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10.1 INTRODUCTION

Computer-assisted tools in drug design and discovery, with an incredible modernization of

computational resources, are very much appreciated throughout the world. Both ligand-

and structure-based approaches are increasingly being used for the design of small lead and

druglike molecules with anticipated multitarget activities [1]. Various ligand-based methods

have been developed for effective and comprehensive application in virtual screening (VS),

de novo design, and lead optimization. Pharmacophore has become one of the major

ligand-based tools in computational chemistry for the drug research and development

process [2]. Again, molecular recognitions, including enzyme�substrate, drug�protein,

drug�nucleic acid, protein�nucleic acid, and protein�protein interactions, play significant

roles in many biological responses. As a consequence, identification of the binding mode

and affinity of the drug molecule is crucial to understanding the underlying mechanism of

action in the respective therapeutic response. In this perspective, structure-based drug

design is always a front-runner among all the available drug design approaches. Molecular

docking is one of the largely acclaimed structure-based approaches, widely used for the

study of molecular recognition, which aims to predict the binding mode and binding affin-

ity of a complex formed by two or more constituent molecules with known structures [3].
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There are a handful of novel techniques invented in the last decade employing the

combined information computed from receptors and ligands. These tools can be

defined as a combination of structure- and ligand-based design tools in the evolution

of drug discovery techniques. Undoubtedly, methods like comparative binding energy

analysis (COMBINE) [4] and comparative residue interaction analysis (CoRIA) [5]

are the front-runners in the abovementioned approach with encouraging successful

applications in drug discovery.

In silico screening is generally defined as VS, which is used rationally to select

compounds for biological in vitro/in vivo testing from chemical libraries and databases

of hundreds of thousands of compounds [6]. The VS approach is used for computation-

ally prioritizing drug candidate molecules for future synthesis by using certain filters.

The filters may be created by employing knowledge about the protein target (in

structure-based VS) or known bioactive ligands (in ligand-based VS). These computa-

tional methods are powerful tools, as they supply a straightforward way to estimate the

properties of the molecules and establish them as probable drug candidates from a huge

number of compounds in no time in a cost-effective way. A combination of bioinfor-

matics and chemoinformatics is crucial to the success of VS of chemical libraries, which

is an alternative and complementary approach to high-throughput screening (HTS) in

the lead discovery process [7]. Simply stated, the VS attempts to improve the probability

of identifying bioactive molecules by maximizing the true positive rate—that is, by rank-

ing the truly active molecules as high as possible.

10.2 PHARMACOPHORE

10.2.1 Concept and definition
One of the most promising in silico concepts of computer-aided drug design (CADD) is

that of the pharmacophore. The term pharmacophore was first coined by Paul Ehrlich in

the early 1900s, but it was Monty Kier [8,9] who introduced the physical chemical

concept of pharmacophore in a series of papers published between 1967 and 1971. The

pharmacophore technique in modern drug discovery is extremely useful as an interface

between the medicinal chemistry and computational chemistry, both in VS and library

design for efficient hit discovery, as well as in the optimization of lead compounds to final

drug candidates. Recent research has focused on the practice of parallel screening using

pharmacophore models for bioactivity profiling and early-stage risk assessment of proba-

ble adverse effects and toxicity due to interaction of drug candidates with antitargets.

The hypothesis of pharmacophore is based on that the molecular recognition of a

biological target by a class of compounds can be explained by a set of common fea-

tures that interact with a set of complementary sites on the biological target [10].

Along with the features, their three-dimensional (3D) relationship with each of the

features is another crucial component of the pharmacophore concept. It is closely
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linked to the widely used principle of bioisosterism, which can be adopted by medici-

nal chemists while designing bioactive compound series.

The pharmacophore can be simply defined by the following, as stated in the

International Union of Pure and Applied Chemistry (IUPAC) definition of the term

given in Wermuth et al. [11]:

A pharmacophore is the ensemble of steric and electronic features that is necessary to ensure
the optimal supramolecular interactions with a specific biological target structure and to trig-
ger (or to block) its biological response.

A pharmacophore does not represent a real molecule or a real association of functional
groups, but a purely abstract concept that accounts for the common molecular interaction
capacities of a group of compounds toward their target structure.

A pharmacophore can be considered as the largest common denominator shared by a
set of active molecules. This definition discards a misuse often found in the medicinal chemis-
try literature, which consists of naming as pharmacophores simple chemical functionalities
such as guanidines, sulfonamides, or dihydroimidazoles (formerly imidazolines), or typical
structural skeletons such as flavones, phenothiazines, prostaglandins, or steroids.

A pharmacophore is defined by pharmacophoric descriptors, including H-bonding, hydro-
phobic, and electrostatic interaction sites, defined by atoms, ring centers, and virtual points.

The pharmacophore describes the essential steric and electronic, function-

determining points necessary for an optimal interaction with a relevant pharmacologi-

cal target. It can also be thought of as a template, a partial description of a molecule

where certain blanks need to be filled. The types of ligand molecules and the size and

diversity of the data set have a great impact on the resulting pharmacophore model.

Although a pharmacophore model signifies the key interactions between a ligand and

its biological target, neither the structure of the target nor its identity is required to

construct a handy pharmacophore model. As a consequence, pharmacophore

approaches are often considered to be vital when the accessible information is very

restricted. For example, when one knows nothing more than the structures of active

ligands, a pharmacophore is the answer.

A simple hypothetical example is illustrated to define the common pharmacophores of

three well-known compounds (namely, epinephrine, norepinephrine, and isoprenaline) in

Figure 10.1.

10.2.2 Background and early days of pharmacophore
Introducing the term pharmacophore in the year 1909, Ehrlich [12], nicknamed the

“father of drug discovery,” defined it as “a molecular framework that carries (phoros)

the essential features responsible for a drug’s ( pharmacon) biological activity.” Although

the first definition of the term was credited to Ehrlich, it was Kier who introduced the

physical chemical concept in the late 1960s and early 1970s when describing common

molecular features of ligands of important central nervous system receptors. This was

labeled as “muscarinic pharmacophore” by Kier [8,9].
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In the past, pharmacophore models were mainly worked out manually, assisted

through the use of simple interactive molecular graphics visualization programs. Later,

the growing complexities of molecular structures required refined computer programs

for the determination and use of pharmacophore models. In the evolution of compu-

tational chemistry, the fundamental perception of a pharmacophore model as a simple

geometric depiction of the key molecular interactions remains unchanged. With the

advances in computational chemistry in the past 20 years, a variety of automated tools

for pharmacophore modeling and applications emerged. A considerable number of

studies have been carried out since the development of the pharmacophore approach

[13]. Pharmacophore approaches have been used comprehensively in VS, de novo

design, as well as in lead optimization and multitarget drug design [14].

10.2.3 Methodology of pharmacophore mapping
10.2.3.1 Diverse conformation generation
Conformational expansion is the most critical step, since the goal is not only to have

the most representative coverage of the conformational space of a molecule, but also

Figure 10.1 Depiction of common pharmacophoric features of three well-known compounds:
epinephrine, norepinephrine, and isoprenaline.
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to have either the bioactive conformation as part of the set of generated conforma-

tions or at least a cluster of conformations that are close enough to the bioactive

conformation. This conformational search can be divided into four categories:

(i) systematic search in the torsional space, (ii) clustering (if wanted or needed),

(iii) stochastic methods, such as Monte Carlo (MC), sampling, and Poling, and

(iv) molecular dynamics [15]. Commonly employed conformational search methods

are BEST, FAST, and conformer algorithms based on energy screening and recursive

buildup (CAESAR) [16], all of which generate conformations that provide broad cov-

erage of the accessible conformational space. The FAST conformation generation

method searches conformations only in the torsion space and takes less time. The

BEST method provides a complete and improved coverage of conformational space

by performing a rigorous energy minimization and optimizing the conformations in

both torsional and Cartesian space using the Poling algorithm. CAESAR is based on a

divide-and-conquer and recursive conformation approach. This approach is also com-

bined in cases of local rotational symmetry so that conformation duplicates due to

topological symmetry in a systematic search can be efficiently eliminated.

10.2.3.2 Generation of 3D pharmacophore
The next step is three-dimensional (3D) pharmacophore generation, where Hypogen

and HipHop are the two most commonly used algorithms [17,18]. Predictive 3D

pharmacophores are generated in three phases: a constructive, a subtractive, and an

optimization phase, as follows:

Constructive phase: HipHop is intended to derive common feature hypothesis-based

pharmacophore models using information from a set of active compounds. HipHop

does not require the selection of a template; rather, each molecule is treated as a

template in turn. Different configurations of chemical features are identified in the

template molecule using a pruned exhaustive search, which starts with small sets of

features and then extends until no larger configuration is found. Next, each configu-

ration is compared with the remaining molecules to identify configurations that are

common to all molecules. The resulting pharmacophores are ranked using a combi-

nation of how well the molecules in the training set map onto the pharmacophore

model. In HipHop, the user can define how many molecules must map completely

or partially to a pharmacophore configuration. Again, HypoGen [18] is an algo-

rithm that uses the activity values of the small compounds in the training set to

generate hypotheses to build 3D pharmacophore models. HypoGen identifies all

allowable pharmacophores consisting of up to five features among the two most

active compounds and investigates the remaining active compounds in the list.

Subtractive phase: This phase deals with pharmacophores that were created in the

constructive phase and removes pharmacophores from the data structure that are

not likely to be useful.
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Optimization phase: The optimization phase is performed using the simulated annealing

algorithm. A maximum of 10 hypotheses are generated for each run. HypoGen devel-

ops models with different pharmacophore features: (i) hydrogen-bond acceptor (HBA);

(ii) hydrogen-bond donor (HBD); (iii) hydrophobic (HYD), HYDROPHOBIC

(aliphatic) and HYDROPHOBIC (aromatic); (iv) negative charge (NEG CHARGE);

(v) negative ionizable (NI); (vi) positive charge (POS CHARGE); (vii) positive ioniz-

able (PI); and (viii) ring aromatic (RA). The hypotheses generated are analyzed in terms

of their correlation coefficients and the cost function values.

The basic pharmacophore features are illustrated in Figure 10.2. Pharmacophore

models are usually labeled based on the number of features. For example, pharma-

cophore models consisting of three and four features are termed as three-point

pharmacophore and four-point pharmacophore, respectively. A simple graphical

representation is shown in Figure 10.3.

10.2.3.3 Assessment of the quality of pharmacophore hypotheses
The HypoGen module performs a fixed cost calculation that represents the simple

model that fits all the data, and a null cost calculation that assumes that there is no

Figure 10.2 Basic pharmacophore features and their definitions.
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relationship in the data set and that the experimental activities are normally distributed

about their average value. A small range of the total hypothesis cost obtained for each of

the hypotheses indicates homogeneity of the corresponding hypothesis, and the training

set selected for the purpose of pharmacophore generation is adequate. Again, values of

total cost close to those of fixed cost indicate the fact that the hypotheses generated are

statistically robust [19,20]. The total cost of a hypothesis is calculated as per Eq. (10.1):

Cost5 eE1wW 1 cC ð10:1Þ
where e, w, and c are the coefficients associated with the error (E ), weight (W ), and

configuration (C) components, respectively. The other two important costs involved

are the fixed cost and null cost. The fixed cost represents the simplest model that per-

fectly fits the data and is calculated by Eq. (10.2):

Fixed cost5 eEðx5 0Þ1wW ðx5 0Þ1 cC ð10:2Þ
where x is the deviation from the expected values of weight and error. The null cost

is the cost of a pharmacophore when the activity data of every molecule in the train-

ing set is the average value of all activities in the set and the pharmacophore has no

features. Therefore, the contribution from the weight or configuration component

does not apply. The null cost is calculated as per Eq. (10.3):

Null cost5 eEðχest5χÞ ð10:3Þ
where χest is the averaged scaled activity of the training set molecules. It has been sug-

gested that the differences between cost of the generated hypothesis and the null

hypothesis should be as large as possible; a value of 40�60 bits difference may indicate

Figure 10.3 Point-based pharmacophore concepts.
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that it has a 75�90% chance of representing a true correlation in the data set used.

The total cost of any hypothesis should be toward the value of fixed cost to represent

any meaningful model. Two other very important output parameters are the configu-

ration cost and the error cost. Any value of configuration cost higher than 17 may

indicate that the correlation from any generated pharmacophore is most likely due to

chance. The error cost increases as the value of the root mean square (RMS) increases.

The RMS deviations (RMSDs) represent the quality of the correlation between the

estimated and the actual activity data.

10.2.3.4 Validation of the pharmacophore model
The pharmacophore models selected based on the acceptable correlation coefficient

(R) and cost analysis, should be validated in three subsequent steps: (i) Fischer’s ran-

domization test, (ii) test set prediction, and (iii) Güner�Henry (GH) scoring method.

Fischer’s randomization test: First, cross-validation is performed and statistical signifi-

cance of the structure�activity correlation is estimated by randomizing the data

using the Fischer’s randomization test [20]. This is done by scrambling the activity

data of the training set molecules and assigning them new values, followed by the

generation of pharmacophore hypotheses using the same features and parameters

as those used to develop the original pharmacophore hypothesis. The original

hypothesis is considered to be generated by mere chance if the randomized data

set results in the generation of a pharmacophore with better or nearly equal corre-

lation compared to the original one.

Test set prediction: The purpose of the pharmacophore hypothesis generation is not

only to predict the activity of the training set compounds [21], but also to predict

the activities of external molecules. With the objective of verifying whether the

pharmacophore is able to predict the activity of test set molecules in agreement

with the experimentally determined value, the activities of the test set molecules

are estimated based on the mapping of the test set molecules to the developed

pharmacophore model. The conformers are generated for the test set molecules

based on the method that is used during the conformer generation of the training

set, and they are mapped using the corresponding pharmacophore models. Thus,

the predictive capacity of the models is judged based on the predictive R2 values

(R2
pred with a threshold value of 0.5) or classification-based methods (such as sensi-

tivity, specificity, precision, and accuracy). The test set should cover similar struc-

tural diversity as the training set in order to establish the broadness of the

pharmacophore predictability.

