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Renal cell carcinoma (RCC) is one of the most common urological cancers. RCC has a
poor prognosis and is considered a metabolic disease. It has been reported that many
metabolic pathways are associated with the development of RCC. However, the
prognostic value of metabolism-related genes in RCC is unclear. We herein aimed to
establish a scoring system based on the gene expression profile of metabolic genes to
evaluate the response to immunotherapy and predict the prognosis of RCC. In this study,
we collected multicentre RCC data and performed integrated analysis to characterize the
role of tumour metabolism in RCC and explore the relationship between metabolism and
prognosis and immune therapy. Based on transcriptomic data, metabolism-related genes
were used for nonnegative matrix factorization clustering. We obtained three subclasses of
RCC (M1, M2, and M3), and they are associated with different prognoses and immune
infiltrate levels. Then, based on the pathway activity of 113 metabolism-related gene
signatures, we classified patients into three distinct metabolism-related signatures. Finally,
we provide a metabolism-related pathway score (MRPScore) that is significantly
associated with RCC prognosis and the response to immunotherapy. Taken together,
in this study, we established an RCC classification system based on metabolic gene
expression profiles that could further the understanding of the diversity of RCC. We also
present the MRPScore, which may be used as an indicator to predict the response to
clinical immune therapy.
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INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common urological malignancies. Globally, it is
estimated that there were 431,200 new cases and 179,400 RCC-related deaths in 2020 (Sung et al.,
2021). The incidence rate of RCC has been steadily increasing by 2–4% each year (Hsieh et al., 2017).
Clear cell RCC (ccRCC) is the main subtype of RCC, and it accounts for approximately 75% of all
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RCCs (Moch et al., 2016). Approximately 30% of patients with
ccRCC have developed distant metastases at the time of diagnosis,
(Xue et al., 2019), and 90% of RCC patients die from tumour-
specific recurrence and metastasis (Siegel et al., 2019). RCC
patients are insensitive to radiation, so radical nephrectomy or
multitarget tyrosine kinase inhibitors (TKIs) and mammalian
target of rapamycin (mTOR) inhibitors are the major treatment
modalities for localized and metastatic RCC patients. Some RCC
patients may benefit from PD-1/PD-L1 blockade
immunotherapy; however, the responses to immunotherapy of
patients are variable (Gill et al., 2017; McKay et al., 2018).

It has been reported that dysregulated cellular metabolism
contributes to the development and progression of RCC. RCC is
characterized by increased consumption of glucose and
simultaneous enhanced production of lactate under normal
oxygen supply (the Warburg effect). The other metabolic
features of RCC include alterations in the tricarboxylic acid
cycle (TCA), the pentose-phosphate pathway and the
metabolic imbalance of amino acids and fatty acids
(Wettersten et al., 2017). Morphologically, ccRCC cells are
lipid- and glycogen-laden, (Gebhard et al., 1987), indicating
that altered fatty acid and glucose metabolism may play a key
role in the development of ccRCC. Loss of VHL leads to aberrant
accumulation of HIFα, which results in uncontrolled activation of
HIFα target genes that regulate angiogenesis, glycolysis, and
apoptosis (Majmundar et al., 2010; Semenza, 2013). It has
been reported that the worse survival of RCC patients is
correlated with the upregulation of the pentose phosphate
pathway and fatty acid synthesis pathway genes and the
downregulation of TCA cycle genes (Cancer Genome Atlas
Research, 2013; Hakimi et al., 2013). Therefore, the
development of RCC could be associated with many metabolic
pathways and genes rather than specific ones. However, there is
no systemic integration between metabolism-association
patterns, prognosis and immunotherapy.

In this study, according to different metabolism-associated gene
signatures, we identified three patterns in RCC that showed a
correlation with molecular and clinical characteristics. The three
metabolic patterns were associated with overall survival (OS),
progression-free survival (PFS) and tumour microenvironment
(TME) features. From the metabolism-association pathways, we
obtained three metabolic clusters that were significantly correlated
with three metabolic patterns and could predict the prognosis of
RCC patients. Finally, we built a scoring system named MRPScore
to quantify the metabolic status based on the metabolism-related
pathway signature. The MRPScore may act as an indicator of
prognosis, immune infiltration, and immunotherapy response in
RCC. More importantly, a scoring system is more intuitive and
practicable for clinical application.

