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MR Elastography Measurement of the
Effect of Passive Warmup Prior to
Eccentric Exercise on Thigh Muscle

Mechanical Properties

Paul Kennedy, PhD,1,2 Lewis J. Macgregor, PhD,3 Eric Barnhill, PhD,4

Curtis L. Johnson, PhD,5 Michael Perrins, MSc,1 Angus Hunter, PhD,3

Colin Brown, BSc,6 Edwin J.R. van Beek, MD,1 and Neil Roberts, PhD1*

Purpose: To investigate the effect of warmup by application of the thermal agent Deep Heat (DH) on muscle mechanical
properties using magnetic resonance elastography (MRE) at 3T before and after exercise-induced muscle damage (EIMD).
Materials and Methods: Twenty male participants performed an individualized protocol designed to induce EIMD in the
quadriceps. DH was applied to the thigh in 50% of the participants before exercise. MRE, T2-weighted MRI, maximal voluntary
contraction (MVC), creatine kinase (CK) concentration, and muscle soreness were measured before and after the protocol to
assess EIMD effects. Five participants were excluded: four having not experienced EIMD and one due to incidental findings.
Results: Total workload performed during the EIMD protocol was greater in the DH group than the control group (P < 0.03),
despite no significant differences in baseline MVC (P 5 0.23). Shear stiffness jG*j increased in the rectus femoris (RF) muscle in
both groups (P < 0.03); however, DH was not a significant between-group factor (P 5 0.15). MVC values returned to baseline
faster in the DH group (5 days) than the control group (7 days). Participants who displayed hyperintensity on T2-weighted
images had a greater stiffness increase following damage than those without: RF; 0.61 kPa vs. 0.15 kPa, P < 0.006, vastus
intermedius; 0.34 kPa vs. 0.03 kPa, P 5 0.06.
Conclusion: EIMD produces increased muscle stiffness as measured by MRE, with the change in jG*j significantly increased
when T2 hyperintensity was present. DH did not affect CK concentration or soreness; however, DH participants produced
greater workload during the EIMD protocol and exhibited accelerated MVC recovery.
Level of Evidence: 1
Technical Efficacy: Stage 2
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Exercise-induced muscle damage (EIMD) can occur

following unaccustomed training, particularly in routines

that incorporate eccentric exercise, and results in muscle pain,

increased passive tension, reduced force output, and elevated

blood markers such as creatine kinase (CK).1 Eccentric move-

ment exacerbates the response to unaccustomed exercise due to

the forcible lengthening of myofibrils and associated disruption

of sarcomeres, which is unique to eccentric contraction.1–3

Histological examination of muscle samples following concen-

tric and eccentric contractions has previously revealed structural

damage in only the eccentrically exercised muscles.4 The

severity of EIMD is reported to increase as a result of maximal

eccentric contractions5 and also with training duration.6 EIMD

not only occurs in untrained individuals, trained athletes are

also susceptible.7–9 Following EIMD, participants have been

reported to experience increased intramuscular pressure in the
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affected muscle compartments,10 which has been associated

with increased passive tension11,12 as well as often showing

hyperintensity on T2-weighted magnetic resonance imaging

(MRI) images.13 To minimize the effects of EIMD14,15 and

reduce the incidence of muscle injury,16–18 dynamic and passive

warmup routines are common practice among professional and

amateur athletes (see Ref. 19 for review). Evidence to support

the benefits of increasing muscle temperature has been previ-

ously reported; for example, superficial passive heating applied

alongside a low-load static stretch has been shown to increase

joint mobility compared to stretching alone.20,21 Animal studies

have also reported that the force required to damage muscle is

increased when muscle temperature is raised.22–24 Methods of

passively increasing tissue temperature such as diathermy and

ultrasound are often impractical to use. An alternative is to

apply a thermal agent such as Deep Heat (DH) (The Menthola-

tum Company Ltd., East Kilbride, UK), which has been shown

by thermography to produce an, at least, superficial warming

effect.25 DH has not been evaluated in treating the symptoms

of EIMD; however, superficial warming has shown benefits in

reducing muscle pain following EIMD.26 DH also contains sal-

icylates which are effective in acute pain relief.27 In the present

study we used MR elastography (MRE) to measure the stiffness

of skeletal muscle affected by EIMD in vivo to investigate

whether this provides imaging-based evidence that passive

warmup prevents muscle injury.