GH scoring: The GH scoring method is employed following test set validation to

evaluate the quality of the pharmacophore models [22�24]. The GH score can be

successfully applied to quantify model selectivity precision of hits and the recall of

actives from a directory of useful decoys (DUD) data set [25] consisting of known

365Other Related Techniques



actives and inactives. The DUD is a publicly available database for free use, gener-

ated based on the observation that physical characteristics of the decoy background

can be used for the classification of different compounds. The DUD can be down-

loaded from http://dud.docking.org.

The method involves evaluation of the following: the percent yield of actives in a

database (%Y, recall), the percent ratio of actives in the hit list (%A, precision), the

enrichment factor E, and the GH score. The GH score ranges from 0 to 1, where a

value of 1 signifies the ideal model. The following are the metrics used for analyzing

hit lists by a pharmacophore model�based database search:

%A5
Ha

A
3 100 ð10:4Þ

%Y 5
Ha

Ht
3 100 ð10:5Þ

E5
Ha=Ht

A=D
ð10:6Þ

GH5
Hað3A1HtÞ

4HtA

� �
12

Ht2Ha

D2A

� �
ð10:7Þ

In these equations, %A is the percentage of known active compounds retrieved

from the database (precision); Ha is the number of actives in the hit list (true positives);

A is the number of active compounds in the database; %Y is the percentage of known

actives in the hit list (recall); Ht is the number of hits retrieved; D is the number of

compounds in the database; and E is the enrichment of the concentration of actives by

the model relative to random screening without any pharmacophoric approach.

The basic steps of pharmacophore formalism are represented in Figure 10.4.

10.2.4 Types of pharmacophore
A pharmacophore model can be generated in two ways. The first method is ligand-

based modeling, where a set of active molecules are superimposed and common

chemical features are extracted that are necessary for their bioactivity; the second is

structure-based modeling performed by probing possible interaction points between

the macromolecular target and ligands.

10.2.4.1 Ligand-based pharmacophore modeling
Ligand-based pharmacophore (LBP) modeling has become an important com-

putational tool for assisting drug discovery in the case of nonavailability of a
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macromolecular target structure [26,27]. The LBP is usually carried out by extracting

common chemical features from the 3D structures of a known set of ligands represen-

tative of fundamental interactions between the ligands and a specific macromolecular

target. In the case of LBP modeling, pharmacophore generation from multiple ligands

involves two major steps: First, creation of the conformational space for each ligand in

the training set to represent conformational flexibility of the ligands and to align the

multiple ligands in the training set, and second, determination of the essential com-

mon chemical features to build the pharmacophore model. The conformational analy-

sis of ligands and performing molecular alignment are the key techniques as well as

the main complexities in any LBP modeling.

A few challenges still exist in spite of the great advances of LBP modeling:

a. The first problem, and one of the most serious, is the modeling of ligand flexibility.

Presently, two strategies are utilized to deal with this problem. The first is the

preenumerating method, in which multiple conformations for each ligand are pre-

computed and saved in a database [28]. The advantage of this approach is lower

computing cost for conducting molecular alignment at the expense of a possible

Figure 10.4 Fundamental steps of pharmacophore formalism.
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need for a mass storage capacity. The second approach is the on-the-fly method,

in which the conformation analysis is carried out in the pharmacophore modeling

process [28]. This approach does not need mass storage but might need higher

central processing unit (CPU) time for conducting meticulous optimization. It has

been demonstrated that the preenumerating method outperforms the on-the-fly

calculation approach [29]. Recently, a considerable number of advanced algorithms

[14] have been established to sample the conformational spaces of small molecules,

which are listed in Table 10.1.

Most importantly, a good conformation generator should ensure the following

conditions: (i) proficiently generating all the putative bound conformations that

small molecules adopt when they interact with macromolecules, (ii) keeping the

list of low-energy conformations as short as possible to avoid the combinational

explosion problem, and (iii) being less time consuming for the conformational

calculations.

b. Molecular alignment is the second issue of concern in LBP modeling. The align-

ment methods can be classified into two approaches in terms of their elementary

nature: point-based and property-based [29]. The points of the point-based

method can be further discriminated as atoms, fragments, or chemical features

[30]. In the point-based algorithms, pairs of atoms, fragments, or chemical feature

points are usually superimposed employing a least-squares fitting. The major disad-

vantage of this approach is the requirement for predefined anchor points because

the generation of these points can become problematic in the case of different

ligands. Consequently, the property-based algorithms utilize molecular field

descriptors, generally represented by sets of Gaussian functions, to generate align-

ments. Recently, new alignment methods have been developed, including stochas-

tic proximity embedding [31], atomic property fields [32], fuzzy pattern

recognition [33], and grid-based interaction energies [34].

c. The third challenge lies in the appropriate selection of training set compounds.

Although this problem is simple and nontechnical, but it often puzzles researchers

nonetheless. The type of ligand molecules, the size of the data set, and its chemical

diversity largely affect considerably the final generated pharmacophore model [28].

10.2.4.2 Structure-based pharmacophore modeling
Structure-based pharmacophore (SBP) modeling is directly dependent on the 3D

structures of macromolecular targets or macromolecule�ligand complexes. As the

number of experimentally determined 3D structure of targets has grown to a very

large number, SBP methods have attracted significant interest in the last decade. The

approach is considered as the complementary one to the docking procedures, provid-

ing the same level of information as well as less demanding with respect to required

computational resources. The protocol of SBP modeling involves analyzing the
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Table 10.1 Various conformational sampling methods
Conformational sampling
method

Characteristics

3DGEN 1. An algorithm for exhaustive generation of 3D isomers

proceeding from molecular topology

2. A systematic approach

3. Based on a combinatorial process

Balloon 1. A stochastic algorithm

2. A multiobjective GA is employed

3. Removing conformational duplicates

4. Can effectively produce low-energy conformers, which

are geometrically distinct from each other

CAESAR 1. A systematic search method

2. Based on a divide-and-conquer and recursive conformer

buildup approach

3. Avoids conformer duplicates due to topological

symmetry

4. Capable of reproducing the receptor-bound

conformation

CONAN 1. A fragment-based, buildup approach combined with the

rule-based method

2. Intersection strategy is used for conformational analysis

ConfGen 1. A systematic approach based on divide-and-conquer

strategy

2. A rule-based approach is incorporated

3. Intended for the high-throughput generation of 3D

databases

Conformation import

workflow in the

molecular operating

environment (MOE)

1. A systematic approach with the use of divide-and-

conquer strategy and combined with rule-based method

2. Each fragment is subject to a stochastic search

algorithm, expected to locate most its low-energy

conformers

3. A high-throughput conformer generator for library

preparation

Corina 1. Fast approach

2. Straightforward performance, reasonable execution time,

simplicity, and applicability to building large, 3D

chemical inventories

3. Often gives a larger average RMSD to the bioactive

conformation

Cyndi 1. Nondeterministic method

2. Based on a multiobjective genetic algorithm (MOGA)

3. Efficient, particularly when reproducing a bioactive

conformation

(Continued )
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Table 10.1 (Continued)
Conformational sampling
method

Characteristics

Directed tweak 1. Originally for 3D query searches

2. A torsional space minimizer

3. Involving the use of analytical derivatives, and is fast as

a result

4. Allowing 3D flexible searching on an interactive time

scale

Genetic algorithm 1. Nondeterministic method

2. Suitable for the superimposition of sets of flexible

molecules

MED-3DMC 1. Nondeterministic method

2. A Metropolis MC algorithm based on a SMARTS

mapping of the rotational bonds and the MMFF94

VDWenergy term is used

3. Capable of sampling the conformational space with a

small average RMSD to the bioactive conformation.

MIMUMBA 1. A rule-based method

2. The revised version is in conjunction with the OMEGA

approach

3. The rules can be extracted from statistical observations

from a training portion of the CSD

Molecular dynamics

simulation method

1. Can create reasonable conformers

2. Time consuming

3. Depends on temperature and simulation time

4. Is of special interest when dealing with molecular

conformations in solution

Monte Carlo 1. A stochastic method

2. Solvation effects can be studied in an explicit solvent

3. Do not guarantee that the conformational space has been

explored exhaustively; in particular, the output of a

search may depend on the starting conformation

4. Efficient at the beginning of a search, but efficiency

degrades as the search proceeds

OMEGA 1. A rule-based method (heuristic) combined with divide-

and-conquer strategy

2. A high-throughput conformer generator for library

preparation

Poling restraints 1. A stochastic method

2. Promoting conformational variation

3. Avoiding analogous conformers

4. Covering most of the pharmacophore space with

significantly fewer conformers

(Continued )
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complementary chemical features of the active site and their spatial relationships, and

developing a pharmacophore model assembly with selected features [2].

SBP modeling can be further classified into two subclasses: macromolecule�
ligand�complex based and macromolecule (without ligand) based. The macromolecule�
ligand�complex-based approach is suitable in identifying the ligand binding site of the

macromolecular target and determining the key interaction points between ligands

and the target protein. LigandScout [35] is an excellent software program that incor-

porates the macromolecule�ligand�complex-based scheme. Programs like Pocket v.2

[36] and GBPM [37] are based on the same approach. The major limitation of this

process is the requirement for the 3D structure of the macromolecule�ligand com-

plex. As a consequence, it cannot be applied to cases when no ligands targeting the

binding site of interest are known. This can be solved by the macromolecule-based

approach. The SBP method implemented in the Discovery Studio software [18] is a

typical example of a macromolecule-based approach [38].

The most commonly encountered difficulty for SBP modeling is the identifi-

cation of too many chemical features for a specific binding site of the macro-

molecular target. A pharmacophore model consisting of too many chemical features

(e.g., more than seven) is not appropriate for practical applications (e.g., 3D database

screening). Therefore, it is always important to pick a restricted number of chemical

features (usually three to seven) to create a reliable pharmacophore hypothesis.

One more significant drawback is that the obtained pharmacophore hypothesis

cannot replicate the quantitative structure�activity relationship (QSAR) because

the model is generated based just on a single macromolecule�ligand complex or a

single macromolecule.

Table 10.1 (Continued)
Conformational sampling
method

Characteristics

Self-organization method 1. A distance geometry (DG) approach

2. Conformations generated are consistent with a set of

geometric constraints, which include interatomic

distance bounds and chiral volumes derived from the

molecular connectivity table

3. Tending to produce relatively compact conformers

Systematic torsional grid

method

1. A systematic search method

2. Uses a recursive tree search algorithm

3. Can generate all conformations of polypeptides which

satisfy experimental NMR restraints

4. Time consuming

WIZARD 1. A rule-based method (heuristic)

2. Expert system techniques are adopted
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10.2.5 Application of pharmacophore models
Enrichment in the pharmacophore techniques in the last two decades has made the

approach one of the most significant tools in drug discovery. In spite of the advances in

key techniques of pharmacophore modeling, there is space for additional improvement to

derive more precise and best possible pharmacophore models, which include better han-

dling of ligand flexibility, proficient molecular alignment algorithms, and more precise

model optimization. Along with the pharmacophore-based VS and de novo design, the

applications of pharmacophore have been extended to lead optimization [39], multitarget

drug design [40], activity profiling [41], and target identification [42]. Application of the

pharmacophore technique is demonstrated in a schematic way in Figure 10.5.

10.2.5.1 Pharmacophore model�based VS
Pharmacophore models can be used for querying the 3D chemical database to search

for potential ligands; this process is termed pharmacophore-based VS. In the case of the

pharmacophore-based VS approach, a pharmacophore hypothesis is taken as a

Figure 10.5 Diverse applications of the pharmacophore technique.
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template. The intention behind the screening is actually to discover such hits that

have chemical features similar to those of the template. Sometimes these hits might be

related to known active compounds, but few have completely novel scaffolds. The

screening process involves two major difficulties: handling the conformational flexibil-

ity of small molecules and pharmacophore pattern identification.

The flexibility of small molecules is handled either by preenumerating mul-

tiple conformations for each molecule or conformational sampling at search time.

Pharmacophore pattern identification, usually known as substructure searching, is per-

formed to check whether a query pharmacophore is present in a given conformer of a

molecule. The commonly used approaches for substructure searching are Ullmann

[43], the backtracking algorithm [44], and the Generic Match Algorithm (GMA) [45].

The most challenging problem for pharmacophore-based VS is that few percentages

of the virtual hits are really bioactive. In simpler words, the screening results produce a

higher false-positive rate, a higher false-negative rate, or both. Many factors like the

quality and composition of the pharmacophore model and the macromolecular target

information can contribute to this problem. The most probable factors are as follows:

a. The most critical one is the development of a robust and reliable pharmacophore

hypothesis. Addressing this issue requires an inclusive validation and optimization

of the pharmacophore model.

b. Different molecules can be retrieved in VS from different hypotheses of a single

pharmacophore model, which is probably an important reason for the higher

false-positive/false-negative rates in some studies.

c. The flexibility of target macromolecule in pharmacophore approaches is handled

by introducing a tolerance radius for each pharmacophoric feature, which is

unlikely to entirely account for macromolecular flexibility in some cases. Recent

attempts [46] to integrate molecular dynamics simulation (MDS) into pharmaco-

phore modeling have recommended that the pharmacophore models generated

from MDS trajectories explain the considerably enhanced representation of the

flexibility of pharmacophores.

d. The steric restriction by the macromolecular target which is not adequately con-

sidered in pharmacophore models, although it is partially accounted for by the

consideration of excluded volumes. In most of the cases, interactions between a

ligand and a protein are distance-sensitive, particularly the short-range interactions,

such as the electrostatic interaction, which a pharmacophore model is tricky to

account for. As a consequence, the combination of pharmacophore-based and

docking-based VS can be considered as an efficient approach for VS.