MATERIALS AND METHODS

Patient Cohort
Multiple data repositories, including the TCGA database from the
Xena browser (GDC hub: https://gdc.xenahubs.net), were used to
collect the available clinical information of cancer patients. This

included information regarding the age, survival status, tumour
grades, tumour stages, T stage (T) status, metastasis (M) status
and RNA-seq data from 530 kidney renal clear cell carcinoma
(KIRC) and kidney renal papillary cell carcinoma (KIRP)
patients. RNA-seq data were obtained to analyse the
transcriptome profile of RNA expression and were measured
using fragments per kilobase of exon per million fragments
mapped (FPKM). We performed a log2-based transformation
to normalize the RNA expression profiles. For datasets in the
CPTAC dataset, the RNA sequencing data (reads per kilobase per
million mapped reads---RPKM) of gene expression and clinical
data of 110 renal tumour samples were downloaded from https://
proteomics.cancer.gov/programs/cptac (Integrated
Proteogenomic Characterization of Clear Cell Renal Cell
Carcinoma). The processed data for the dataset from the
E-MTAB-1980 cohorts were downloaded from the website
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
1980/). (Sato et al., 2013) For the immunotherapy cohorts, we
included the processed gene expression of a metastatic urothelial
cancer (mUC) cohort that received atezolizumab treatment by
using the R package IMvigor210CoreBiologies (http://research-
pub.gene.com/IMvigor210CoreBiologies) (Mariathasan et al.,
2018) In addition, we obtained the mRNA expression of a
pretreatment melanoma cohort (GSE78220) that underwent
anti-PD-1 immune checkpoint inhibition (ICI) therapy from
GEO (Hugo et al., 2016). We also obtained processed RNA-
seq data in a transcript per million (TPM) matrix of patients
treated with anti-PD1 ICI from a large melanoma genome
sequencing project (MGSP) (Liu et al., 2019).

Unsupervised Clustering for
113 Metabolism-Related Gene Signatures
We downloaded a comprehensive list of 113 metabolism-related
gene signatures from previous research. (Yang et al., 2020). These
gene sets cover a diverse range of functions in metabolism-related
pathways, including amino acid metabolism-related signatures,
such as glycine, serine and threonine metabolism, histidine
metabolism, tyrosine metabolism and the urea cycle. It also
included lipid metabolism-related signatures, such as fatty acid
degradation, linoleic acid metabolism, retinol metabolism and
steroid hormone metabolism and drug metabolism-related
signatures, such as drug metabolism by cytochrome P450, drug
metabolism by other enzymes and metabolism of xenobiotics by
cytochrome P450. Unsupervised clustering analysis was employed
to identify distinct metabolism-related patterns based on the
activity of 113 metabolism-related gene signatures and classify
patients for further analysis. The number of clusters and their
stability were determined by the consensus clustering algorithm
and k-means method. We used the ConsensuClusterPlus R
package to perform the above steps, and 1,000 repetitions were
conducted to guarantee the stability of classification.

Gene Set Variation Analysis
Gene set variation analysis (GSVA) is a nonparametric and
unsupervised gene set enrichment method that can estimate the
score of certain pathways or signatures based on transcriptomic
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data (GSVA: gene set variation analysis for microarray and RNA-
seq data). The 113 metabolism-related gene signatures were
obtained from previously published studies, and the gene sets
“c5. go.bp.v7.4. symbols” and “h.all.v7.4. symbols” were
downloaded from the Molecular Signatures Database (MSigDB)
and by running the GSVA R package. Subsequently, differential
analysis was conducted based on the pathway activity scores using
the limma R package in R software. Signatures with an absolute
log2-fold change (FC) > 0.25 (adjusted p < 0.05) were considered
significantly differentially expressed signatures.