MRE is a phase-contrast MRI technique28 that images the

passage of externally induced sound waves through tissues.

Increases in muscle stiffness are detected as an increase in the

wavelength of the sound waves, and so may be quantified. MRE

provides a direct quantitative measure of muscle belly stiffness

by measurement of the complex shear modulus. Direct measure-

ment of the muscle belly stiffness removes contributions from

sources other than the muscle group in question, e.g., synergists

and antagonist muscle groups, skin, ligaments, tendons, and

articular structures,29 which may be a factor in other methodolo-

gies used to indirectly measure muscle stiffness such as range of

motion analysis30 and tensiomyography (TMG).31 MRE has

previously been applied to muscle by Dresner et al,32 who

showed that muscle stiffness increased with applied load, and

Klatt et al,33 who showed that muscle stiffness increases linearly

with strength of contraction. Barnhill et al34 studied the pattern

of activation of individual muscles of the quadriceps during con-

traction of the thigh and Green et al35 investigated the effect of

repeated eccentric contraction produced by downhill walking in

seven participants, which was reported to produce an �20%

increase in muscle stiffness, although complementary

physiological or biochemical measurements of the extent of

muscle damage were not obtained.

Several different mechanisms have been proposed for the

increase in muscle stiffness due to unaccustomed exercise.

Howell et al36 suggested that an increase in muscle stiffness is

directly due to contraction caused by release of Ca21 ions from

damaged muscle sarcomeres, but this mechanism has been dis-

puted.37 An alternative suggestion is that increased stiffness may

be due to an increase in extracellular fluid causing swelling.38

However, this mechanism has also been disputed on the basis

that an increase in stiffness can be detected immediately

postexercise before swelling occurs.39

The goal of the present study was to investigate

whether warmup by topical application of the thermal agent

DH rub provides protection against EIMD produced via

repeated extension of the lower leg against an opposing

force. The opposing force overwhelms the participant’s

capacity to concentrically contract, and hence the movement

becomes an eccentric contraction, i.e., muscle fibers are

forcibly lengthened. Leg extension is an Open Kinetic

Chain Exercise (OKCE) due to the free distal portion of the

limb. This differentiates leg extension from a Closed Kinetic

Chain Exercise (CKCE) such as a squat, where the distal

portion of the limb is weight-bearing. The leg extension is

expected to preferentially stress the rectus femoris (RF)

muscle, which has been shown to both activate earlier than

the other quadriceps muscles40 and produce increased EMG

activity41 during OKCE compared to CKCE. Furthermore,

the RF is a biarticular muscle that acts across the hip and

knee joints. It has been reported that seated eccentric exer-

cise (hip angle 908), as used in this study, produces elevated

EIMD effects in the RF when compared to prone eccentric

exercise (hip angle 1808).42 The RF length change between

seated and prone position has been estimated at 19%.43 We

predicted that application of DH would result in 1) a

smaller increase in muscle stiffness as measured by MRE; 2)

less hyperintensity indicative of edema on T2-weighted MR

images; 3) less reduction in force output as measured by

maximum voluntary contraction (MVC); 4) smaller increase

in plasma concentration of the muscle damage marker CK;

and 5) lower pain scores in comparison to a control group

in whom a placebo cream was applied. A secondary aim

was to investigate whether muscle stiffness is significantly

increased in muscles displaying T2 hyperintensity.

Materials and Methods

Participants
The study was approved by the local National Health Service Research

Ethics Committee (REC). Participants were excluded if they were >35

years of age, had an existing muscular injury or were currently taking

nonsteroidal anti-inflammatory drugs (NSAIDs). Twenty healthy male

volunteer participants (mean age 24.1 years 6 4.3 years) who engaged

in sporting activities at least three times a week were recruited and pro-

vided fully informed written consent of their willingness to participate.

Participants were instructed to engage in no strenuous activity 3 days

prior to participating in the study.

EIMD Protocol
Two days prior to the first measurement session, participants com-

pleted a familiarization session at the School of Sport, University of

Stirling. The familiarization session was designed to limit the impact
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of a learning effect on subsequent measurements. Maximum volun-

tary contraction (MVC) measurements and the EIMD protocol were

performed using an isokinetic dynamometer (System 3, Biodex

Medical Systems, New York, NY). During the familiarization session

the required movements and measurements were demonstrated and

practiced on this system but without any strenuous exercise.