10.2.5.2 Pharmacophore-based de novo design
Another vital application of pharmacophore is de novo design of ligands. In the case of

pharmacophore-based VS, the obtained compounds are generally existing chemicals
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that might be patent protected. On the contrary, the de novo design approach can be

used to generate entirely novel candidate structures that match to the requirements of

a given pharmacophore. The first pharmacophore-based de novo design program is

NEWLEAD [47]. It uses a set of disconnected molecular fragments that are consistent

with a pharmacophore model as input. The selected sets of disconnected pharmaco-

phore fragments are subsequently connected by using various linkers (such as atoms,

chains, or ring moieties).

The limitation with NEWLEAD is that it can only handle cases in which the

pharmacophore features are functional groups (not typical chemical features). The

additional inadequacy of the NEWLEAD program is that the sterically illicit region of

the binding site is not considered. As a result, the compounds created by the

NEWLEAD program might be tricky to chemically synthesize. There are programs

like LUDI [10] and BUILDER [48] that can also be used to amalgamate identification

of SBP with de novo design. Both programs require knowledge of the 3D structures of

the macromolecular targets.

More recently, a program called PhDD (a pharmacophore-based de novo design

method of druglike molecules) has been designed by Huang et al. [49], to overcome

the limitations of the present pharmacophore-based, de novo design software tools.

PhDD can involuntarily create druglike compounds that satisfy the necessities of an

input pharmacophore hypothesis. The pharmacophore used in PhDD can be con-

sisted of a set of abstract chemical features and excluded volumes which are the steri-

cally forbidden region of the binding site. In the case of PhDD, it first generates a set

of new molecules that entirely conform to the requirements of the given pharmaco-

phore model. Thereafter, a series of evaluation to the generated molecules are carried

out, including the assessments of drug-likeness, bioactivity, and synthetic convenience.

10.2.6 Advantages and limitations of pharmacophore
Like any other approach, pharmacophore has both advantages and disadvantages. The

major advantages and limitations are as follows:

Advantages

• Pharmacophore models can be used for VS on a large database.

• There is no need to know the binding site of the ligands in the macromolecular

target protein, although this is true only for LBP modeling.

• It can be used for the design, optimization of drugs, and scaffolds hopping.

• It can conceptually be obtained even for 2D structural representation.

• This approach is comprehensive and editable. By adding or omitting chemical

feature constraints, information can be easily traced to its source.

Limitations

• 2D pharmacophore is faster but less accurate than 3D pharmacophore.
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• A pharmacophore is based only on the ligand structure and conformation. No

interactions with the proteins are integrated. It is interesting to point out that in

this case, SBP modeling can be used to solve the problem.

• It is sensitive to physicochemical features.

10.2.7 Software tools for pharmacophore analysis
Pharmacophore modeling is extensively used because of its immense accessibility

through commercial software packages. Also, there is a freely available web server

called PharmaGist (http://bioinfo3d.cs.tau.ac.il/PharmaGist/) for detecting a pharma-

cophore from a group of ligands known to bind to a particular target. A complete list

of different commercialized and freely available software and program modules

[19,35�38]) used for pharmacophore modeling is given in Table 10.2.

10.3 STRUCTURE-BASED DESIGN�DOCKING

10.3.1 Concept and definition of docking
Molecular docking is the study of how two or more molecular structures (e.g., drug and

enzyme or protein) fit together [50]. In a simple definition, docking is a molecular

modeling technique that is used to predict how a protein (enzyme) interacts with

small molecules (ligands). The ability of a protein (enzyme) and nucleic acid to inter-

act with small molecules to form a supramolecular complex plays a major role in the

dynamics of the protein, which may enhance or inhibit its biological function. The

behavior of small molecules in the binding pockets of target proteins can be described

by molecular docking. The method aims to identify correct poses of ligands in the

binding pocket of a protein and to predict the affinity between the ligand and the

protein. Based on the types of ligand, docking can be classified as

• Protein�small molecule (ligand) docking

• Protein�nucleic acid docking

• Protein�protein docking

Protein�small molecule (ligand) docking represents a simpler end of the complexity

spectrum, and there are many available programs that perform particularly well in

predicting molecules that may potentially inhibit proteins. Protein�protein docking

is typically much more complex. The reason is that proteins are flexible and their

conformational space is quite vast.

Docking can be performed by placing the rigid molecules or fragments into the

protein’s active site using different approaches like clique-searching, geometric hash-

ing, or pose clustering. The performance of docking depends on the search algorithm

[e.g., MC methods, genetic algorithms (GAs), fragment-based methods, Tabu

searches, distance geometry methods, and the scoring functions like force field (FF)
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Table 10.2 Software and programs for pharmacophore modeling
Ligand-based methods

Software Conformational analysis
algorithm

Molecular
alignment

Significant characteristics Remarks

ALADDIN N/A� N/A� Design and pharmacophore

generation from geometric,

steric, and substructure searching

of 3D structures

Not commercialized

Apex-3D Preenumerating method Feature-based

method

An expert system developed to

represent, elucidate, and utilize

knowledge on structure�activity

relationships

Catalyst (Biovia, http://

accelrys.com/)

APOLLO Preenumerating method Feature-based

method

Identifying from a set of ligands

their interaction points

belonging to the receptor site

and creating a pseudoreceptor

Not commercialized

CLEW N/A� Feature-based

method

Utilizing the machine-learning

method and geometrical fitting

to develop the pharmacophore

Not commercialized

DANTE N/A� N/A� Inferring pharmacophores

automatically from

structure�activity data, which

include information about the

shape of the binding cavity

Not commercialized

DISCO Preenumerating method by

Concord and Confort via

the Sybyl interface

Bron�Kerbosh

clique-

detection

algorithm

Considering 3D conformations of

compounds as sets of interpoint

distances

Integrated into the Sybyl

interface, which is

available from Tripos

Inc. (www.tripos.com)

GALAHAD Both preenumerating

method and on-the-fly

Atom-based

method

A more sophisticated GA is used

for pharmacophore modeling

Integrated into the Sybyl

interface, which is

available from Tripos

Inc. (www.tripos.com)

(Continued )
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Table 10.2 (Continued)
Ligand-based methods

Software Conformational analysis
algorithm

Molecular
alignment

Significant characteristics Remarks

GAMMA On-the-fly Atom-based

method

The conformational search and the

pattern identification are

performed simultaneously by

utilizing the GA technique

Not commercialized

GASP On-the-fly Atom-based

method

A flexible GA is used for

pharmacophore identification

Integrated into the Sybyl

interface, which is

available from Tripos

Inc. (www.tripos.com)

HipHop Preenumerating method by

the Poling algorithm

Feature-based

method

Identifying common features by a

pruned exhaustive search

(qualitative model)

Discovery Studio (Biovia,

http://accelrys.com/)

HypoGen Preenumerating method by

the Poling algorithm

Feature-based

method

Designed to correlate structure and

activity (quantitative model)

Discovery Studio (Biovia,

http://accelrys.com/)

HypoRefine Preenumerating method by

the Poling algorithm

Feature-based

method

An extension to the HypoGen Discovery Studio (Biovia,

http://accelrys.com/)Exclusion volumes are involved

MOE Preenumerating method

ranging from molecular

dynamics to stochastic

methods and systematic

search

Property-based

algorithm

A pharmacophore is defined

manually by applying schemes

using a Pharmacophore Query

Editor

Chemical Computing

Group, Inc. (www.

chemcomp.com)

MPHIL On-the-fly Atom-based

method

(rigid)

Based on clique detection and GA Not commercialized

PharmaGist On-the-fly Feature-based

method

A webserver for LBP detection http://bioinfo3d.cs.tau.ac.

il/PharmaGist

PHASE Preenumerating method by

Schrödinger’s ConfGen

technology

Feature-based

method

(called sites)

Very flexible and user friendly.

SMARTS pattern matching is

used for feature location.

Excluded volumes are included.

Schrödinger Inc. (www.

schrodinger.com)

(Continued )

http://www.tripos.com
http://www.accelrys.com/
http://www.accelrys.com/
http://www.accelrys.com/
http://www.accelrys.com/
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http://www.accelrys.com/
http://www.accelrys.com/
http://www.accelrys.com/
http://www.accelrys.com/
http://www.chemcomp.com
http://www.chemcomp.com
http://bioinfo3d.cs.tau.ac.il/PharmaGist
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Table 10.2 (Continued)
Ligand-based methods

Software Conformational analysis
algorithm

Molecular
alignment

Significant characteristics Remarks

RAPID Preenumerating method Atom-based

method

A rigid alignment based on

mapping triangles of 3D atom

coordinates

Not commercialized

SCAMPI On the fly Feature-based

method

Can handle large heterogeneous

data sets

Not commercialized

XED Preenumerating method Molecular

field-based

method

Using field points to describe the

VDWand electrostatic potential

that surround molecules

Marketed by Cresset

Biomolecular (http://

www.cresset-group.

com/)

Structure-based methods

Software Molecular
alignment

Significant characteristics Remarks

GBPM Complex-

based

Based on logical and clustering operations with 3D maps

computed by the GRID program on structurally known

molecular complexes. Particularly suitable for identifying

protein�protein interaction areas.

Not commercialized

LigandScout Complex-

based

Incorporating a complete definition of 3D chemical features.

Pharmacophoric feature points-based pattern-matching

alignment algorithm is used. Intuitive and easy to use.

Marketed by Inte:Ligand

(www.inteligand.com/

ligandscout/)

Pocket v.2 Complex-

based

Capable to generate a pharmacophore model with a rational

number of features when one complex structure is available.

Not commercialized

SBP Apoprotein-

based

Directly converting LUDI interaction maps within the protein

binding site into Catalyst pharmacophoric features.

Discovery Studio (Biovia,

http://accelrys.com/)

N/A�: Not applicable or the exact information is not available.

http://www.cresset-group.com/
http://www.cresset-group.com/
http://www.cresset-group.com/
http://www.cresset-group.com/
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http://www.inteligand.com/ligandscout/
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methods and empirical free energy scoring functions]. The first step of docking is the

generation of composition of all possible conformations and orientations of the pro-

tein paired with the ligand. The second step is that the scoring function takes input

and returns a number indicating favorable interaction [51].

To identify the active site of the protein, first, selection of the required X-ray cocrys-

tallized structure from the protein data bank (PDB) is performed, and then extracting the

bound ligand, one can optimize the protein active site of interest. But the process of iden-

tification of the active site in a protein is critical when the bound ligand is absent in the

crystal structure. In that case, one has to do the following procedures:

a. One can perform comprehensive literature review of the source papers (from

which the X-ray crystal structure has been included in PDB) to identify the active

site of residues.

b. If any established drug giving the same pharmacological action of interest is avail-

able for the protein, then the active sites for this drug should be identified. In the

initial phase of analysis, one can try these residues as active binding sites for the

test ligands.

c. Every docking software program usually has a particular algorithm to identify the

active site of the protein by allowing binding of the ligand in different parts of

the protein and exploring the best possible binding position of the ligands with

the protein.

10.3.2 Definition of fundamental terms of docking
To understand the docking study better, one needs to know the basic terms related

with the docking study. The most commonly used terms connected with docking

studies are defined next. All the discussed terms are graphically represented in

Figure 10.6:

Receptor: A receptor is a protein molecule or a polymeric structure in or on a cell

that distinctively recognizes and binds a molecule (ligand) acting as a molecular

messenger. When such ligands bind to a receptor, they cause some kind of cellular

response.

Ligand: A ligand is the complementary partner molecule that binds to the receptor

for effective bimolecular response. Ligands are most often small drug molecules,

neurotransmitters, hormones, lymphokines, lectins, and antigens, but they could

also be another biopolymer or macromolecule (in the case of protein�protein

docking).

Docking: Docking is a molecular modeling technique designed to find the proper fit

between a ligand and its binding site (receptor).

Dock pose: A ligand molecule can bind with a receptor in a multiple positions,

conformations, and orientations. Each such docking mode is called a dock pose.
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Binding mode: Binding mode is the orientation of the ligand relative to the receptor,

as well as the conformation of the ligand and receptor when they are bound to

each other.

Dock score: The process of evaluating a particular pose by counting the number of

favorable intermolecular interactions such as hydrogen bonds and hydrophobic

contacts. In order to recognize the energetically most favorable pose, each pose is

evaluated based on its compatibility to the target in terms of shape and properties

such as electrostatics and generate corresponding dock score. A good dock score

for a given ligand signifies that it is potentially a good binder.

Ranking: Ranking is the process of classifying which ligands are most likely to inter-

act favorably to a particular receptor based on the predicted free energy of binding.

After completion of docking, all ligands are consequently ranked by their respec-

tive dock scores (i.e., their predicted affinities). This rank-ordered list is then

employed for further synthesis and biological investigation only for those com-

pounds that are predicted to be most active.

Pose prediction: Pose prediction can be defined as searching for the accurate binding

mode of a ligand, which is typically carried out by performing a number of trials

Figure 10.6 Graphical representation of commonly used terms in docking studies.
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and keeping those poses that are energetically best. It involves finding the correct

orientation and the correct conformation of the docked ligand due to their flexible

nature.

Scoring or affinity prediction: Affinity prediction or scoring functions are applied to the

energetically best pose or n number of best poses found for each ligand, and com-

paring the affinity scores for different ligands give their relative rank ordering. [52].

Scoring functions are generally divided into two main groups. One main group

comprises knowledge-based scoring functions that are derived using statistics for the

observed interatomic contact frequencies, distances, or both in a large database of

crystal structures of protein�ligand complexes. The other group contains scoring

schemes based on physical interaction terms [53]. These so-called energy component

methods are based on the assumption that the change in free energy upon binding of

a ligand to its target can be decomposed into a sum of individual contributions:

ΔGbind 5ΔGint 1ΔGsolv1ΔGconf 1ΔGmotion ð10:8Þ
The terms defined for the main energetic contributions to the binding event are as

follows: specific ligand�receptor interactions (ΔGint), the interactions of ligand

and receptor with solvent (ΔGsolv), the conformational changes in the ligand and

the receptor (ΔGconf), and the motions in the protein and the ligand during the

complex formation (ΔGmotion).