Estimation of Immune Infiltration
Themicroenvironment cell population counter (MCP-counter) is
a methodology based on gene expression profile data. The MCP-
counter was used to evaluate the absolute abundance of eight
immune populations, including T cells, CD8+ T cells, natural
killer cells, cytotoxic lymphocytes, B cell lineage cells, monocytic
lineage cells, myeloid dendritic cells, and neutrophils, and two
nonimmune stromal cell populations, including endothelial cells
and fibroblasts. (Becht et al., 2016).

In addition, immune scores and stromal scores were calculated
by using the ESTIMATE algorithm, which can reflect the
enrichment of stromal and immune cell gene signatures.
(Yoshihara et al., 2013).

Identification of Differentially Expressed
Pathways Between Distinct
Metabolism-Related Phenotypes
To clarify metabolism-related phenotypes, we classified patients
into three distinct metabolism-related phenotypes based on the
pathway activity of 113 metabolism-related gene signatures. The
empirical Bayesian approach of the limma R package was applied
to determine the differential pathways between different
metabolism patterns. The significance criteria for determining
significantly differentially expressed pathways was set as an
absolute log2-fold change (FC) > 0.25 (adjusted p < 0.05).

Generation of Metabolic Gene Signatures
To quantify the metabolism-related patterns of individual
patients, we constructed a set of scoring systems to evaluate
the metabolic pattern of individual tumours with KIRC. This
system is the metabolism-related pathway signature, and we
termed it the MRPScore. The procedures for establishing the
metabolism-related pathway signature were as follows: The
differentially expressed pathways identified from different
metabolism patterns were first normalized among all TCGA-
KIRC samples, and the overlapping differentially expressed
pathways were extracted. The patients were classified into
several groups for deeper analysis by adopting an
unsupervised clustering method for analysing overlapping
differential pathways. The consensus clustering algorithm was
utilized to define the number of pathway clusters as well as their
stability. Then, we performed prognostic analysis for each
pathway in the signature using a univariate Cox regression
model. The pathways with a significant prognosis were
extracted for further analysis. Then, a principal component

analysis (PCA) was performed, and the principal component 1
was extracted to serve as the signature score by referring to a
method similar to the TMEscore. (Zeng et al., 2019).

MRPScore � ∑PC1i

where i is the activity of metabolism phenotype-related pathways.

Correlation Between Metabolic
Phenotype-Related Signatures and Other
Related Biological Processes
Mariathasan et al. constructed a set of gene sets that stored genes
associated with some biological processes, including CD8 T
effector signatures, immune checkpoints, DNA damage repair,
mismatch repair, nucleotide excision repair, DNA replication and
antigen processing and presentation. (Mariathasan et al., 2018).
We performed a correlation analysis to further investigate the
association between metabolism-related signatures and some
related biological pathways.

Prediction of the Response to Immune
Checkpoint Inhibitor Therapy
Based on tumour pretreatment expression profiles, the Tumour
Immune Dysfunction and Exclusion (TIDE) module can estimate
multiple published transcriptomic biomarkers to predict patient
response.We employed the TIDE algorithm to predict the clinical
response to ICI therapy of KIRC patients with default parameters.
Patients with high TIDE scores were predicted to be
nonresponders, while patients with low TIDE scores were
considered to be responders.

Statistical Analysis
All computational and statistical analyses were performed in R
4.0.2 software. Unpaired Student’s t test was used to compare two
groups with normally distributed variables, while the Mann-
Whitney U test was used to compare two groups with
nonnormally distributed variables. For comparisons of three or
more groups, Kruskal–Wallis tests were used. Survival analysis
was carried out using Kaplan-Meier methods and compared by
the log-rank test. A univariate Cox proportional hazards
regression model was used to estimate the hazard ratios for
univariate analyses, and a multivariable Cox proportional
hazards regression model was used to estimate the hazard
ratios for multivariable analyses. A two-tailed p value < 0.05
was considered statistically significant.