The participant was seated in the dynamometer and straps

were placed across the chest, hips, and nondominant leg. The

dominant leg was affixed to the dynamometer arm via Velcro

straps placed above the ankle. The knee angle was considered 08

when the participant fully extended their leg in front of them,

describing a 08 angle to the horizontal. When the knee was bent at

right angles the knee angle was considered 908 (Fig. 1). MVC

measurements were performed isometrically at a knee angle of 608,

which has been previously reported to fall within the optimum

knee angle for peak isometric force production.44 The participant

was first instructed to warmup by performing six isometric contrac-

tions, each lasting 5 seconds with subjectively increasing force,

and with a 10-second rest between contractions. For MVC

measurements an audio stimulus was played, upon hearing which

the participant contracted maximally for 5 seconds. This process

was repeated three times with a random interval between stimuli

to prevent the participants anticipating the movement. Fatigue had

no impact over the three trials with an average force reduction

between Trials 1 and 3 of 0.2%. The audio stimulus and force

data were recorded using Acknowledge software (BIOPAC Systems,

Santa Barbara, CA) and the peak MVC force over the three trials

was calculated.

Following baseline MVC measurement, participants were

randomly assigned to one of two groups: those in the DH group

applied 5 g of DH rub to the surface of the thigh above the

quadriceps muscles of the dominant leg, whereas participants in

the control group applied a placebo moisturizing cream to the

same area. Participants then rested for 25 minutes in a relaxed

seated position before cycling on an ergometer (Lode Excalibur

Sport V2 electrically braked cycle ergometer, Lode, Groningen,

Netherlands) for 5 minutes at 70 rpm and �50W to ensure some

level of warmup was undertaken by all participants prior to the

EIMD protocol.

The EIMD protocol was split into 12 sets, each completed

once the participant reached an individually calculated workload.

The workload was based on the peak eccentric and concentric

forces generated by a participant during a repetition, which con-

sisted of an eccentric phase and concentric phase over a 908 range

of motion—from a knee angle of 208 to 1108. During each repeti-

tion the participant continuously contracted the quadriceps, i.e.,

attempted to extend the leg. In order to induce eccentric contrac-

tion, the Biodex dynamometer forcibly flexed the knee when an

extension force >50 Nm was detected. This flexion forcibly length-

ened the muscle fibers, causing eccentric damage. The eccentric

phase occurred from the starting point at a knee angle of 208 to

the end of the range of motion at 1108. Upon reaching the 1108

point, the Biodex ceased the forced knee flexion and the partici-

pant returned the dynamometer arm to the 208 starting point

using voluntary concentric contraction. Completion of the eccen-

tric phase (208 ! 1108 knee angle) and concentric phase (return-

ing from 1108 to 208 knee angle) was considered one repetition.

In order to calculate a workload, each participant performed

three repetitions of the EIMD protocol movement, each separated by

2 minutes. The peak eccentric and concentric forces were determined

and the sum was multiplied by an estimated number of total reps to

complete each set (taken as 10). This figure was then multiplied

by 1.2 to ensure the muscles were maximally worked. Once the

workload was reached the set was completed and the participant had

a 2-minute rest before engaging in the subsequent set.

MRI Protocol
MRI data were acquired using a 3T MRI system (Verio, Siemens

Medical Systems, Erlangen, Germany). Investigations were performed

at baseline (<24 hours before EIMD protocol) and again 48 hours

after the EIMD protocol.

For MRE experiments, mechanical excitation was introduced

to the thigh via a plastic actuator ring connected to the vibration

source via a carbon fiber rod. The actuator was designed at the

MRE Research Laboratory, Charit�e-Universit€atsmedizin Berlin,

Germany33 and was firmly secured around the leg using Velcro

straps to ensure sufficient wave transmission. A cod liver oil capsule

FIGURE 1: Illustration of the biarticular structure of the RF
muscle group. Knee reference angles described during the
EIMD protocol are also annotated. Adapted with permission
from muscleandmotion.net
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was placed on the actuator to facilitate image plane positioning,

which was prescribed 2 cm above the proximal actuator edge to

avoid potential effects of compression of the muscle by the actua-

tor ring.45 The distance from the distal end of the actuator ring to

the proximal surface of the patella was measured to ensure identical

image plane placement during the follow-up visit. A 32-channel

flexible array coil was placed around the thigh to record the MR

signals. An example of wave propagation and actuator and imaging

plane placement are shown in Fig. 2.