10.3.3 Essential requirements of docking
1. Receptor crystal structures: To execute the docking study, it is essential to have the

receptor structures of interest. The structure of the receptor can be determined by

experimental techniques such as X-ray crystallography or nuclear magnetic reso-

nance (NMR), and can be easily downloaded from the PDB (http://www.rcsb.

org/pdb/home/home.do). The quality of the receptor structure plays a crucial

role in the success of docking studies. In general, the higher the resolution (prefer-

ably ,2 Å) of the employed crystal structure, the better the observed docking

results are. Another important criterion for examining the quality of a receptor

structure is Debye�Waller factor (DWF), or B-factor; or the temperature factor,

which is used to describe the attenuation of X-ray scattering or coherent neutron

scattering caused by thermal motion. It signifies the relative vibrational motion of

different parts of the protein. Atoms with low B-factors belong to a part of the

structure that is well ordered, and atoms with large B-factors generally belong to

part of the structure that is very flexible. As a consequence, it is important to

ensure that the B-factors of the atoms in the binding site region are logical, as

high values imply that their coordinates are less reliable. Identification of the

bound-ligand in the cocrystal structure and the knowledge about its interaction
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with the corresponding protein’s amino acid residues are very important before

starting a docking study.

2. Receptor homology modeling and threading techniques: On the contrary, if the X-ray

crystal structure of the protein is not available, one can opt for the protein struc-

ture prediction techniques. In that case, most commonly applied techniques are

“threading” and “homology modeling” [54,55]. In the case of threading or the

fold recognition technique, an estimation is made whether a given amino acid

sequence is compatible with one of the ligands in a database. On the other hand,

homology or comparative modeling relies on a correlation or homology between

the sequence of the target protein and at least one known structure. Correct

homology models can be generated, provided that the sequence identity of a given

target sequence is .50% to a known structure template. Modest homology model

building efforts could potentially create receptor structures for entire target fami-

lies. Importantly, homology modeling is a comparatively economical method for

generating a diversity of receptor conformations using either single-template or

multiple-template structures enhancing the understanding of selectivity.

3. A set of ligands of interest: Once the 3D structure of the protein of interest has been

attained from either experiments (X-ray crystal structure) or predictions (receptor

from homology modeling), the docking study can be performed using ligands of

interest employing a multiplicity of docking techniques. If the function of the pro-

tein is unknown, it may be vital to search its structure for hypothetical binding sites.

These binding sites can be explored for the binding of selected ligands or they can

be compared with known binding sites. An analysis of the binding site characteris-

tics and the interactions with a given ligand can lead to important insights for the

design of novel ligands or the docking of assumed ligand molecules [56].

10.3.4 Categorization of docking
As discussed earlier in Section 10.3.1, docking can be categorized into three main classes:

(i) protein�ligand docking, (ii) protein�nucleic acid docking, and (iii) protein�
protein docking. Among these, protein�ligand docking is a common research area

because of its importance to structure-based drug design [3]. Again, the protein�
ligand docking can be classified in the following manner: (a) rigid-body docking,

where both the receptor and ligand are treated as rigid; (b) flexible ligand docking,

where the receptor is held rigid, but the ligand is treated as flexible; and (c) flexible

docking, where both receptor and ligand flexibility is considered. Thus far, the most

commonly used docking algorithms use the rigid receptor/flexible ligand model.

Here, we have categorized the protein�ligand docking in terms of the three most

important aspects: (i) protein flexibility, (ii) ligand sampling, and (iii) scoring function,

as illustrated in Figure 10.7.

382 Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment



10.3.4.1 Receptor/protein flexibility
Ligand binding usually induces protein conformational changes (ranging from local

rearrangements of side-chains to large domain motions) or induced fit (Figure 10.8)

upon ligand binding in order to maximize energetically favorable interactions with

the ligand [57]. The algorithm behind the most induced-fit mechanisms is hydropho-

bic interaction or hydrophobic collapse of the receptor around the bound ligand [58].

Due to the large size and many degrees of freedom of proteins, their flexibility is one

of the most challenging issues in molecular docking. There are varying degrees of

receptor flexibility. The degree of flexibility that one could incorporate in a given

experiment is directly proportional to computational complexity and cost. The pro-

tein flexibility can be grouped into four major categories: (i) soft docking, (ii) side-

chain flexibility, (iii) molecular relaxation, and (iv) protein ensemble docking [59].

10.3.4.1.1 Soft docking
Soft docking is the simplest approach, which considers protein flexibility in absolute

terms. Soft docking algorithms attempt to allow flexibility of the receptor and ligand

Figure 10.7 Categorization of protein�ligand docking.
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structures by using a relaxed representation of the molecular surface. The method allows

for a small degree of overlap between the ligand and the protein through the use of addi-

tional energy terms—usually interatomic van der Waals (VDW)—in the empirical scoring

function [60]. The advantages of soft docking are its computational competence and easi-

ness for implementation. It is important to remember that soft docking can account for

only minute conformational changes. The soft docking concept proposed by Jiang and

Kim describes the molecular surface and volume as a “cube representation” [61]. This

cube representation implies implicit conformational changes by way of size/shape com-

plementarity, close packing, and, most important, liberal steric overlap.

10.3.4.1.2 Side-chain flexibility
Allowing active site side-chain flexibility is another way to provide receptor flexibility,

in which backbones are kept fixed and side-chain conformations are sampled. The

method originally proposed by Leach [62] uses pregenerated side-chain rotamer librar-

ies that subsequently are subjected to optimization during a ligand docking procedure

via the dead-end elimination algorithm. The optimized ligand/side-chain orientations

are then scored in order to rank the lowest energy combination of side-chain and

ligand conformers. Since the invention of this approach, researchers have proposed

many improved techniques to incorporate continuous or discrete side-chain flexibility

in ligand docking [63,64].

Figure 10.8 Graphical representation of induced-fit docking.
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10.3.4.1.3 Molecular relaxation
The molecular relaxation method accounts for protein flexibility by first using rigid-

body docking to place the ligand into the binding site and then relaxing the protein

backbone and side-chain atoms nearby. Initially, the rigid-body docking allows atomic

clashes between the protein and the placed ligand conformations in order to consider

the protein conformational changes. Thereafter, the formed complexes are relaxed or

minimized by MC, MDS, or other methods [65]. The MDS calculate the time-

dependent behavior of a molecular system, which provides detailed information on

the fluctuations and conformational changes of proteins and nucleic acids. These

methods are now regularly used to examine the structure, dynamics, and thermody-

namics of biological molecules and their complexes.

The advantage of the molecular relaxation method is the addition of certain back-

bone flexibility in addition to the side-chain conformational changes. However, com-

pared to the side-chain flexibility methods, the relaxation method is more demanding

on the scoring function because it involves not only the side-chain movement, but

also the more challenging task of backbone sampling. One of the significant draw-

backs of this approach is that it is time consuming.

10.3.4.1.4 Docking of multiple protein structures/ensemble docking
Ensemble docking, which has gained considerable attention as a method of incorpo-

rating protein flexibility, utilizes an ensemble of protein structures to represent differ-

ent possible conformational changes [66]. Commonly, the full receptor ensembles are

generated by MDS, MC simulation, or homology modeling approaches. The ensem-

bles can be generated experimentally from NMR solution structure determination or

multiple X-ray crystal structures. Strict comparisons have revealed that there is a con-

siderable overlap of dynamic information between theoretically derived molecular

dynamics ensembles and experimentally derived NMR ensembles [67]. The first

ensemble study was done by Knegtel et al. [68], in which an averaged energy grid

was constructed by combining the energy grids generated from each experimentally

determined protein structures using a weighting scheme, followed by standard ligand

docking. Generally, the ensemble docking algorithm is not used for generating new

protein structures; instead, it is used for selecting the induced-fit structure from a

given protein ensemble.

10.3.4.2 Ligand sampling and flexibility
Ligand sampling is one of the most basic components in protein�ligand docking.

Given a protein target, the sampling algorithm generates possible ligand orientations

or conformations (poses) around the selected binding site of the protein. It is interest-

ing to point out that the binding site can be the experimentally determined active

site, a dimer interface, or another site of interest. Without any doubt, ligand sampling
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and its flexibility are the significant areas in protein�ligand docking research. There

are three types of ligand-sampling algorithms: shape matching, systematic search, and

stochastic algorithms, all of which are discussed in the next sections.

10.3.4.2.1 Shape matching
The shape matching approach is one of the common sampling algorithms that is

employed in the initial stages of the docking or in the earlier step of other, more

advanced ligand sampling methods. The ligand is placed using the criterion that the

molecular surface of the placed ligand must harmonize the molecular surface of the

binding site on the protein. Generally, three translational and three rotational

degrees of freedom of the ligand are allocated for many possible ligand-binding

orientations. Therefore, how the placed ligand gets bound in the protein site with a

good shape complementarity is the major goal of the shape matching algorithm. It

is important to remember that the conformation of the ligand is normally fixed dur-

ing shape matching [69]. The major advantage of shape matching is its computa-

tional efficiency.

10.3.4.2.2 Systematic search
Systematic search algorithms are usually employed for flexible ligand docking, which

create all the probable ligand binding conformations by exploring all degrees of free-

dom of the ligand. The systematic search method can be divided into three subclasses:

a. Exhaustive search: The most uncomplicated systematic algorithms are exhaustive

search methods, in which flexible ligand docking is performed by systematically

rotating all possible rotatable bonds of the ligand at a given interval. In spite of its

sampling totality for ligand conformations, the number of the choices can be huge

due to an increase in the number of rotatable bonds. As a consequence, to make

the docking process realistic, geometric and chemical constraints are normally

applied to the initial screening of ligand poses, and the filtered ligand conforma-

tions are further subject to the more precise refinement and optimization

measures.

b. Fragmentation approach: The basic idea behind this approach is that the ligand is first

divided into a number of fragments. Then, the ligand-binding conformation is

grown by placing one fragment at a time in the binding site or by docking all the

fragments into the binding site and linking them covalently.

c. Conformational ensemble: In the conformational ensemble methods [69], ligand flex-

ibility is achieved by rigidly docking an ensemble of pregenerated ligand confor-

mations with other programs (e.g., OMEGA). Then, ligand-binding modes from

different docking runs are collected and ranked according to their binding energy

scores.
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10.3.4.2.3 Stochastic algorithms
The fundamental algorithm behind the stochastic approach is that ligand-binding orienta-

tions and conformations are sampled by making random changes to the ligand at each

step in the conformational space and the translational and rotational space of the ligand,

respectively. The random change will be accepted or rejected according to a probabilistic

criterion. The stochastic algorithms can be classified into four different categories [70]:

a. MC methods: The probability to allow a random change is determined by employ-

ing the Boltzmann probability function.

b. Evolutionary algorithms: These involve a search for the right ligand-binding mode

based on the idea from the evolutionary process in biological systems.

c. Tabu search methods: The probability of approval relies on the explored areas in the

conformational space of the ligand. The random change will be rejected if the

RMSD between the present ligand-binding conformation and any of the formerly

recorded solutions is less than a cutoff; otherwise, the random change will be

accepted.

d. Swarm optimization method: This particular algorithm tries to determine the best

possible solution in a search space by modeling swarm intelligence. Movements of

a ligand mode through the search space are directed by the information of the best

positions of its neighbors.

10.3.4.3 Docking scoring functions
The fundamental element behind determining the accuracy of a protein�ligand dock-

ing algorithm is the generated scoring function during the docking study [71].

Swiftness and precision are the two essential aspects of any scoring function. An ideal

scoring function would be both computationally proficient and consistent. Numerous

scoring functions have been developed since the introduction of docking studies. The

scoring functions are broadly grouped into five basic categories according to their

methods of derivation.

10.3.4.3.1 FF scoring functions
FF scoring functions [72] rely on the partitioning of the ligand-binding energy into

individual interaction terms such as VDW energies, electrostatic energies, and bond

stretching/bending/torsional energies, employing a set of derived FF parameters such

as the AMBER [73] or CHARMM [74] FFs. The major challenges in FF scoring

functions are accounting for the solvent effect and accounting for the entropic effect.

10.3.4.3.2 Empirical scoring functions
The binding energy score of a complex is calculated by adding up a set of weighted empir-

ical energy terms (such as VDW energy, electrostatic energy, hydrogen-bonding energy,

desolvation term, entropy term, and hydrophobicity term) in empirical scoring functions.
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Compared to the FF scoring functions, the empirical scoring functions are usually much

more computationally proficient due to their simple energy terms. It is interesting to point

out here that the general applicability of an empirical scoring function relies on the train-

ing set due to the fact that it fits known binding affinities of its training set.

10.3.4.3.3 Knowledge-based scoring functions
Knowledge-based scoring functions result from the structural information in experi-

mentally determined protein�ligand complexes [75]. The theory beneath the

knowledge-based scoring functions is the potential of mean force, which is defined by

the inverse Boltzmann relation. This scoring function maintains a good balance

between accuracy and speed. The difficulty for this scoring function is the calculation

for the aforementioned reference state. It can be classified into three categories based

on the methods of computation: (a) traditional atom-randomized reference state,

(b) corrected reference state, and (c) circumventing the reference state.

10.3.4.3.4 Consensus scoring
Consensus scoring is not a typical scoring function; rather, it is a technique involved

in protein�ligand docking [76]. It advances the probability of finding an accurate

solution by amalgamating the scoring information from multiple scoring functions in

anticipation of eliminating the inaccuracies of the individual scoring functions. As a

consequence, the main difficulty in consensus scoring is how to create the combina-

tion rule for each score so that the true binders can be discriminated from others

according to the consensus rule.

10.3.4.3.5 Clustering- and entropy-based scoring methods
To enhance the performances of scoring functions, there is another new technique

called the clustering-based scoring method, which includes the entropic effects by dividing

generated ligand-binding modes into different clusters [77]. The entropic contribution

in each cluster is calculated by the configurational space covered by the ligand poses

or the number of ligand poses in the cluster. One disadvantage of clustering-based

scoring methods is that its performance relies on the ligand sampling protocol, which

is highly dependent on the docking program.