RESULTS

Identification of Subclasses in RCC and
Correlation of Three RCC Subclasses With
Metabolism-Associated Signatures
A flow chart was developed to systematically describe our study
(Supplementary Figure S1A). Based on consensus clustering of
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FIGURE 1 | Identification of RCC subclasses according to metabolism-associated signatures in the TCGA-KIRC cohort. (A) Principal component analysis of the
pathway activity of three metabolism-related patterns, showing a remarkable difference in pathway activity between the different metabolism patterns. (B) OS analyses
for the three metabolism-related patterns based on patients with KIRC from TCGA cohorts. (C) PFS survival analyses for the three metabolism-related patterns based on
patients with KIRC from TCGA cohorts. (D)Consensus clustering of 113 metabolism-related gene signatures between the three metabolism-related clusters in the
TCGA-KIRC cohort.
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FIGURE 2 | Biological characteristics of three metabolism-associated patterns in the TCGA-KIRC cohort. (A–C)GSVA enrichment analysis showing the activation
states of biological pathways in distinct metabolic patterns. A heatmapwas used to visualize these biological processes. Yellow represents activated pathways, and blue
represents inhibited pathways. (A) M1 vs. M3 (B) M2 vs. M3 (C) M1 vs. M2. (D) Boxplot of the abundance of immune and stromal cell populations distinguished by
different subclasses. The asterisks represent a statistically significant p value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001). (E–F)Boxplot of pro-inflammatory
macrophage (E) and anti-inflammatory macrophage (F) to compare the difference of three subclasses. p values were determined by a student’s t test. (G-H) Boxplot of
immune score (G) and stromal score (H) from ESTIMATE of three subclasses. The Kruskal–Wallis test was used to compare the significant differences between the three
subclasses. (I) The proportion of the three metabolic patterns in the different T stages (T), T1, T2, T3 and T4.
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the expression profiles of the 113 metabolism-related gene
signatures in the TCGA-KIRC cohort and E-MTAB-1980
cohort, we calculated and determined the optimal k value.
Ultimately, k = 3 was chosen as the optimal number of
clusters after comprehensive consideration (Supplementary
Table S1; Supplementary Figures S1B–D). We identified
three metabolism-related patterns according to principal
component analysis for the activity of the pathway and named
them M1, M2, and M3 (Figure 1A). Subsequently, we performed
another independent analysis based on the E-MTAB-1980
cohorts with 101 RCC samples, and the results also showed
that there were three metabolic subclasses of RCC
(Supplementary Figures S2A–D). In the TCGA-KIRC cohort,
patients in the M3 group showed a better prognosis, patients in
the M1 group experienced a much poorer prognosis, and patients
in theM2 group exhibited an intermediate prognosis (Figure 1B).
PFS showed the same trend, although a significant difference was
not observed (Figure 1C). In the E-MTAB-1980 cohort, the same
result was obtained. The OS of M1 was significantly poorer than
that of the other groups (Supplementary Figure S2E). Next, we
further explored whether distinct subclasses had different
metabolic characteristics. In the heatmap, the results showed
thatM2 andM3 had activated specific metabolic signatures, while
M1 had no activity of specific metabolic signatures (Figure 1D).
The activation pattern was the same in the E-MTAB-1980 cohort
(Supplementary Figure S2F).

Association Between Metabolic Patterns
and the Molecular Characteristics of RCC
To further explore the biological function of the three metabolic
patterns, we performed GSVA. Compared to M1 and M2, M3
showed enrichment in pathways associated with lipid oxidation,
fatty acid beta oxidation, the glycoside metabolic process, cellular
respiration, oxidative phosphorylation and the pyruvate
biosynthetic process. However, M1 showed enrichment in
metabolic silencing (Figures 2A–C; Supplementary Figure
S3A). Thereafter, we deconvoluted immune cells and stromal
cells in the TME and found that the M1 group had a higher
composition of immune cells and stromal cells than the other two
groups (Supplementary Table S32; Figure 2D). In the E-MTAB-
1980 cohort, there were also more T cells, monocytes and stromal
cells in the M1 group (Supplementary Table S3; Supplementary
Figure S3B). Next, we focus on the two distinct macrophage
phenotypes (pro-inflammatory and anti-inflammatory
macrophages) contribute to the three metabolic patterns, we
found that pro-inflammatory macrophages in M1 group was
lower composition than M2 and M3, and there was no significant
difference of anti-inflammatory macrophage in three patterns
(Figures 2E,F). We then correlated the classification with the
immune score and stromal score (Figures 2G,H; Supplementary
Figures S3C,D). A significant difference was observed, with a
higher median immune score and stromal score for M1 than for
M2 and M3. After analysing the relationship between the clinical
TNM stage and classification, it is interesting that the patients
with a higher T stage were associated with more M1 group and
less M3 group (Figure 2I; Supplementary Figure S3F). Patients