Prior to the carbon fiber rod being connected between the loud-

speaker and the actuator, a localizer scan was performed followed by a

high-resolution turbo spin echo (TSE) sequence to provide transverse

T2-weighted images through the thigh for the same sections as would

subsequently be studied using MRE. The acquisition parameters for

the TSE images were TE 96 msec, TR 4430 msec, slice thickness

3 mm, bandwidth 407 Hz per pixel, field of view (FOV) of 200 3

200 mm, and image matrix of 512 3 512 giving a final voxel size of

0.4 3 0.4 3 3 mm3. A total of 48 contiguous slices were acquired

with two averages to improve signal-to-noise ratio (SNR).

MRE data were acquired using a spin-echo echo planar

imaging (EPI) MRE sequence33,34 to produce 3D displacement

fields for mechanical vibration frequencies of 25 Hz, 37.5 Hz,

50 Hz, and 62.5 Hz with motion encoding applied in turn in

phase-encoding, slice-select, and readout directions. The acquisition

parameters were TE 54 msec, TR 1600 msec, 1 motion encoding

gradient (MEG) cycle at 50 Hz, and a bandwidth of 1560 Hz per

pixel. A total of five 2-mm-thick contiguous slices were imaged

with an in-plane FOV of 224 3 224 mm and image matrix of 112

3 112; voxel size was 2 3 2 3 2 mm3, eight phase offsets were

obtained at each actuation frequency and two averages were used

to increase SNR. All acquired images were reviewed for incidental

findings by a radiologist (E.J.V.B.) with 18 years of experience.

Image Analysis
MRE data analysis was performed using phase unwrapping46 and

inversion software called ESP47 running in MatLab (MathWorks,

Natick, MA) with several simplifying assumptions including

viscoelasticity, local homogeneity, and mechanical isotropy. These

assumptions allow calculation of the complex modulus G* from

the temporally Fourier-transformed 3D displacement field U using

the Helmholtz-type equation48:

G�52qx2 U

DU
(1)

where q is tissue density (1050 kg m23), x is the angular frequen-

cy of the mechanical oscillation, and D denotes the Laplace opera-

tor. The complex modulus G* is defined as the sum of the real

storage modulus G0, a measure of tissue elasticity, and the imagi-

nary loss modulus G00, a measure of tissue viscosity. Further details

of the inversion scheme can be found in Ref. 47. The viscoelastic

parameters reported are the magnitude of the complex modulus

jG*j and its phase angle u defined as the ratio of G0 and G00 and

considered to be a measure of tissue viscosity.47

MRE image quality was assessed by applying the octahedral

shear strain SNR (OSS-SNR) method,49 which has been frequently

utilized in MRE studies.50,51 An OSS-SNR threshold of 3 is con-

sidered to yield stable stiffness results.

Regions of interest (ROIs) corresponding to the rectus femo-

ris (RF), vastus intermedius (VI), vastus medialis (VM), and vastus

lateralis (VL), as well as the entire quadriceps (i.e., RF, VI, VM,

and VL combined) and entire hamstrings were drawn separately on

the MRE magnitude images using ImageJ.52 Care was taken to

ensure muscle fascia was not included in the ROIs. Values of jG*j
and u were extracted for the above ROIs.

FIGURE 2: Wave images from a single image slice illustrating the wave propagation over eight phase offsets (a). A 3D volume ren-
dering (b) of a T2 acquisition shows the compression from the ring actuator which transmits externally generated waves into the
tissue. The image plane is also labeled. In (c) the evolution of wave propagation across the eight phase offsets is depicted by plot-
ting the displacement at a point (yellow marker in (a)) during each offset.
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Baseline and Postdamage Measurement of EIMD
Symptoms
A number of additional measurements were obtained to enable assess-

ment of the compliance of participants in performing the EIMD pro-

tocol, the severity of damage produced, and recovery. The following

measures were recorded at the School of Sport, University of Stirling

at baseline, and 2, 5, 7 and 9 days after the EIMD protocol.

Maximum Voluntary Contraction (MVC) Recovery

Loss of muscle force as measured by reduction in MVC is fre-

quently reported in studies of EIMD.53,54 MVC of the dominant

leg was therefore recorded using the same Biodex Isokinetic Dyna-

mometer, which had been used for delivering the EIMD protocol.