10.3.5 Basic steps of docking
Fundamentally, docking is a three-step process irrespective of software and docking

algorithms [78]. The steps are as follows:

a. Ligand preparation: The first step is to prepare the ligands. In this process, all the

duplicate structures should be removed, and options for ionization change, tauto-

mer, isomer generation, and 3D generator must be set in the working software

platform for the respective ligands.
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b. Protein preparation: Hydrogen atoms should be added and the protein must be mini-

mized using software-specific FF, followed by the removal of water molecules

except in the active site. The protein should be adjusted by fixing any serious

errors like incomplete residues near the active site. The charges and atom types for

any metal atoms should be set properly, if needed. If there are bonds to metal ions,

the bonds should be deleted, followed by adjusting the formal charges of the atoms

that were attached to the metal, as well as the metal itself. The protein molecule,

thus prepared, is the total receptor ready for docking.

c. Ligand�protein docking: After ensuring that protein and ligands are in the correct

form for docking, in a few cases the receptor grid files are generated using a grid�
receptor generation program for grid-based docking. The grid box is generally

generated at the centroid of the ligand bound to the active site of the receptor. In

other cases, active pockets of the protein are identified to dock the prepared ligand

in those identified pockets. Initially, all the molecules of the data set should be

docked into the active site of the protein and the interaction energies between

each ligand and the receptor can be calculated. The obtained results are then

needed to be compared with those of the bound ligand of the crystallized protein

structure in order to assess whether the molecules fit into the specified active site

of the receptor or not. A set number of ligand poses should be saved for each con-

formation of the ligand. A predefined number of docking poses thus saved for

each conformation of the compound can be ranked according to their dock score

function, and then their interaction with the receptor can be analyzed. From the

docking studies, the receptor�ligand interactions are correlated with the biological

activity of the data set compounds. The structural validation of the docking proce-

dure is done by extracting the cocrystallized ligand from the active site of the

receptor and redocking it to the receptor to ensure that it binds to the same active

site and interacts with the same amino acid residues as before. The basic steps are

schematically illustrated in Figure 10.9.

10.3.6 Challenges and required improvements in docking studies
A significant amount of work has been performed to devise superior docking pro-

grams and scoring functions over the past years. However, there is still room for

improvement. This section presents some of the primary challenges and the required

improvements that will advance the performance of docking and scoring [79].

Challenges:

a. Water molecules in protein: Water molecules often play a significant role in pro-

tein�ligand interaction. If water-mediated interactions during docking is

ignored, the estimated interaction energy of a given ligand conformation may

be too low. On the contrary, if one holds water molecules present in the crystal

389Other Related Techniques



protein structure, then the binding pose and affinity of a ligand will not be reli-

able. Thus, it is very difficult to treat the water molecules effectively. To per-

form reliable and acceptable docking, one first need to recognize probable

positions for water molecules where they could interact with the protein and

ligand, and subsequently, one must be capable to predict whether a water mole-

cule is indeed present at that position.

b. Tautomers and protomers: Another significant challenge with docking is consider-

ation for the various tautomeric and protomeric states that the molecules can

adopt. Most of the time, molecules such as acids or amines are stored in their

neutral forms. As they are ionized under physiological conditions, it is essential

to ionize them prior to docking. Although ionization is easy to attain, but the

problem of tautomer generation is already much more difficult, as other ques-

tions will arise, such as: Which tautomer should one use? Should one use more

than one or all possible tautomers for a given molecule? Not only tautomers,

but also different ionization states of ligands provide real challenges in docking.

Figure 10.9 Basic steps of the docking formalism.
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c. Docking into flexible receptors: One of the most challenging problems in docking

is dealing with flexible receptors. Numerous examples have become known

where the same protein adopts different conformations depending on which

ligand it binds to [80]. In order to deal with the trouble of flexible receptors in

docking, several approaches have been proposed: (1) letting the receptor or parts

of it move during docking; (2) docking the compounds into numerous different

conformations of the same receptor and aggregating the results; and (3) docking

into averaged receptor representations. In a few cases, more than one of these

methods are used based on the requirements in question.

Required improvements:

d. Multiple active-site corrections (MASC): A possible way of improving docking results

is the application of MASC, a simple statistical correction [81]. The scoring func-

tions prefer certain ligand types or characteristics, such as large or hydrophobic

ligands. As a consequence, some ligands are predicted to be good binders regardless

of whether these ligands will bind to specific active sites. Therefore, MASC has

been introduced, which can be interpreted either as a statistical measure of ligand

specificity or as a correction for ligand-related bias in the scoring function. In order

to calculate the MASC scores, each ligand is docked into a number of unrelated

binding sites of different binding site characteristics. The corrected score (or

MASC score) S0ij for ligand molecule i in binding site j is calculated as follows:

S0ij 5
ðSij 2μiÞ

σi

ð10:9Þ

where Sij is the uncorrected score for the ligand, and μi and σi represent the
mean and standard deviation of the scores for the ligand molecule i across the

different binding sites. Thus, the MASC score S0ij represents a measure of speci-

ficity of molecule i for binding site j compared to the other binding sites.

e. Docking with constraints: By introducing a constraint during docking, it is feasible

to control the way the poses are generated and the ones that are preferentially

set aside. For example, in the case of the DockIt program [82], one can apply

distance constraints between the ligand and protein that are consequently uti-

lized during pose generation via a distance geometry approach.

f. Postprocessing: There are two approaches of postprocessing that can be employed

in the case of a docking study: (i) applying postdock filters and (ii) using tailor-

made rescoring functions. The postdock filters are theoretically simple and may

correspond to certain geometric criteria, like the existence of certain interactions

(e.g., a hydrogen bond with a selected residue or a polar interaction) or the filling

of a specified pocket in the active site. Again, all scoring functions may exhibit

biased behavior with certain compound classes or functional groups. To diminish

the impact of this difficulty and to decrease the statistical noise, composite
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scoring, or rescoring methods have been introduced [83]. Rather than using a

single scoring function, several scoring functions are merged such that in order

to be classified as a potential binder, a molecule has to be scored well by a number

of different scoring functions. Another way of postprocessing is to use the dock-

ing results as input to develop a Bayesian model with the aim of reducing the

numbers of false positives and false negatives [84].

10.3.7 Applications of docking
The docking technology is successfully applied at multiple stages of the drug design

and discovery process for three main purposes: (1) predicting the binding mode of

a known active ligand, (2) identifying new ligands using VS, and (3) predicting the

binding affinities of allied compounds from a known active series. The prediction

of a ligand-binding mode in a protein active site has been the most successful area.

In the broader perspective, the major specific applications of docking are listed here

to get a proper dimension of the use of docking studies in the drug discovery

process:

• The determination of the lowest free-energy structures for the receptor�ligand

complex

• Calculation of the differential binding of a ligand to two different macromolecular

receptors

• Study of the geometry of a particular ligand�receptor complex.

• Searching of a database and ranking of hits for lead generation and optimization

for future drug candidate.

• To propose the modification of lead molecules to optimize potency or other properties.

• Library design and data bank generation.

• Screening for the side effects that can be caused by interactions with proteins, like

proteases and cytochrome P450, can be done.

• It is also possible to check the specificity of a potential drug against homologous

proteins through docking.

• Docking is also a widely used tool in predicting protein�protein interactions.

• Docking can create knowledge of the molecular association, which aids in under-

standing a variety of pathways taking place in the living system.

• To reveal possible potential pharmacological targets.

• Docking-based virtual HTS is less expensive than normal HTS and faster than

conventional screening.

The docking study has a huge role not only in lead drug identification process, but also

in search of potential target identification for different diseases [79]. A representative list of

marketed or clinical trial drugs employing structure-based drug design�docking study is

given in Table 10.3. For a more elaborate illustration, please see Chapter 11.
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10.3.8 Docking software tools
A large number of docking programs and search algorithms have been reported since

the invention of docking [79]. Although the basic steps of docking processes are more

or less identical, these docking programs vary fundamentally with respect to the dock-

ing algorithm, ligand search strategy, and scoring function techniques. A list of popu-

lar docking software programs is given in Table 10.4.

Table 10.3 Representative examples of marketed drugs employing the structure-based drug
design�docking study
Generic name Manufacturer Inhibit/Target

AG85, ag337,

ag331

Agouron Thymidylate synthase

Aliskiren Novartis Renin inhibitors

Amprenavir GlaxoSmithKline HIV protease

Boceprevir Schering�Plough Protease inhibitor used for treating hepatitis

caused by hepatitis C virus (HCV)

Captopril Bristol

Myers�Squibb

Reversible inhibitor of angiotensin-converting

enzyme (ACE)

Dorzolamid Merck Sharp and

Dohme

Carbonic anhydrase (hypercapnic ventilatory

failure)

ERα and ERβ Information not

available

Estradiol (E2) analogs

Indinavir Merck HIV protease

Inverase Hoffman La

Roche

HIV protease

LY-517717 Lilly/Protherics Inhibitors of factor Xa serine protease

Nelfinavir Hoffman La

Roche

HIV protease

Nolatrexed

dihydrochloride

Agouron Thymidylate synthase (TS)

Norvir Abbot HIV protease

NVP-AUY922 Novartis Heat shock protein 90 (HSP90)

Raltitrexed AstraZeneca Thymidalate

Raltegravir Merck HIV integrase

Rupintrivir Agouron Irreversible inhibitors of human rhinovirus (HRV)

3C protease

Saquinavir Hoffman La

Roche

HIV protease

TMI-005 � Dual inhibitor of tumor necrosis factor-α
(TNFα) converting enzyme (TACE) and

matrix metalloproteinases (MMPs)

Zanamivir Gilead Sciences Neuraminidase inhibitor
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Table 10.4 Available software tools for the docking study
Software Algorithm and remarks

AutoDock AutoDock is a suite of automated docking tools capable of predicting

how small molecules, such as substrates or drug candidates, bind to a

receptor of a known 3D structure. The Lamarckian GA is used as the

algorithm. Website: http://autodock.scripps.edu/

Discovery Studio The conformational search of the ligand poses is performed by the MC

trial method. Preprocessing of ligands is performed using the ligand

fit program with selecting one of the energy grid out of three energy

grids (PLP1, Dreiding, and CFF) available in Discovery Studio. The

docking poses saved for each conformation of the compound are

ranked according to their dock scores based on LigScore1,

LigScore2, PLP1, PLP2, Jain, and PMF function. Website: http://

accelrys.com/

DOCK DOCK is a program that can examine possible binding orientations of

protein�protein and protein�DNA complexes. It can be used to

search databases of molecular structures for compounds that act as

enzyme inhibitors or bind to target receptors. The shape matching

(sphere images) algorithm is employed here. Website: http://www.

cmpharm.ucsf.edu/kuntz/dock.html

DOT Daughter Of Turnip (DOT) is a program for docking macromolecules

to other molecules of any size. It can predict binding modes of small

molecule�protein complexes. The intermolecular energies for all

configurations generated by this search are calculated as the sum of

electrostatic and VDWenergies. Website: http://www.sdsc.edu/

CCMS/DOT/

FADE and

PADRE

Fast Atomic Density Evaluator (FADE) and Pairwise Atomic Density

Reverse Engineering (PADRE) programs are designed to aid in the

molecular modeling of proteins. In particular, the programs can

rapidly elucidate features of interest such as crevices, grooves, and

protrusions. The topographical information produced by FADE and

PADRE can help researchers easily pinpoint the most prominent

features of a protein, regions that are likely to participate in

interactions with other molecules. In addition, it provides shape

descriptors to aid in analyzing single molecules.

FlexiDock FlexiDock is a commercial software performs flexible docking of

ligands into receptor binding sites. Website: http://www.tripos.com/

software/fdock.html

FlexX Incremental construction algorithm is employed in FlexX. The FlexX

predicts the geometry of the protein�ligand complex and estimates

the binding affinity. The two main applications of FlexX are

complex prediction and VS. Complex prediction is used, when one

have a protein and a small molecule binding to it but no structure of

the protein�ligand complex is available. Website: http://www.

biosolveit.de/flexx/

(Continued )
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Table 10.4 (Continued)
Software Algorithm and remarks

FRED The shape matching (Gaussian functions) algorithm is employed in the

Fast Rigid Exhaustive Docking (FRED) software.

FTDock Fourier Transform Docking (FTDock) is a free program that performs

rigid-body docking on two biomolecules in order to predict their

correct binding geometry.

Glide Glide is a fast and accurate docking program that addresses a number of

problems, ranging from fast database screening to highly accurate

docking. The descriptor matching/MC is the principal algorithm of

Glide. The hierarchical filters in Glide ensure a fast and efficient

reduction of large data sets to the few drug candidates that bind best

with the target. Website: http://www.schrodinger.com/Glide/

GOLD GOLD is a GA-based method for ligand protein docking. GOLD

accounts for receptor flexibility through side-chain flexibility and,

most important, ensemble docking. Website: http://www.ccdc.cam.

ac.uk/Solutions/GoldSuite/Pages/GOLD.aspx

GRAMM Global Range Molecular Matching (GRAMM) is a free program for

protein docking. To predict the structure of a complex, it requires

only the atomic coordinates of the two molecules (no information of

the binding sites is needed). The molecular pairs may be two

proteins, a protein and a smaller compound, two transmembrane

helices, etc. The program performs an exhaustive 6D search through

the relative translations and rotations of the molecules. Website:

http://vakser.bioinformatics.ku.edu/resources/gramm/grammx/

Hammerhead Hammerhead is suitable for screening large databases of flexible

molecules by binding to a protein of known structure. The approach

is completely automated, from the elucidation of protein binding

sites, through the docking of molecules, to the final selection of

compounds.

HINT HINT is a software package that utilizes experimental solvent

partitioning data as a basis for an empirical molecular interaction

model. The program calculates empirical atom-based hydropathic

parameters that, in a sense, encode all significant intermolecular and

intramolecular noncovalent interactions implicated in drug binding

or protein folding.