in the less M3 group and more M1 group experienced more
events of lymph node or distant tumour metastasis
(Supplementary Figures S3E,G).

Classification of RCC Subtypes by
Differential Metabolism-Associated
Pathways
To quantify the metabolic patterns in RCC, we identified 52
differential pathways among the three metabolic patterns
(Figure 3A). Univariate Cox regression was applied for the
screening of the 52 differential pathways, resulting in 39
candidates that were significantly prognostic (Supplementary
Table S4; Figure 3B). Principal component analysis for the
pathway activity of the three pathway clusters showed a
remarkable difference in pathway activity between different
clusters (Figure 3C). In the E-MTAB-1980 cohort, three
pathway clusters were used by consensus matrices, and
principal component analysis showed stable and robust
clustering for the samples (Supplementary Figures S4A,B).
Consensus clustering was then performed based on the above
39 differential pathways to divide the RCC patients in the TCGA-
KIRC cohort into three clusters (Cluster A, Cluster B, and Cluster
C) with distinct metabolic pathway profiles (Figure 3D). Patients
in the three clusters experienced different clinical outcomes, and
the OS of Cluster C was significantly higher than the OS of the
other subtypes (Figure 3E). PFS showed a similar trend
(Figure 3F).

Quantification of the Tumour
Microenvironment and Metabolic State in
RCC by MRPScore
Tomake these RCC subtypes defined by metabolism-related gene
signatures usable in clinical practice, we defined a scoring system
named the MRPScore to quantify the metabolic status of each
RCC patient. We found that the high-MRPScore group showed
prominent survival and PFS benefits, while the low-MRPScore
group exhibited much poorer survival and PFS (Figures 4A,B).
The prognostic value of the MRPScore was then validated in the
E-MTAB-1980 cohorts, where the high-MRPScore group also
had an improved OS (Supplementary Figure S4C). An alluvial
diagram was used to visualize the changes in the attributes of
patients. Consistent with the above findings, a high MRPScore
was linked with better survival, and a low MRPScore was mostly
composed of the Cluster A subtype and M1 pattern (Figure 4C;
Supplementary Figure S4D).

Then, we compared the differences in MRPScore among the
three metabolic patterns and three pathway clusters in the
TCGA-KIRC cohort. We found that the M1 group and
Cluster A had low MRPScores and that the M3 group and
Cluster C had high MRPScores (Figures 4D,E). For the
E-MTAB-1980 cohort, the correlations among the metabolic
patterns, metabolic pathways and MRPScore were the same as
those in the TCGA-KIRC cohort (Supplementary Figures
S4E,F). Pearson analysis showed that the MRPScore was
strongly correlated with the known hallmark gene sets in the
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FIGURE 3 | Classification of RCC clusters based on differential metabolism-associated pathways. (A) Venn diagram illustrating the number of differential pathways
among the three metabolism patterns. (B) Forest plots showing the significantly prognostic differential pathways identified with univariate Cox regression analysis based
on OS. (C) Principal component analysis of the pathway activity of the three pathway clusters, showing a remarkable difference in pathway activity between the different
clusters. (D) Consensus clustering of prognostic differential pathways between the three pathway clusters in TCGA-KIRC. (E) OS analyses for the three pathway
clusters based on patients with KIRC from TCGA cohorts. (F) PFS survival analyses for the three pathway clusters based on patients with KIRC from TCGA cohorts.
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FIGURE 4 |Quantification of metabolic signatures based on theMRPScore in the TCGA-KIRC cohort. (A)OS analyses for high- and low-MRPScore patient groups
in the TCGA-KIRC cohort using Kaplan-Meier curves. (B) PFS survival analyses for high- and low-MRPScore patient groups in the TCGA-KIRC cohort using Kaplan-
Meier curves. (C) Alluvial diagram of the metabolic patterns in groups with different pathway clusters, MRPScores, and survival outcomes. (D) Differences in the
MRPScores among the three metabolic patterns in the TCGA-KIRC cohort. The Kruskal–Wallis test was used to compare the significant differences between the
three metabolic patterns. (E) Differences in the MRPScores among the three pathway clusters in the TCGA-KIRC cohort. The Kruskal–Wallis test was used to compare

