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Abstract: Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among 

genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner re-

main elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during 

the course of trait development. The algorithm is built within the mixture-model framework in which each mixture com-

ponent is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait develop-

ment. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein 

expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics dur-

ing early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that 

coordinate with each other to determine seed development in this forest tree commercially and environmentally important 

to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any 

other biological processes in which protein abundance plays a key role. 
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INTRODUCTION 

 Under long natural selection, the organism has evolved 
into a capacity to alter its form and function in facing rapid 
changes in the environment. At the cellular level, some fun-

damental aspects of this response are addressed by proteins 
that directly maintain the function of genes in the form of 
cellular building blocks via enzymatic catalysis, molecular 
signaling, and physical interactions. It is common that pro-

tein molecules are continuously synthesized and degraded in 
response to developmental signals during the organism’s 
lifetime [1]. Proper turnovers of proteins have been thought 
to be essential for the normal development of a phenotypic 
trait [2, 3]. Several studies have used proteome dynamics, 
i.e., temporal changes in protein abundance, to understand 
the etiology of trait formation and development. In an anti-
cancer drug delivery study, Cohen et al. discerned a differ-

ence in responding to a drug between seemingly identical 
cells based on dynamic changes of particular proteins [4]. 

The use of proteome dynamics to study phenotypic traits in 
plants has increasingly been interesting to plant geneticists 

[5-7]. 

 The application of proteome dynamics relies critically 
upon the analysis and clustering of proteins expressed over 
time [8, 9]. Since the temporal pattern of protein expression 
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profiles conforms to particular biological processes, the 
function of proteins can be revealed by clustering them into 
distinct groups. Measured usually as curves, the approaches 
for clustering and analyzing dynamic proteomics data are 
challenging, although the underlying statistical theory is not 
entirely new. In recent years, intensive efforts have been 
made to develop computational methods for cataloguing 
dynamic expression data including supervised approaches 
such as ML-KNN algorithm, [10] fuzzy KNN algorithm, 
[11-13] covariance discriminant algorithm, [14, 15] SLLE 

algorithm [16] and Random forest technique [17, 18]. Sever-

al unsupervised approaches developed to analyze time-

course gene expression data have also been available [19, 

20] and can be, in principle, used for statistical analysis of 
proteome dynamics. Of these approaches, one integrates 
mathematical aspects of response dynamics into a mixture 
model, allowing each mixture component to be represented 
by a cluster of genes [21, 22]. This approach, called func-

tional clustering, translates the discrete measurements at 
multiple points to a continuous function of biological rele-

vance. For example, Fourier series approximation was used 
to fit periodic profiles of expression by clock genes and clus-

ter these genes into different groups in terms of their im-

portant dynamic features, such as mean magnitude, ampli-
tude and period. An alternative approach for analyzing time-

series genes by functional clustering is to consider response 
dynamics using non-parametric fitting, [23] thereby increas-

ing the flexibility of the model.  

 Despite its usefulness, the capacity of functional cluster-

ing to cluster dynamic proteomes has not been assessed and 
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validated in depth. Thus far, many researchers in the area of 
proteomic dynamics have not been aware of any powerful 
computational model for protein clustering. In addition, pro-
tein data have their unique feature, i.e., a protein may appear 
in a spectrum typically with thousands of peaks, leading to 
the number of samples largely smaller than the number of 
protein peaks. A variety of clustering approaches have been 
developed to handle such high-dimensional complexity of 
proteomics data [24-28]. The purpose of this article is to im-
plement functional clustering into analysis and modeling of 
proteome dynamics. The procedure for analyzing and clus-
tering dynamic changes of protein expression in a time 
course is described. The model was applied to reanalyze a 
dataset of proteins measured at discrete time points during
seed development in a forest tree. By clustering protein pro-
files, the model allows fundamental and applied questions of 
proteomics, i.e., how different proteins are expressed in a 
coordinated and sequential manner to conform to trait devel-
opment, to be tested and addressed.

MODEL

Likelihood

Suppose there are n proteins each measured at T time
points during the growth of an organism. Let �� �

������� � � � � ������ denote the amounts of time-dependent
expression for protein i. If these proteins are grouped into J
clusters based on different patterns of their biological 
trajectories over time, this means that any one of proteins 
(say i) is assumed to arise from one (and only one) of the J
possible clusters. Thus, the distribution of protein profile 
data is expressed as the J-component mixture probability 
density function, i.e., 

�� ���� ������� � � �
�

��� ���� ����� �� �� (1)

where � � ����� ���� is a vector of mixture proportions 
which are non-negative and sum to unity; � � ����� ����

contains the mean vector of cluster j; and � contains residual 
variances and covariances among T time points which are 
common for all clusters. The probability density function of 
cluster j, �������� � ��, is assumed to be multivariate normally 
distributed with T-dimensional mean vector 

�� � �������� � �����     (2)

and (���) covariance matrix � .
The likelihood based on a mixture model containing J
clusters can be written as 

� � � � ��
��� �

�

��� ���� ����� � � �� (3)

where � is a vector of unknown parameters including the 
mixture proportions, cluster-specific mean vectors, and 
covariance.