Liaison Liaison is a commercial program for fast estimation of free energy of

binding between a receptor and a ligand. The free energy of binding

can be approximated by an equation in which only the free and

bound states of the ligand are calculated. The method combines

high-level molecular mechanics calculations with experimental data

to build a scoring function for the evaluation of ligand�receptor

binding free energies.

LigandFit The shape matching (moments of inertia) algorithm is employed.

(Continued )
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10.4 COMBINATION OF STRUCTURE- AND LIGAND-BASED
DESIGN TOOLS

In recent years, there has been increasing attention paid to developing new methods

employing the combined information generated from receptors and ligands. Most of

the common present-day and potential future approaches are discussed in this section.

10.4.1 Comparative binding energy analysis
10.4.1.1 The concept of comparative binding energy
Comparative binding energy (COMBINE) analysis is a method of developing a

system-specific expression to compute binding free energy using the 3D structures of

receptor�ligand complexes [4]. This technique is based upon the hypothesis that

the free energy of binding can be correlated with a subset of energy components

Table 10.4 (Continued)
Software Algorithm and remarks

MOE MOE is a fast and accurate docking program. The dock poses were

ranked according to the GBVI/WSA binding free-energy calculation

and minimized using MMFF94x within a rigid receptor.

Molegro Virtual

Docker

Molegro Virtual Docker is an integrated platform for predicting

protein�ligand interactions. Molegro Virtual Docker handles all

aspects of the docking process, from preparation of the molecules to

determination of the potential binding sites of the target protein, and

prediction of the binding modes of the ligands.

QSite QSite is a mixed-mode QM/MM program for highly accurate energy

calculations of protein�ligand interactions in the active site. The

program is specifically designed for proteins and allows a number of

different QM/MM boundaries for residues in the active site. QSite

uses the power and speed of Jaguar to perform the quantum

mechanical part of the calculations and OPLS-AA to perform the

molecular mechanical part of the calculations.

Situs Situs is a program package for the docking of protein crystal structures

to single-molecule, low-resolution maps from electron microscopy or

small-angle X-ray scattering.

SLIDE Descriptor matching algorithm is employed in SLIDE.

SuperStar SuperStar is a program for generating maps of interaction sites in

proteins using experimental information about intermolecular

interactions. The generated interaction maps are therefore fully

knowledge-based. SuperStar retrieves its data from IsoStar, CCDC

interaction database. IsoStar contains information about nonbonded

interactions from both the Cambridge Structural Database (CSD)

and the Protein Data Bank (PDB).
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calculated from the structures of receptors and ligands in bound and unbound forms

[4,85]. Computation of binding free energies is very challenging due to the need to

sample conformational space effectively in order to compute entropic contributions.

Empirical scoring functions, which are fast to calculate, have been derived to approxi-

mate binding free energy using a single structure of a receptor�ligand complex [86].

If some experimental binding data are accessible for a set of related complexes, then

this information can be used to derive a target-specific scoring function. This algo-

rithm is taken in the COMBINE analysis in which the binding free energy (ΔG) or

inhibition constant (Ki) or other related properties are correlated with a subset of

weighted interaction energy components determined from the structures of energy

minimized receptor�ligand complexes. The receptor binding free energy (ΔG) of a

ligand can be expressed as

ΔG5
Xn
i51

ωi Δu
rep
i 1C ð10:10Þ

The n terms Δu
rep
i of the ligand�receptor binding energy ΔU are selected, and the

coefficients ωi and constant C are determined by the statistical analysis.ΔU is calculated

for representative conformations of the ligand�receptor complexes and the unbound

ligands and the receptor using a molecular mechanics FF. The ligands are divided into

nl fragments, and the receptor into nr regions (e.g., amino acid residues), and thus

ΔU 5
Xnl
i51

Xnr
j51

uVDW
ij 1

Xnl
i51

Xnr
j51

uELEij 1

Xnl
i51

ΔuB;Li 1
Xnl
i51

ΔuA;Li 1
Xnl
i51

ΔuT ;L
i 1

Xnl
i, i0

ΔuNB;L
ii0 1

Xnr
j51

ΔuB;Rj 1
Xnr
j51

ΔuA;Rj 1
Xnr
j51

ΔuT ;R
j 1

Xnr
j, j0

ΔuNB;R
j

ð11:10Þ

The first two terms on the right side of the equation describe the intermolecular

interaction energies between each fragment i of the ligand and each region j of the

receptor. The next four terms describe changes in the bonded (bond, angle, and tor-

sion) and the nonbonded (a combination of Lennard�Jones and electrostatic) energies

of the ligand fragments upon binding to the receptor, and the last four terms account

for changes in the bonded and nonbonded energies of the receptor regions upon

binding of the ligand.

10.4.1.2 The methodology of COMBINE
To derive the COMBINE model, fundamentally three steps are to be followed:

namely, modeling the molecules and their complexes, measuring the interaction
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energies between ligands and the receptor, and finally, performing chemometric analysis

to derive the regression equation [4]. The methodology for the COMBINE analysis

is outlined schematically in Figure 10.10.

a. Molecular modeling: To develop the COMBINE models, the ligands should be

divided into fragments, and then the same number of fragments must be allocated

to all the compounds, adding dummy fragments to the ligands lacking the correct

number. The 3D models of the ligand�receptor complexes and the unbound

receptor and ligands can be derived with a standard molecular mechanics program.

Different regression equations can be produced by using the following factors:

• Different starting conformations of the receptor

• The inclusion of positional restraints on parts of the receptor

• Different convergence criteria during energy minimization

• Different ways of treating the solute�solvent interface

• The dielectric environment

b. Measurement of the interaction energies: The objective of this step is the computation

of the nonbonded (VDW and electrostatic) interaction energies between each resi-

due of the receptor and every fragment of the ligand, using a molecular mechanics

FF. Along with the interaction energies, the energies between all pairs of residues/

fragments for the complexes and for the free ligands and receptor on the basis of

the distance-based dielectric constant should be computed as well. Finally, a matrix

will be formed, with columns representing the energy components and rows

Figure 10.10 The methodology of the COMBINE analysis.
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representing each compound in the set. A final column containing experimental

activities or inhibitory activities or binding affinities is then added to the matrix as

the dependent variable for model development.

c. Chemometric analysis: After the completion of steps 1 and 2, significant descriptors

should be retained and others must be eliminated from the study matrix. Due to

the large number of variables and their intercorrelation nature, partial least squares

(PLS) is the technique of choice for deriving the QSAR model that can quantify

the most important energy interactions in terms of activity prediction [87,88].

10.4.1.3 Importance and advantages of COMBINE
Comparing the COMBINE method with the calculation of binding energies via clas-

sical molecular mechanics, the advantages of ligand�receptor interaction energies to

statistical analysis are as follows [4]:

a. The noise due to inaccuracy in the potential energy functions and molecular mod-

els can be reduced.

b. Mechanistically important interaction terms can be identified.

c. Compared to more traditional QSAR analysis, this approach can be anticipated to

be more predictive, as it incorporates more physically relevant information about

the energies of the ligand�receptor interaction.

d. It helps in the screening of lead compounds based on the required properties that

interact favorably with the key residues.

10.4.1.4 Drawbacks and required improvements
COMBINE experiences the intrinsic errors implicated in the computation of the

interaction energies between ligand and macromolecular complexes like all other

interaction energy-based 3D-QSAR methods. The predictability of the method can

be improved by making advances in several aspects, like the description of the electro-

static term, the addition of appropriate descriptors for solvation and entropic effects,

and the optimization of the methodology, such as the choice of ligand fragment defi-

nitions and the details of the variable selection protocol [4].

10.4.1.5 Applications of COMBINE
COMBINE analysis was originally developed to study the interactions of one target

protein with a set of related ligands. It has been established in recent times that the

approach can be applied tactfully to a wide range of complexes, including enzyme�
substrate and inhibitor complexes [89], protein�protein/peptide complexes [90], and

protein�DNA complexes [91]. It has also been employed to examine binding to

more than one target protein receptor.
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10.4.1.6 Software for COMBINE
SCOPE: To make the COMBINE method more user friendly, the method has

been implemented in the structure-based compound optimization, prioritization,

and evolution (SCOPE) module of VLifeMDS, which uses this approach to derive

a 3D-QSAR between the experimental biological activities and the calculated

ligand interaction energy terms [92]. First, to execute COMBINE analysis, each of

the ligands against a particular target has to be docked into its target. It requires a

training set of docked and optimized ligand�receptor complexes, and the

unbound ligands and receptor for which intermolecular and intramolecular inter-

action energies are calculated. The calculated descriptors are then correlated with

the experimental activity of the studied compounds to develop a QSAR model.

Finally, the interpretation of the developed mathematical equation can enlighten

the important ligand�receptor interactions for future drug designing and develop-

ment process.

gCOMBINE: gCOMBINE is an user-friendly tool for performing COMBINE

analysis in drug design research programs. It is a graphical user interface (GUI) writ-

ten in Java with the purpose of performing COMBINE analysis on a set of

ligand�receptor complexes with the intention of deriving highly informative QSAR

models [93]. The objective of this method is to generate the ligand�receptor inter-

action energies into a series of variables, explore the origins of the variance within

the set employing principal component analysis (PCA), and then allocate weights

to the chosen ligand�residue interactions by using PLS analysis to correlate with

the experimental activities or binding affinities. The major advantages of using a

GUI are that it allows plenty of interactivity and provides multiple plots represent-

ing the energy descriptors entering the analysis, scores, loadings, experimental

versus predicted regression lines, and the evolution of classical validation para-

meters. Using the GUI, one can carry out numerous added tasks, such as possible

truncation of positive interaction energy values and generation of ready-made

PDB files containing information related to the importance of the activity of indi-

vidual protein residues. This information can be aptly displayed and color-coded

using a molecular graphics program like PyMOL.

10.4.2 Comparative residue interaction analysis
10.4.2.1 Concept of CoRIA
The CoRIA analysis is a relatively recent innovation in the field of QSAR studies. It

is a 3D-QSAR approach, which uses the descriptors that describe the thermodynamic

events involved in ligand binding to the receptor to explore both the qualitative and

quantitative facets of the ligand�receptor recognition process. The main emphasis of

CoRIA is to calculate and analyze the receptor�ligand complex and thereafter predict

the binding affinity of the complex [5]. The binding free-energy difference (ΔGbind)
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between the free and bound states of the receptor and ligand (ΔGcomplex 2

ΔGuncomplexed) is related to the binding constant (Kd) of the ligand to the receptor

and can be expressed as an additive interaction of different events using the classical

binding free energy equation [94]:

ΔGbind5ΔGsolv1ΔGconf 1ΔGinter 1ΔGmotion ð10:12Þ
That is, the total free energy of binding (ΔGbind) is an additive interaction of sol-

vation of ligand (ΔGsolv), which is the difference between the unbound (e.g., cellular)

and bound states, conformational changes that occur in the receptor and ligand

(ΔGconf), specific interactions between the ligand and receptor as a consequence of

their proximity (ΔGinter), and the motion in the receptor and ligand once they are

close to each other (ΔGmotion).

10.4.2.2 Methodology of CoRIA
The first step of CoRIA is the calculation of the binding energies in the form of non-

bonded interaction energies (like VDW and Coulombic), which describe thermody-

namic events involved in ligand binding to the active site of the receptor. Thereafter,

employing a genetic version of the PLS technique (namely, G/PLS), these calculated

energies should be correlated with the biological activities of molecules, along with

the other physiochemical variables like molar refractivity, surface area, molecular vol-

ume, Jurs descriptors, and strain energy [5,95,96]. Further, validation has to be per-

formed for the developed CoRIA models based on various validation metrics to

ensure the acceptability of the developed models. The methodology of the CoRIA is

schematically presented in Figure 10.11.

10.4.2.3 Variants of CoRIA
In recent years, to deal with the problems of peptide QSAR, CoRIA methodology

has gone through several advanced modifications. Two newly developed variants of

CoRIA are [5,95]:

a. reverse-CoRIA (rCoRIA): When the peptide (ligand) is fragmented into individual

amino acids, and the interaction energies (VDW, Coulombic, and hydrophobic

interactions) of each amino acid in the peptide with the total receptor is calculated,

the technique is known as rCoRIA.

b. mixed-CoRIA (mCoRIA): When the interaction energies of each amino acid in

the peptide with the individual active site residues in the receptor is calculated, the

approach is defined as mCoRIA.

For both approaches, along with the interaction energies, other thermodynamic

descriptors (like free energy of solvation, entropy loss on binding, strain energy, and

solvent assessable surface area) are also included as independent variables, which are

correlated to the biological activity using a G/PLS technique like general CoRIA.
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10.4.2.4 Importance and application of CoRIA
The most significant importance of the CoRIA methodology is that it is capable of

extracting critical information regarding the nature and type of important interactions

at the level of both the receptor and the ligand. The generated rich source of infor-

mation can be directly employed in the design of new molecules and drug targets

[87]. The approaches have the ability to forecast modifications in both the ligand and

the receptor, provided that structures of some ligand�receptor complexes are avail-

able. The CoRIA approach can be used to identify crucial interactions of the inhibi-

tors with the enzyme at the residue level, which can be profitably exploited in

optimizing the inhibitory activity of ligands. Furthermore, it can be used to guide

point mutation studies—yet another advantage.

10.4.2.5 Drawback of CoRIA
The major drawback of CoRIA is that it cannot be applied with small organic mole-

cules. This is because unlike peptides, there is no rational or unanimously established

protocol for fragmenting small molecules [87].