(Continued )
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TCGA-KIRC, CPTAC-ccRCC and E-MTAB-1980 cohorts.
(Figure 4F; Supplementary Figure S4G). Pearson analysis
showed that the MRPScore was positively correlated with
antigen processing machinery, nucleotide excision repair and
mismatch repair and negatively correlated with CD8+ T
effectors and immune checkpoints in the known gene
signatures of the TCGA-KIRC and CPTAC-ccRCC cohorts
(Figures 4G,H).

Association Between the MRPScore and
Clinical Characteristics of RCC
After analysing the relationship between the clinical traits and
MRPScore in the TCGA-KIRC cohort, we found that patients
with a low MRPScore experienced a high T stage, and a high
MRPScore was more associated with a low T stage (Figure 5A).
This may be the reason why lowMRPScores were associated with
poor prognosis. In addition, the MRPScore was associated with
age and sex (Figure 5B). Then, we analysed the correlation
between the MRPScore and survival rate by multivariate Cox
regression analysis and indicated that the MRPScore was an
independent and robust prognostic factor for RCC
(Figure 5C). OS nomogram models of 3-, 5- and 10-years OS
were established (Figure 5D). Calibration curve analysis of the
nomogram for predicting 3-, 5- and 10-years OS in the TCGA-
KIRC dataset was performed (Figures 5E–G). We compared the
association of OS (Supplementary Figures S5A,B) and PFS
(Supplementary Figures S5C,D) with the MRPScore
according to the T stage in the TCGA-KIRC cohort and
showed that regardless of T stage, a high MRPScore was
significantly associated with a better prognosis. This was also
true in the CPTAC-CCRCC and TCGA-KIRP cohorts
(Supplementary Figures S5E–L).

MRPScore Predicts the Clinical Response
to Immune Checkpoint Inhibitor Therapy
We then explored the relationship between the MRPScore and
immune cells and stromal cells. In the boxplot, the lowMRPScore
group had high T cells, B cells, NK cells and fibroblasts
(Figure 6A). Immunologic checkpoint inhibitors (ICIs) that
block the T cell inhibitory molecules programmed death-1
receptor (PD-1) and programmed death-1 ligand (PD-L1) are
an emerging anticancer treatment with improved survival
benefits (56). The tumour immune dysfunction and exclusion
(TIDE) algorithm is a model that estimates the potential response
to ICI therapy. Therefore, by using the TIDE algorithm, we
explored whether the MRPScore could evaluate the responses
to ICI therapy in TCGA-KIRC cohorts for the estimation of ICI
therapy efficacy. As a result, we found a significant negative
correlation between the MRPScore and TIDE score in the cohort,