Different from traditional treatments, we will incorporate 
mathematical and statistical models to fit the mean-
covariance structures. Thus, instead of estimating all 
elements in the vectors and covariance, we estimate the 
mathematical and statistical parameters that model the mean-
covariance structures.

Structural Modeling of Mean Vectors and Covariance

The expression levels of many proteins have been found 
to vary in a time course [1]. For example, the abundance of 
proteins within the cycle of cell division may alter 
periodically, coincident with the cell cycle, aimed at 
sustaining a proper order during cell division or conserving 
limited resources. The oscillation of cell cycle-regulated
proteins can be mathematically described by periodic Fourier 
functions or other periodic functions. Thus, by estimating the 
parameters that define the periodic curves for individual 
proteins, the differences in the temporal pattern of protein 
expression can be well determined.

For many proteins whose time-varying expression does 
not obey an explicit mathematical function, nonparametric 
approaches, such as B-spline, can be used. In this study, we 
propose a computation-efficient nonparametric approach 
based on Legendre orthogonal polynomials (LOP). Since the 
LOP are orthogonal and integrate to 0 in the interval [-1,1],
they have been applied to nonparametric regression, [29] the
resulting parameter estimates possessing favorable 
asymptotic properties [30, 31]. The LOP have also been used 
to model time-varying phenotypic or genetic variation for 
milk production [29] and plant growth traits [32, 33].

Let ������ � �����
�������

��� � � � �����
��� denote a family 

of LOP with a particular order � derived from a special 
differential equation, where t* is a scaled time with a range 
������. Let ��� � ��������� � � � ����� denote a vector of base 
values for cluster j. Then, time-varying mean values for 
cluster j in equation (2) can be expressed as a linear 
combination of ��� weighted by the family of LOP, i.e.,

����
�� � ����

����� �     (4)

Our task now is to estimate the base vector ��� from the 
given data.

The longitudinal covariance among different time points 
has an inherent structure, which should be modeled for 
parsimonious parameter estimates. There are many different 
approaches for covariance structure, including stationary, 
non-stationary, nonparametric and semiparametric models. 
For a practical data set, there may exist an optimal approach 
for structural modeling of the covariance. Zimmerman and 
Núñez-Antón discussed the procedures and criteria for 
model selection in covariance structure [34]. These can be 
directly used in our model for functional clustering of gene 
expression dynamics.

To illustrate how the covariance is structured, we describe 
the non-stationary structured antedependence (SAD) model 
proposed by Zimmerman and Núñez-Antón [34]. The residual 
term for the SAD model can be expressed as 

� � ��

where � � ������� � ������ is the residual vector and 
� � ������� � ������ is the innovation error vector. For the 
first-order SAD model, we have 

� �

� � � � �

� � � � �

� � � � �

���� ���� ���� � �
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where � is the antedependence parameter.
The residual variance-covariance matrix for e is then 

expressed as 

� � ����
��      (5)

where D is the innovation variance-covariance matrix and is 
expressed as 

� �

����� � � � �

� ����� � � �

� � � � �

� � � � �����

�

which assumes that innovation errors are independent over 
different time points. The time-varying innovative variance 
����� can be approached by a polynomial [35] or, for 
simplicity, is assumed as a constant ��. If ����� is assumed 
to be a constant, the residual matrix � contains the 
parameters, ��� ���.

If a study includes protein expression data from multiple 
organs (say �), we can expand the SAD model to a 
multivariate case in which correlations among different 
organs are taken into account. Zhao et al. provided a general 
closed form for solving the determinant and inverse of the 
multivariate longitudinal covariance matrix [36]. This form 
can be directly incorporated into our dynamic model, 
facilitating the computing process of parameter estimation.