Figure 10.11 The methodology of the CoRIA analysis.
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10.4.2.6 Future perspective of CoRIA
The algorithm of this methodology can be further improved in the near future by

considering the following points:

• Solvation of the entire ligand�protein complexes

• Extensive conformational sampling by molecular dynamics

• Inclusion of other important interactions like hydrogen bonding

10.5 IN SILICO SCREENING OF CHEMICAL LIBRARIES: VS

10.5.1 Concept
VS is a technique to identify novel hits (i.e., bioactive molecules) from large chemical

libraries through computational means by applying knowledge about the protein

target (structure-based VS) or known bioactive ligands (ligand-based VS) [97]. The

ligand-based approaches utilize structure�activity data from a set of known actives

in order to identify drug candidates for experimental evaluation. The ligand-based

methods include approaches like similarity and substructure searching, QSAR,

pharmacophore-based search, and 3D shape matching [98,99]. Apparently, structure-

based VS mainly employ the docking approach, where the 3D structure of the biolog-

ical target protein or receptor is used to dock the candidate molecules and rank them

based on their predicted binding affinity (docking score). These techniques, like

ePharmacophore and protein�ligand fingerprints, also can be used under structure-

based VS. It is important to mention that based on the requirements of the research-

ers, one can use ligand- and structure-based approaches one by one, as a layered

screening technique, or both approaches concurrently.

The VS technology has emerged as a response to the pressure from the combinatorial/

HTS community. VS can be considered as the mining of chemical spaces with the aim

to identify molecules that possess a desired property [100]. The VS approach is highly

dependent on the quantity and quality of available data and the predictability of the

underlying algorithm. As a consequence, there is no universal guideline or workflow

for the VS approaches, and the researcher has to apply his computational knowledge

and experience to find the active drug candidate from the sea of drug databases and

chemical libraries applying the best possible source of tools as per his requirements.

10.5.2 Workflow and types of VS
The experimental efforts to carry out the biological screening of billions of com-

pounds are still considerably high, and therefore, CADD approaches have become

attractive alternatives. One has to remember that the workflows employed in the VS

are not universal. The workflow is solely dependent on the researchers’ needs, the

diversity of chemical library, and available sources for sensible and practical VS. Here,

we have tried to describe a general, commonly employed workflow.
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10.5.2.1 Selection of chemical libraries/databases
The first criterion of any VS approach is the selection of the required chemical library.

Taking the requirements into consideration, the researcher has to select the chemical

library from the available large pool of public and commercial databases. The database

may cover a particular class of compounds (structural or pharmacological) or diverse

classes of molecules. A significant amount of information regarding various types of

chemical libraries has been provided in Section 10.5.6.

10.5.2.2 Preprocessing of chemical libraries
After selection of the required database, one has to perform the preprocessing of the

chemical library by removing the duplicate structures, tautomers, counter ions, and

protonated ones.

10.5.2.3 Filtering of druglike molecules
In the next step, to filter the druglike molecules from the preprocessed chemical

library, different druglike filters need to be employed:

a. Lipinski’s rule of five: It is a well-known rule of thumb of encoding a simple profile

for the permeability of orally available drugs. The filter demonstrates that poor

absorption or permeation are more likely to occur when (i) molecular weight

(MW) is over 500, (ii) calculated octanol/water partition coefficient (logP) is over

5, (iii) presence of more than 5 HBDs, and (iv) presence of more than 10 HBAs

[101]. With the exception of logP, all other criteria are additive and can be accu-

rately computed for screening of virtual libraries. However, Lipinski’s rule of five

fails to distinguish between drugs and nondrugs, rather serves as a method to pre-

dict compounds with poor absorption or permeability. One has to remember that

antibiotics fall outside the scope of this rule.

b. ADMET filter: In addition to the Lipinski’s filter, ADMET filters [102] can be

employed for filtering. To get the early information regarding absorption, distribu-

tion, metabolism, excretion (ADME), and toxicity data (ADMET data), the

ADMET filter screen is very useful. The late stage failure of the molecules in the

clinical trials is primarily attributed to their inability to meet the necessary phar-

macokinetic profile. Accurate prediction of ADMET properties enables to elimi-

nate unwanted molecules and aids the lead optimization process.

10.5.2.4 Screening
The ultimate screening step of the VS of the filtered druglike compounds is based on

two fundamental approaches; namely, a ligand-based approach and a receptor-based

approach [103].

a. Ligand-based approach: In this approach, molecules with physical and chemical

properties similar to those of the known ligands are identified using QSAR
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models, pharmacophore-based search, substructure search, and 2D and 3D atomic

property-based search approaches. The ligand-based approach is possible without

protein information and can be employed for scaffold hopping. Again, since this

technique is biased by the properties of known ligands, it limits the diversity of the

hits generated.

b. Receptor-based approach: The approach uses techniques like protein�ligand docking,

different scoring functions, and active-site-directed SBPs for the molecular recog-

nition between a ligand and a target protein to select chemical entities that bind to

the active sites of biologically relevant targets with known 3D structures. The

major advantages of this approach are the following: It is possible to carry out this

process without ligand information, the entire capability of the protein pocket is

taken into account, prediction of binding modes is possible, scaffold hopping and

profiling without any bias toward existing ligands can be done.

c. Combination of ligand- and receptor-based approach: As there is no universal method

for the VS, one can use ligand- and structure-based methods separately (e.g., phar-

macophore and docking one by one as a two-layer technique), or can employ the

combined ligand- and structure-based methods like COMBINE and CoRIA. The

COMBINE and CoRIA approaches are reliable. as they consider the ligand and

receptor information as well as information regarding their binding complexes.

d. Machine learning techniques: Apart from the ligand- and receptor-based approaches,

machine learning techniques like support vector machine (SVM) and binary ker-

nel discrimination (BKD) can be tactfully applied in a few cases of VS. The SVM

predicts the bioactivity by representing the lead in n-dimensional real space using

molecular descriptors and fingerprint technology, where n represents the number

of features or attributes. The SVM approach is based on the fuzzy logic finger-

print. The BKD is a recently developed computational approach. In BKD, the

molecule is represented as 2D fragment bit-string. It consists of three components.

First, the structural representation section; second, the similarity searching section

using different coefficients; and third, the section with different weighting schemes

for lead compounds.

10.5.2.5 Hit selection to new chemical entity generation
Once hits are selected from the final screening process, one has to synthesize or pur-

chase the hits for further study. The selected hits have to go through different

in vitro/in vivo bioassays for final confirmation of their pharmacological actions.

Compounds showing encouraging pharmacological activity are considered as the lead-

ing ones for further preclinical and clinical studies to establish them as the final drug

candidates. A schematic illustration of various steps of the VS is presented in

Figure 10.12.
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10.5.3 Successful application of VS: A few case studies
Employing VS approaches, many drugs have been obtained that are already on the

market, and a few others are in the different stages of clinical trials. Liebeschuetz et al. [104]

used library design- and structure-based VS to develop inhibitors of factor Xa serine

protease, an important target in the blood coagulation cascade. Sharma et al. [105] car-

ried out VS to find the neuraminidase inhibitors (potential targets for swine flu), and

two of the metabolites (Hesperidin and Narirutin) were predicted to be more potent

than the existing drugs (Oseltamivir). Dahlgren et al. [106] developed salicylidene acyl-

hydrazides as inhibitors of type III secretion (T3S) in the gram-negative pathogen

Yersinia pseudotuberculosis from a set of 4416 virtual compounds employing three QSAR

models. As the studies are so numerous, we have made a representative list of successful

applications of VS-based [107] drug discovery in Table 10.5.

10.5.4 Advantages of VS
Application of the VS techniques increases the chance of successful drug discovery by

many times. Without any hesitation, we can say that the VS has emerged as a reliable,

Chemical libraries (diverse or focused, public or “in-house” databases)

Preprocessing of chemical libraries: Removal of duplicate
structures, tautomer, counter ions, protonated states

Filtering for druglike molecules
(through the Lipinski filter and the ADMET filter)

Virtual screening
(VS)

Ligand-based VS

Structure and Ligand-based VS

Structure-based VS
Substructure search

2D, 3D atomic property-based search
QSAR-based search

Pharmacophore-based search

Synthesis/purchasing from the chemical library source

COMBINE-based search
CoRIA-based search

ePharmacophore-based search
Docking-based search

Protein–ligand finger prints
Different scoring function

HIT selection

Biological
evolution by in

vivo/in vitro tests

Active

Inactive
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Figure 10.12 Fundamental steps of the VS approach.
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Table 10.5 Representative case studies of successful application of VS
Target Database Methods employed Structure of the most active hit

Receptor G protein

�coupled

α1A adrenergic Aventis in-

house

compound

and MDDR

Pharmacophore

and docking
N

N
H
N

N

O N

S

F

α1A adrenergic receptor antagonist

Dopamine D3 NCI Pharmacophore

and docking
HN N

N

O

F
Dopamine D3 receptor antagonist

Endothelin A Maybridge

database

Pharmacophore

OH
COOH

H
N

N
H

O

O

O

H3C CH3

Endothelin A (ETA) receptor antagonist

Muscarinic M3 Astra

Charnwood

in-house

compound

repository

Pharmacophore

O

N

O CH3

CH3

Muscarinic M3 receptor antagonist
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Table 10.5 (Continued)
Target Database Methods employed Structure of the most active hit

Neurokinin-1

(NK1)

826,952

compounds

Merging

various

databases

Pharmacophore

and docking

N
O

Cl

N
H

S

N N

N

Neurokinin NK1 antagonist

Nuclear

receptors

Retinoic acid

receptor

ACD Docked into the

retinoic acid

receptor (RAR)

binding site

H3C

H3C

CF3

O

S
S

N

Retinoic acid receptor α antagonist

Thyroid hormone

receptor

ACD Docking CH3

H3C
CH3

NH
N
H

HN
O

O

N

NO2

Thyroid hormone receptor antagonist

Enzymes Kinase Akt 1 (protein

kinase Bα,
PKBα)

ChemBridge Flexible docking and

employing different

scoring functions

H3C

H3C

HOOC

O

Cl
NH2

CN

N

CN
Akt 1 inhibitor



Bcr-Abl tyrosine

kinase

ChemDiv Lipinski filter and

docking

O

O O

N+

N
H

N
H

Bcr-Abl Tyrosine kinase inhibitor

Checkpoint kinase

1 (Chk-1)

AstraZeneca

in-house

compound

Pharmacophore and

flexible docking

H
N

H
NN

N
HOOC Br OMe

Chk-1 inhibitor

Cyclin-dependent

kinase 4

(Cdk4)

ACD De novo design

program LEGEND

was combined with

the program

SEEDS to extract

relevant scaffolds

H
N

H
N N

N

O

O

Cdk4 inhibitor

p56 Lymphoid T

cell tyrosine

kinase (Lck)

3D database of

2 million

commercial

compounds

Docking MeO
O

N
H

NHN

H3C

OMe

N
N

NH

S

Lck inhibitor

Proteases Falcipain-2 ChemBridge Lipinski and ADMET

filters, homology

modeling along

with docking

O

S
O

O
MeOOC

H
NN

N

H3C

CH3

Falcipain inhibitor
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Table 10.5 (Continued)
Target Database Methods employed Structure of the most active hit

HIV protease Cambridge Docking F

N

S S

Cl

HO

HIV protease inhibitor

SARS CoV 3C-

Like proteinase

ACD, MDDR,

and NCI

Homology modeling,

docking and

molecular

dynamics,

Cl

Cl

O

N
N+

Cl

Cl Cl

Cl
SARS CoV 3C-like proteinase inhibitor

Thrombin 5300

commercial

compounds

Docking and de novo

design

OO

H
N

NH3

NH
Thrombin inhibitor



Hydrolases Adenylyl cyclase

(edema factor

and CyaA)

ACD Docking N

N

N
EtOOC

NH2

Edema factor (EF) adenylyl cyclase inhibitor

AmpC

β-lactamase
ACD Docking COOHO

O
Cl

S

S

H
N

mpC β-lactamase noncovalent inhibitor

Protein tyrosine

phosphatase 1B

Pharmacia, the

in-house

compound

Docking NO2

NO2

OO
H
N

HN

O

S S

N

Protein tyrosine phosphatase 1B (PTP1B) inhibitor

Oxidases/

reductases

Aldose reductase ADAM and

EVE

docking

program

Docking

CH3

N

O

O

O

O

O

HOOC

Cl

Aldose reductase inhibitor
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Table 10.5 (Continued)
Target Database Methods employed Structure of the most active hit

Dihydrofolate

reductase

ACD Docking
CH3

CH3

CH3
H3C

H2N
HN

N

N

N

Plasmodium falciparum DHFR inhibitor

Inosine

50-
monophosphate

dehydrogenase

Inhibitors

(IMPDH)

In-house

reagent

inventory

system

Docking and different

scoring functions

CN

MeO
Inosine 50-monophosphate dehydrogenase

(IMPDH) inhibitor



cost-effective, and time-saving technique for the discovery of lead compounds [108].

The main advantages of this method compared to laboratory experiments are

described in the next sections.

10.5.4.1 Cost-effective
As no compounds have to be purchased externally or synthesized by a chemist at the

initial stages, VS is one of the most cost effective of the drug discovery processes.

10.5.4.2 Time-saving
Synthesis can take an extremely long time, especially in the case of large databases

with millions of chemical compounds. But employing computational tools, the VS

approach is always efficient in drug discovery.

10.5.4.3 Labor-efficient
Synthesis and bioassays always involve a great amount of human strength, and the

chance of getting false positives is always present, even after spending a lot of physical

and mental labor. Although undeniably VS also has a chance of resulting in false posi-

tives, but it is always labor-efficient in drug development.

10.5.4.4 Sensible alternative
It is possible to investigate compounds that have not been synthesized yet; and con-

ducting HTS experiments is costly, time-consuming, and laborious for large numbers

of chemicals. As a result, VS is always a rational option to minimize the initial number

of compounds before using HTS methods.

10.5.5 Pitfalls
While applying the VS technique, the researcher must face many difficulties, such as

finding the best possible balance between efficiency and precision when evaluating a

particular algorithm, determining which method achieves better results and in what

situations, and defining whether there is any universal method or workflow for VS.

Considering the altitude of settings, parameters, and data sets, researchers have to

explore a large number of ifs and buts during execution of VS. There are many known

limitations (as well as still-unreported ones) of VS techniques. The probable pitfalls

are discussed in the following section, along with possible ways to resolve them [109].