and a high MRPScore was associated with a lower TIDE score
(Figures 6B,C). Mismatch repair deficiency (dMMR) results in
microsatellite instability (MSI) and is strongly associated with
responsiveness to PD-1 blocking antibodies. MSI-high tumours
have significantly higher sensitivity to ICIs than patients with
MSI-low tumours and have derived clinical benefits from
immunotherapy. We found that the MSI expression signature
was significantly higher in the high-MRPScore group than in the
low-MRPScore group (Figure 6D). In the TCGA-KIRC dataset,
the MRPScores were significantly higher for the immunotherapy
responders (Figure 6E). The same results were observed in the
E-MTAB-1980 cohort (Supplementary Figures S6A–D) and in
the CPTAC-CCRCC cohort (Supplementary Figures S6E–H).
For IMvigor210, which is an anti-PD-L1 immunotherapy cohort,
the survival analyses showed that high-MRPScore patients had a
better prognosis, while the low-MRPScore group had poor
survival (Figure 6F). Patients with a high MRPScore had a
higher proportion of complete response or partial response to
PD-L1 blockade immunotherapy, which may be more beneficial
for immunotherapy (Figure 6G). This could be validated in the
metastatic melanoma (Figures 6H–J) and GSE78220 cohorts
(Supplementary Figures S6I–K).

DISCUSSION

Renal cell carcinoma is a common malignancy of the urinary
system, and it is an aggressive disease state that is insensitive to
radiation. It has a poor prognosis and lacks effective therapeutic
options. Previous studies have revealed that metabolic
dysfunction plays an important role in the development of
most cancers, including prostate cancer, (Sreekumar et al.,
2009), breast cancer, (Jaramillo and Zhang, 2013), brain
cancer (Prabhu et al., 2014) and liver cancer. (Budhu et al.,
2013; Huang et al., 2013). In RCC, many studies have revealed
that classical metabolic pathways are increased, decreased, or
bypassed entirely in the development of cancer. Many metabolic
pathways, such as Warburg metabolism, are reprogrammed in
this disease, which has been confirmed to be a key component of
ccRCC metabolic reprogramming (Perroud et al., 2006; Chen
et al., 2016). Dysfunction of fatty acid oxidation and lipid
synthesis are characteristics of ccRCC (Horiguchi et al., 2008;
Ganti et al., 2012). Tryptophan metabolism is reduced, leading to
immunosuppression (Fallarino et al., 2002). The increase in
glutamine metabolism is involved in the development of
ccRCC (Wettersten et al., 2015; Hakimi et al., 2016). However,
the cause of cancer is not only led by a specific dysfunction of one
metabolic pathway but also an overall metabolic change that
requires comprehensive analysis. In this study, we integrated
metabolism-related genes and metabolism-related pathways to
predict the prognosis of RCC. We obtained three metabolic