Estimation and Tests

A hybrid approach of Expectation-Maximization (EM) 
and simplex algorithms was implemented to estimate the 
parameters, �, contained in the likelihood (3). The EM 
algorithm provides a platform for estimating the proportions 
of different clusters, within which the simplex algorithm is 
embedded to estimate base vectors for each cluster and the 
covariance-structuring parameters. This can be described as 
follows:

In the E step, we define and estimate the posterior
probabilities of protein �, with which it belongs to a 
particular expression pattern �, by 

���� �
�������������

�
�

����
����������������

��   (6)

In the M step, the proportion of expression pattern � is
calculated by 

    (7)

Mean-covariance structuring parameters in � are
estimated in this step, but no closed forms can be derived for 
their estimators. The simplex algorithm, which does not 
depend on explicit equations, is implemented to estimate 
these parameters.

Since both the actual number of protein expression 
patterns and an optimal order of LOP for expression pattern-
specific mean fitting are unknown, we employ the 
commonly used model selection methods, Akaike 
information criterion (AIC) or Bayesian information

criterion (BIC), to estimate these two parameters for a 
specific data set.

After these parameters are determined, we can formulate 
several biologically meaningful hypothesis tests. First, we 
need to determine the optimal number of expression patterns. 
This can be tested by 

����� � ������������ � ��� � ����� � �� � ��� � � (8)

If the �� is accepted for two given patterns, this means 
that the optimal number of patterns is � � �. This approach 
allows the identification of the optimal number of expression
patterns.

Second, we can test the significance of protein-protein
interactions during development. This can be done by testing 

����� � ������������� � ��� � ����� � �� � ��� � � (9)

where c is a constant. If the �� is accepted for two given 
patterns of proteins, j and j�, this means that they display 
significant protein-protein interactions over time. This test 
provides a quantitative way to study the interplay between 
proteins and development.

WORKED EXAMPLE

Shi et al. reported dynamic profiles of proteins expressed 
in different stages of early seed development in Chinese fir, 
Cunninghamia lanceolata (Lamb.) Hook [37]. A two-
dimensional difference gel electrophoresis approach was 
used to characterize differentially expressed proteins in de-
veloping embryos from seeds dissected from immature 
cones. Six important developmental phases of early embryo-
genesis are identified: the cleavage polyembryony-stage seed 
(stages 1, 2, and 3), dominant embryo-stage seed (stages 4), 
columnar embryo-stage seed (stage 5), and early cotyledona-
ry-stage seed (stage 6). Protein abundance was measured 
with three replicates at each stage. The authors identified 136 
proteins whose expression levels varied significantly (P <
0.01) during seed development. Substantial differences in 
expression dynamics of these proteins were observed over 
the six stages of early seed development.

We used the dynamic model to cluster these proteins into 
different groups in terms of biological functions during early 
embryogenesis using the mean values of three replicates. 
According to the BIC values calculated under different num-
bers of mixture components and different orders of LOP 
(Fig. 1), we found that four components each fitted by a 
fourth order of LOP provide an optimal fitness of the dynam-
ic data of proteomes. Four distinct groups of proteins display 
different temporal patterns of expression in a time course 
(Fig. 2). Starting with a low level of expression at early 
cleavage polyembryony stages 1 and 2, group A increases its 
expression exponentially from late cleavage polyembryony 
stage 3 to early cotyledonary stage 6 through dominant em-
bryo stage 4 and columnar embryo stage 5. From stage 5 to 
6, this group of proteins displays the maximum amount of 
expression among all groups. Compared with group A, group 
B follows a similar temporal pattern, but with a lesser extent 
of time-dependent change. Although group C is also up-
regulated over time, its slope of increase is much lower than 
groups A and B. Different from the other groups, group D is 
slightly down-regulated during seed development.

� j =
=1� j i

i

n
�

n
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Fig. (1). Bayesian information criterion (BIC) plot that dertemines 
an optimal number of clusters and an optimal oredr of Legendre 
orthogonal polymonials by functional clustering.

Fig. (2). Expression trajectories of four groups of proteins, labelled 
by A, B, C and D, during early embryogenesis. Light lines within 
each group are raw data of protein profiles.

In general, all groups of proteins appear to canalize dur-
ing cleavage polyembryony stages, but alter their expression 
dramatically in dominant embryo, columnar embryo, and 
early cotyledonary stages. Because the latter three stages of 
embryogenesis are of paramount importance in determining 
variation in seed development, [37] these proteins can be 
used as biomarkers for explaining phenotypic changes of 
seeds in the Chinese fir. Especially, group A is highly associ-
ated with the rate of seed development from dominant em-
bryo to early cotyledonary stages. There are high interactions

among expression profiles of different groups, although the 
time at which a particular pair of groups triggers an interac-
tion differ from pair to pair. For example, groups C and D 
generate a crossover in their expression trajectories at stage 
3, whereas a crossover between groups A and B occurs at 
stage 5. From their mutual interactions observed, it is fairly 
possible that dynamic changes of protein-protein interactions 
are important determinants of seed development in the Chi-
nese fir.