The pitfalls can be classified into four categories: (a) erroneous assumptions and

expectations, (b) data design and content, (c) choice of software, and (d) conforma-

tional sampling, as well as ligand and target flexibility. A schematic representation has

been shown in Figure 10.13.
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a. Erroneous assumptions and expectations:

• Predicting the wrong binding pose: There are a few cases where even though the

predicted docking binding poses are wrong, docking screening can accidentally

generate high scores to many hits.

• Water-mediated binding interactions: In many docking studies, hydrogen bonds

between ligand and protein are formed by water, which is often visible in the

crystal structure of the complex. Those water-mediated hydrogen bonds can

be taken into account in a structure-based VS study, but it is very difficult to

predict the exact number, position, and orientation of these interactions.

• Single- versus allosteric-binding pockets: Both structure- and ligand-based VS approaches

have intrinsic limitations, in that they are incapable of identifying bioactive ligands

for the binding pockets, which are not explicitly docked against or implicitly repre-

sented in the training set. Again, the unknown binding site of a ligand complicates

the problem of properly assessing hit rates in the VS experiments.

• Prospective validation: The VS is habitually performed on data sets with known

actives, but often only putatively inactive molecules. As a result, in many cases,

Figure 10.13 Major pitfalls of the VS approach.
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a good number of inactive molecules are absent to identify the true inactives

after the VS approach.

• Druglikeness: The majority of the VS approaches are based on the screening of

druglike compounds by employing Lipinski’s rule of five as the preliminary

screening steps of the VS. One should remember that the rule applies only to

oral bioavailability, and that many bioactivity classes such as antibiotics fall out-

side the scope of this rule. Hence, VS protocols are generally applied and vali-

dated on a relatively small fraction of chemical space, and their performance

may change drastically from one database to another.

b. Data design and content:

• Size and diversity of the chemical libraries: In many cases, the employed libraries in

the VS are either too small or contain too many closely related analogs, or

often both. A data set that lacks sufficient chemical diversity is never an ideal

choice for VS.

• Experimental errors and inappropriate bioassays: A large pool of data sets is often

assembled from different sources, where different bioassay procedures and

detection techniques have been used. As a consequence, there is a huge risk of

experimental errors and inappropriate assays from molecule to molecule.

• Bad (reactive/aggregating) molecules: The data set provided for VS often includes

molecules that contain chemically reactive groups or other undesirable func-

tionalities that may interfere with the HTS detection techniques.

• Putative inactive compounds as decoys: Experimentally confirmed inactive com-

pounds are helpful as negative controls because only few of them should appear

in the hit list when a reliable VS protocol is employed. However, many of the

decoys used in VS benchmark studies are only putatively inactive; hence, some

assumed true negatives may actually be positives.

c. Choice of software:

• Molecule drawing/preparation: Adding implicit hydrogen atoms, handling the ion-

ization states of the molecule, and assigning the correct charges at the initial

stages of VS screening can easily be forgotten in many cases, where the final

result will totally mislead the scientific community.

• Input/output errors, format incompatibility: Various errors are introduced when

interconverting different molecular formats from one software to another. There

is a high possibility of getting distorted information, like changes in atomic

coordinates, chirality, hybridization, and protonation states of the employed

compounds.

• Improper feature definitions in the pharmacophore: Incorrect feature definitions can

be detrimental to the outcome of VS. In pharmacophore queries, the defini-

tion of pharmacophore features needs to be applied with caution. For example,

it is known that nitrogen and oxygen atoms in the same heterocycle (such as
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an oxazole) do not both behave as HBAs simultaneously. In the majority of

cases, the acceptor in the oxazole ring is the nitrogen.

• Disparity of algorithm from software to software: Various software tools apply differ-

ent algorithms for a particular job. For example, in the case of docking for

energy minimization, different forms of FFs are applied from one software to

another. Therefore, there is a high probability of getting different hits and mak-

ing the VS process highly dependent on the use of particular software.

• Single predictors versus ensembles: Multiple statistical tools (both free and commer-

cial software and descriptors) are available to perform VS studies. Each module

captures different characteristics of molecular similarity. As a consequence, it is

always difficult to identify a preferred tool/software/descriptor; therefore, it is

often necessary to account for several approaches rather than one.

d. Conformational sampling as well as ligand and target flexibility:

• Conformational coverage: One of the main challenges in 3D-VS is generating a

convenient set of conformations to cover the molecule’s conformational space

effectively.

• High-energy conformations: One has to remember that good conformational coverage

is very important, and on the contrary, high-energy or physically unrealistic confor-

mations can be detrimental to VS. Few conformational sampling approaches do

not utilize energy minimization to refine and properly rank the resulting geome-

tries. Therefore, the resulting list could contain many false positives.

• Ligand and protein flexibility: A common practice in many 3D database search

systems is to set a limit on the number of conformations stored for each mole-

cule. The number of conformations accessible to a molecule depends greatly

on its size and flexibility. Of course, it is not only the ligands that are flexible;

it is the biological targets as well. Protein flexibility is probably the most unex-

ploited aspect of VS.

• Assumption of ligand overlap: In 3D shape-based VS, most programs attempt to

maximize the overlap between the query and the database molecules. Indeed,

different ligands may occupy different regions in the same protein, even in the

same binding site, and the overlap between them in 3D space can be much less

than assumed by a shape-based VS tool, resulting in more false negatives.

10.5.6 Databases for the VS
Chemically diverse libraries are particularly attractive for identifying novel scaffolds for

new or relatively unexplored targets, such as those resulting from diversity-oriented

synthesis. One needs to remember that the database library must fit the purpose of the

experiment before its selection for screening. A large number of databases are publicly

available and the number is increasing day by day. Recent initiatives requiring greater
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use of in silico technologies have called for transparency and development of strong data-

base information that is available to the public at no cost. Electronic information on

chemical structure, pharmacological activity, and specificity against known molecular

targets can serve a wide variety of purposes in the field of VS. Table 10.6 summarizes a

list of most current public and commercial chemical databases that are commonly

screened in practice. The scientific community should take initiatives to develop more

databases for public and administration use in the near future.

10.6 OVERVIEW AND CONCLUSIONS

The LBP approach and structure-based molecular docking play promising roles in the

identification and optimization of leads in modern drug discovery. Pharmacophore

and docking-based approaches, employed both alone or concurrently in VS, lead to a

much higher hit rate than traditional screening methods (e.g., HTS). In a complete,

structurally diverse data set, pharmacophore gives immense confidence about the best

probable features that are solely responsible for particular pharmacological activity. On

the contrary, the docking method provides an opportunity for the designing of active

compounds considering the binding aspects of the ligand with the amino acid residues

in the respective receptors. Methods like CoRIA and COMBINE provide a blend of

ligand- and structure-based drug design at once, where the best possible interactions

of the ligand�receptor complex can be identified. These methods are capable of

extracting critical information regarding the nature and type of important interactions

at the level of both the receptor and the ligand.

VS approaches have been vigorously implemented by pharmaceutical industries

with the intent to obtain as many potential compounds as possible, and with the hope

of a greater chance of finding hits from the available large pool of chemical libraries.

Many successful examples have been demonstrated recently in the field of computer-

aided VS for lead identification. There appears to be no universal method to execute

these studies, as each biological target system is unique. Although one cannot ignore

the intrinsic restrictions of VS, it remains one of the best possible options to explore a

large chemical space, in terms of cost effectiveness and commitment of time and mate-

rial needed. With the development of new docking methodologies, ligand-based

screening techniques and machine-learning tools, the VS techniques are capable of giv-

ing better hit prediction rates, and undoubtedly, these will play the front-runner role in

drug design in the near future either as a complementary approach to HTS or as a

stand-alone approach. One has to remember that technologies are available that need to

be employed in the right way and in the right direction to identify novel chemical sub-

stances with the scientific use of VS techniques. However, it must be emphasized that

VS is not intended to replace the actual experimental approaches. As a matter of fact,

the VS and experimental methods are highly complementary to each other.
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Table 10.6 Commonly used chemical databases for the VS approach
Compound database Availability No. of compoundsa Website

ACD Commercial 3,870,000 http://accelrys.com/products/databases/

sourcing/available-chemicals-directory.

html

Asinex Commercial 550,000 http://www.asinex.com

Binding DB Public 284,206 small ligands with 648 915

binding data, for 5662 protein targets

http://www.bindingdb.org

Chem ID Public 3,88,000 http://chem.sis.nlm.nih.gov/chemidplus/

ChemBank Public 800,000 http://chembank.broadinstitute.org

ChEMBL db Public 658,075 differing bioactive

compounds and 8091 targets

https://www.ebi.ac.uk/chembldb/

ChemBridge Commercial 700,000 http://www.chembridge.com

ChemDiv Commercial 1.5 million http://www.chemdiv.com

Chemical Entities of

Biological Interest

(ChEBI)

Public 584,456 http://www.ebi.ac.uk/chebi/init.do

ChemMine Public 6,200,000 http://bioweb.ucr.edu/ChemMineV2/

ChemNavigator Commercial 55.3 million http://www.chemnavigator.com

ChemSpider Public 26 million http://www.chemspider.com

Chimiotheque nationale Public 44,817 compounds http://chimiotheque-nationale.enscm.fr/

index.php

CoCoCo Public 6,957,134 molecules http://cococo.unimore.it/tiki-index.php

Desmond Absolute

Solvation Free Energies

Set

Public 239 http://www.schrodinger.com/Desmond/

Absolute-Solvation-Free-Energies-Set

Developmental

Therapeutics Program

(DTP)

Public 4,73,965 http://dtp.nci.nih.gov/

DNP Public 40,000 http://dnp.chemnetbase.com/intro/index.jsp

DUD Commercial 2950 http://dud.docking.org/

DUD.E Commercial 22,886 http://dude.docking.org/

http://accelrys.com/products/databases/sourcing/available-chemicals-directory.html
http://accelrys.com/products/databases/sourcing/available-chemicals-directory.html
http://accelrys.com/products/databases/sourcing/available-chemicals-directory.html
http://www.asinex.com
http://www.bindingdb.org
http://chem.sis.nlm.nih.gov/chemidplus/
http://chembank.broadinstitute.org
https://www.ebi.ac.uk/chembldb/
http://www.chembridge.com
http://www.chemdiv.com
http://www.ebi.ac.uk/chebi/init.do
http://bioweb.ucr.edu/ChemMineV2/
http://www.chemnavigator.com
http://www.chemspider.com
http://chimiotheque-nationale.enscm.fr/index.php
http://chimiotheque-nationale.enscm.fr/index.php
http://cococo.unimore.it/tiki-index.php
http://www.schrodinger.com/Desmond/Absolute-Solvation-Free-Energies-Set
http://www.schrodinger.com/Desmond/Absolute-Solvation-Free-Energies-Set
http://dtp.nci.nih.gov/
http://dnp.chemnetbase.com/intro/index.jsp
http://dud.docking.org/
http://dude.docking.org/


DrugBank Public 7739 drugs http://www.drugbank.ca

e-Drug3D Public 1632 http://chemoinfo.ipmc.cnrs.fr/MOLDB/

index.html

Enamine Commercial 1.7 million http://www.enamine.net

GLIDA Public G protein�coupled receptors (GPCRs)

related Chemical Genomics database,

Over 200

http://pharminfo.pharm.kyoto-u.ac.jp/

services/glida/index.php

Glide Fragment Library Commercial 441 http://www.schrodinger.com/Glide/

Fragment-Library

Glide Ligand Decoys Set Commercial 1000 http://www.schrodinger.com/Glide/Ligand-

Decoys-Set

GLL Commercial 25,145 http://cavasotto-lab.net/Databases/GDD/

GVK BIO Commercial Focused libraries with target inhibitor http://www.gvkbio.com/informatics.html

HerbMedPro Commercial 246 http://www.herbmed.org/

i:lib diverse Commercial Druglike fragment set for combinatorial

library generation

http://www.inteligand.com/

Interbioscreen Public 440,000 synthetic and 47,000 natural http://www.ibscreen.com/index.htm

KKB Public .1.54M http://www.eidogen.com/kinasekb.php

Maybridge Commercial 56,000 http://www.maybridge.com

Mcule Commercial � https://mcule.com/

MDDR Commercial 150,000 http://accelrys.com/products/databases/

bioactivity/mddr.html

MMsINC Public � http://mms.dsfarm.unipd.it/MMsINC/

search/

MORE Commercial 9.7 million https://itunes.apple.com/us/app/mobile-

reagents-universal/id417616789

Mother of All Databases

(MOAD)

Public 14,720 ligand�protein complexes, 4782

structures with binding data, 7064 ligands

http://www.bindingmoad.org

NCI Public 140,000 million http://dtp.nci.nih.gov/index.html

NRDBSM Public 17,000 http://www.scfbio-iitd.res.in/software/

nrdbsm/index.jsp

(Continued )
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Table 10.6 (Continued)
Compound database Availability No. of compoundsa Website

PDB bind Commercial 3214 ligand2 protein complexes http://www.pdbbind.org/

PubChem Public 49,875,000 http://pubchem.ncbi.nlm.nih.gov

Specs Commercial 240,000 http://www.specs.net

SPRESIweb Commercial 5.68 million http://www.spresi.com/

Super Drug Database

(SDD)

Public 2,396 compounds with 1,08,198 conformers http://bioinf.charite.de/superdrug/

TCM Public 32,000 http://tcm.cmu.edu.tw

Therapeutic Target

Database

Commercial 1906 targets, 5124 drugs http://bidd.nus.edu.sg/group/cjttd/

TTD_HOME.asp

U.S. Food and

Drug Administration

(FDA) database

Public Drugs@FDA includes most of the drug

products approved since 1939

http://www.fda.gov/Drugs/

InformationOnDrugs/ucm135821.htm

WOMBAT Commercial 331,872 molecules, 1966 targets http://www.sunsetmolecular.com

ZINC Public 13 million http://zinc.docking.org

ZINClick Public 16 million http://www.symech.it/index.asp?

catID531&lang5en

aThese are approximate numbers; -no exact information is available.

http://www.pdbbind.org/
http://pubchem.ncbi.nlm.nih.gov
http://www.specs.net
http://www.spresi.com/
http://bioinf.charite.de/superdrug/
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