the corresponding author Dr. R. Sowdhamini, theCompeting Interests:
last of which was published in 2008.

1 Comment

Author Response

, National Centre for Biological Sciences, IndiaRamanathan Sowdhamini
Posted: 11 Jun 2014

We thank Dr. Saikat Chakrabarti for their useful and encouraging comments. The MQ or MPMQ
approach, whilst being obvious choices, are also computationally demanding and this analysis on

12 superfamilies was a conscious attempt to measure the extent of gain/loss of coverage. We have
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12 superfamilies was a conscious attempt to measure the extent of gain/loss of coverage. We have
now introduced a Venn diagram that provides a cumulative measure of coverage of these different
approaches (Figure 4-A of the revised manuscript). We do find similar trends when applied on the
1961 superfamilies. We had meant this as an approach, not an algorithm, and we have now
modified the title as well.
 
Our responses to specific comments:

 We agree that statistical measures such as ROC curves are often employed toMajor Comment 3:
compare methods and approaches. However, since our sequence searches are against the
non-redundant sequence database, despite our independent validations, there is no clear negative
dataset nor is there is a ‘gold standard’. So it is not possible to measure FPR and compare them for
different approaches.
 

: A comparison of hits by different approaches shows that MPMQ achieves theMajor Comment 4
highest coverage. We now provide a Venn diagram (Figure 4-A of the revised manuscript) that
provides a quantitative idea of the performance of different approaches in terms of accumulation of
validated hits.
 

: It is true that the validation is a one-step procedure since single-query HMMMajor Comment 6
validation was invariably performed for validation of all the hits; however, it was necessary only
when full-Sf HMM failed to validate.
 

: We are sorry that the title has been misleading. We had meant to say ‘Major Comment 7
’ since there is indeed no new algorithm involved. We have nowsequence search approaches

modified the title. However, the improvement in performance is to arrive at a good balance
between sequence coverage and computational time. Our analysis shows that it is possible to
obtain good coverage by employing multiple queries followed by multiple patterns for the best
representative query.
 

:We have used all the members from PASS2 for all the sequence searches. In caseMinor query 1
of superfamily 47336, the current updated version of PASS2 has 8 members whereas the earlier
(2008) version has been used for the analysis of 12 superfamilies. Therefore there is a difference in
the number of members.
 

: We are sorry about this and we have now modified Figure 2 in the revisedMinor query 4
manuscript.
 

: Thanks for this suggestion. We are now including one more example in the revisedMinor query 6
manuscript to convey practical biological application. 

 No competing interests were disclosed.Competing Interests:
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