Specific proteins were identified for each of the four 
groups (see Supplementary Table 1). Proteins in each group 
have a similar function in terms of the dynamic behavior of 
seed growth. For example, two proteins in group A, legumin-
like storage protein and signal transduction-related protein 
GF14 nu, [37] are up-regulated with a great slope of increase 
during development, which were also observed in Arabidop-
sis thaliana and Picea sitchensis [38, 39]. We used hierar-
chical clustering to analyze the degree of similarity between
different groups of proteins differentially expressed in six 
stages of seed development (Fig. 3). Groups C and B are the 
most similar with each other, and both have a large distance 
to group D. All these three groups differ tremendously from 
group A because the latter displays an unusually high slope 
of increase in a long period of seed development.

DISCUSSION

With the recent advent of global genomic and proteomic 
approaches, it has been possible to understand important 
biological processes at a system-wide level. Given that these 
techniques have mainly focused on analyzing steady-state
levels of mRNA or proteins under varying conditions, there 
is a pressing need to use expression data collected along time 
to study the intrinsic mechanisms for the dynamic change of 
phenotypic traits [1, 4, 40]. Here, we provide a computation-
al model to address a fundamental property of temporal data 
resulting from their directed dependency along time through 
cluster analysis and functional smoothing. We have shown 
that the model described can be used to categorize protein 
profiles into different groups which may correlate with par-
ticular biological properties of trait development.

The clustering algorithm derived from the model consid-
ers the dependency of temporal observations and allows the 
number and the members of the clusters to be automatically 
identified. We implemented a nonparametric approach based 
on Legendre polynomials for functional smoothing of the 
dynamic changes of protein expression profiles over time
and embedded it into a mixture model framework. A model 
selection approach is then used to select an optimal number 
of clusters and their respective members. The main merit of 
this model lies in its mathematical treatment of time-varying
protein expression and the quantitative identification of the 
intrinsic machinery that govern the expression and degrada-
tion of proteins. As a similar application to gene clustering,
[21, 23] functional clustering has been validated in terms of 
its statistical properties through computer simulation. Results 
from previous simulation and numerical studies suggest that 
the model is adequately powerful for identifying distinct 
clusters and characterizing the temporal expression pattern of 
each group in a time course.
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Unlike other dynamic data, proteomic data are often 
shown as mass spectrometry with a high-dimension. Wave-
let-based approaches have proven to be powerful for di-
mension reduction of high-dimensional data and the extrac-
tion of fundamental information from raw data [21, 22].
These dimension reduction approaches can be modified to 
analyze and cluster high-dimensional protein profiles, alt-
hough several statistical issues related to curve parameter 
estimation and longitudinal covariance modeling should be 
resolved [41]. In particular, when the number of proteins is 
largely smaller than the number of protein peaks, Bensmail 
et al. proposed an alternative hierarchical clustering algo-
rithm based on a dissimilarity measure combined with a 
functional data analysis [28]. This alternative can also al-
low functional smoothing of proteomics expression profiles 
or spectra.

Further studies that combine our quantitative proteomic 
strategies with protein-protein and gene-protein coordination
will gain new insights into a comprehensive picture of regu-
latory regulation and pathways involved in the formation of 
complex phenotypes. Also, there is considerable evidence 
that genetic variation influences gene and protein expression. 
In a genome-wide association study, a number of quantitative 
trait loci (QTLs) were found to influence levels of clinically 

relevant proteins in human serum and plasma [42]. Thus, by 
integrating it into a QTL mapping framework, [43] our clus-
tering model will provide a general platform necessary to 
map the so-called protein QTLs or pQTLs that are involved 
in a sequence of biochemical pathways that cause final phe-
notypes.

Because of its dynamic features, our model can be modi-
fied to provide a vital means of predicting spatiotemporal
expression patterns of proteins. The model is also powerful 
in integrating different types of omics data, allowing key 
regulatory elements, such as enhancers, to be identified [44].
In particular, a complete view of all of the enhancers that are
active in a specific stage of development can be elucidated in 
a quantitative way.

Since user-friendly and publicly accessible web-servers
represent the future direction for developing practically more 
useful models, simulated methods, or predictors, [45] we
shall make efforts in our future work to provide a web-server
for the method presented in this paper.
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Fig. (3). Comparison of similarity and dissimilarity between four groups of proteins expressed over six stages of seed development. The
groups are from our clustering results and indicated by vertical color bars. The names of proteins each labeled by a spot ID are given in 
(Supplementary Table 2).
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