FIGURE 4 | the significant differences between the three metabolic patterns. (F) Correlations between the MRPScore and the known HALLMARK gene sets in the
TCGA-KIRC and CPTAC-ccRCC cohorts using Pearson analysis T. (G,H) Correlations between the MRPScore and the known gene signatures in the TCGA-KIRC (G)
and CPTAC-ccRCC (H) cohorts using Pearson analysis. A negative correlation is marked with blue, and a positive correlation is marked with orange. The asterisks
represent a statistically significant p value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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FIGURE 5 | The MRPScore acted as a risk factor for RCC. (A) Differences in the MRPScores between the different T stages. The Kruskal–Wallis test was used to
compare the significant differences between the 4T stages. The asterisks represent a statistically significant p value (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
(B) Differences in the MRPScores between the different ages (left) and sexes (right). The t test was used to compare the significant differences. p values were determined
by a student’s t test. (C) Multivariate Cox regression analysis results show the association between the clinicopathological parameters, such as age, sex, T stage
(T), tumour lymph node (N), tumour metastasis (M), andMRPScore, of the new survival model and the OS of KIRC patients. (D)Nomogram construction for the 3-, 5- and
10-years OS prediction for KIRC patients. (E–G) Calibration curve analysis of the nomogram for predicting 3- (E), 5- (F) and 10- (G) year OS in the TCGA-KIRC dataset.
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FIGURE 6 | MRPScore as an indicator for predicting the response to immunotherapy. (A) Boxplot of the abundance of immune and stromal cell populations
distinguished by the high- and low-MRPScore groups. (B) Scatter plots showing the significant negative correlations between the MRPScore and TIDE score in the
TCGA-KIRC cohort. (C)Boxplot representing significantly higher MRPScores in the low-MRPScore group. (D)Boxplot representing a significantly higher MSI expression
signature in the high-MRPScore group. (E) Boxplot showing significantly higher MRPScores for responders in the TCGA-KIRC dataset. (F) Survival analyses for
high- and low-MRPScore patient groups in the anti-PD-L1 immunotherapy cohort using Kaplan–Meier curves (IMvigor210 cohort). (G) The proportion of patients who
responded to PD-L1 blockade immunotherapy in the high- or low-MRPScore groups (IMvigor210 cohort). SD, stable disease; PD, progressive disease; CR, complete
response; PR, partial response. (H,I) Kaplan-Meier curve representing OS (H) and PFS (I) for the high-MRPScore and low-MRPScore groups in the melanoma cohort.
(J) The proportion of patients who responded to immune checkpoint blockade therapy in the high-MRPScore and low-MRPScore groups in the melanoma cohort. p
values were determined by a student’s t test.
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clusters and three metabolic patterns that were associated with
different OS and PFS rates. Those clusters and patterns were
related to different metabolic statuses. The M3 pattern and
Cluster C were metabolism active, the M1 pattern and Cluster
A were metabolism silent, and the M2 pattern and Cluster B were
moderately active. Interestingly, M1 correlated with poor
prognosis but had more T cells, cytotoxic lymphocytes, NK
cells and fibroblasts, which may be because global metabolism
silencing causes a low metabolism level of effector T cells. This
recruits more lymphocytes but does not kill cancer cells. Recently,
many studies have shown that reduced glycolysis in CD8+ T
effector cells inhibits their activity, including antitumour effects
(Chang et al., 2015; Gemta et al., 2019; Hu et al., 2019). However,
more fibroblasts may prevent immune cells from infiltrating into
tumour tissue even when immune cells are enriched. In a
previous study, stromal activation in the TME was considered
to be immunosuppressive, which is consistent with our
hypothesis (Mariathasan et al., 2018).

During the past decade, RCC treatment has transitioned from a
nonspecific immune approach to targeted therapy against vascular
endothelial growth factor (VEGF) and now to novel immunotherapy
agents (Siegel et al., 2016; Choueiri andMotzer, 2017). However, the
immunotherapeutic responses to ICIs are variable among RCC
patients. Some patients achieve complete remission, and other
patients show continuous progression. Hence, it is urgent to
establish a reliable tool for the appropriate selection of
immunotherapies for patients in clinical practice. In this study,
we established a scoring evaluation system named the MRPScore,
which is a robust metabolism classifier for classifying RCC patients
with different responses to immunotherapy. We determined the
MRPScore to quantify the metabolic activation status. The high-
MRPScore group was considered to have metabolic activation and
demonstrated a significant correlation with immune checkpoints. A
low-MRPScore was associated with poor prognosis and worse
subtype. Moreover, we demonstrated that there were significantly
higher MRPScores for immunotherapy responders than for patients
in the low-MRPScore group. In short, the MRPScore could be used
to comprehensively evaluate the metabolic pattern and
corresponding TME infiltration characteristics of individual
patients to further determine the immune phenotypes of tumours
and guide clinical practice. The MRPScore could be used to evaluate
the cellular, molecular and genetic factors associated with tumour
inflammation, tumour differentiation levels, and response to
immunotherapy. The MRPScore could act as an independent
prognostic marker to predict patient survival. A high MRPScore
implied increased sensitivity to ICIs. This indicates that the
application of the MRPScore could help personalize the
treatment of RCC patients and assist in making decisions for
clinical practice.

In brief, our analysis indicates that the MRPScore is an
independent risk factor for RCC, thereby providing an ideal

predictor for the prognosis and therapeutic response of RCC
patients. The limitations of this study were that the stability of the
MRPScore was tested through the cross validation of six cohorts,
but the signature will be more reliable if it is tested by prospective
cohort studies in the future. The results of single-cell sequencing
should be able to explain the specific changes in the tumour
microenvironment, which is also an aspect of our attention in the
future. Moreover, our model should be validated further by
performing both in vitro and in vivo experiments to better
evaluate the relationship between the MRPScore and
immune cells.
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