A force loss of 10% was subsequently applied to identify partici-

pants who had developed EIMD.25

Plasma Creatine Kinase (CK) Analysis

On each visit, prior to which participants had fasted overnight,

10 mL of venous blood was collected in an EDTA-containing vacu-

tainer tube from the participant’s antecubital fossa. The sample was

then centrifuged at 3500 rpm for 15 minutes at 48C, after which the

separated plasma was aliquoted evenly into Eppendorf tubes and

stored at –808C. Enzymatic analysis of plasma CK concentration was

performed in duplicate at each timepoint using a semiautomated ana-

lyzer (iLab Aries, Instrumentation Laboratory, Bedford, MA).

Subjective Pain Rating of Pressure Stimulus

In order to obtain a subjective rating of the sensitivity of the par-

ticipant to a pressure stimulus, a custom-built spring-loaded algo-

meter was used to apply 1 kg per cm force at the level of the head

of the RF muscle while the leg was in flexed (i.e., sitting in the

Biodex system with leg at 908 knee angle) or extended (i.e., sitting

and with the leg lifted to 08 knee angle) positions. During pressure

application the participant was instructed to rate their perceived

muscle soreness using a 200 mm visual analog scale (VAS). Partici-

pants marked the appropriate point along the continuum from a

rating of “No Pain” to “Most Pain Imaginable.” The distance

between the “No Pain” rating and the participant’s mark was mea-

sured to quantify muscle soreness.

MRE Protocol Quality Assurance
The CIRS 049 test object (Computerized Imaging Reference

Systems (CIRS), Norfolk, VA) which has been previously used for

quality assurance in MRE,55,56 and in ultrasound elastography,57,58

was studied using the same MRE sequence and ESP analysis

pipeline as was used for the in vivo investigations. The test object

was constructed from a synthetic elastic substance known as

Zerdine and contained eight spherical inserts (four with a diameter

of 20 mm and four with a diameter of 10 mm) of increasing stiff-

ness measured by the manufacturer via quasistatic compression

testing. The imaging volume was prescribed to include all four

20 mm inclusions and the test object was vibrated at 25, 37.5, 50,

and 62.5 Hz using a paddle actuator. ROIs were traced inside the

boundaries of the four inserts using ImageJ and computed values

of jG*j were compared to manufacturer reported values. Mean

stiffness was calculated over the five image slices. A total of eight

acquisitions were performed with the test object removed and

repositioned in the MR system for each acquisition in order to

assess reproducibility.

Statistical Testing
Statistical significance of within-participant effects over time of

MRE, MVC, CK, and pain measurements were assessed using a

two-tailed Wilcoxon signed-rank test. Differences between DH and

control groups were tested for significance using unpaired Mann–

Whitney U-tests. Cohen’s d effect size values were calculated with

0.2, 0.5, and 0.8 considered as small, moderate, and large effects.59

Relationship between measurement variables was assessed using

Pearson’s correlation. Coefficient of variation was calculated for the

phantom acquisitions. Fisher’s exact test was used to compare the

incidence of T2 hyperintensity in the DH and control group. All

statistical tests were performed using SPSS Statistics (v. 20, IBM,

Armonk, NY). A P-value <0.05 was considered significant.

Results

MRE Phantom Measurements
The T2-weighted images and elastograms shown in Fig. 3a

confirm that the inclusions could be readily detected in the

CIRS 049 test object and in Fig. 3b the measured stiffness

of each inclusion is plotted against corresponding values

provided by the manufacturer (Table 1). The linear relation-

ship between measured and manufacturer values was statisti-

cally significant (r 5 0.99, P < 0.005). The coefficient of

variation (CV) was less than 5% over the eight repeated

investigations.

FIGURE 3: (a) T2-weighted image and elastogram of the CIRS 049 test object and (b) plot of stiffness values measured for the
four inclusions plotted against values given by the test object manufacturer.
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Compliance and Performance on EIMD Protocol
Details of the performance of individual participants in

completing the EIMD protocol are presented in Table 2. In

order to ensure that all participants included in the analysis

had experienced EIMD a threshold of >10% MVC reduc-

tion between baseline and the first postexercise measurement

was applied (Fig. 4). This threshold led to the exclusion of

four participants from subsequent analyses. These partici-

pants were found to have completed the EIMD protocol

with consistent repetitions per set, suggesting that the work-

load target that had been set for these participants was not

sufficiently taxing. Three of the four participants (#10, #18

and #20) were from the DH group and one (#11) was from

the control group. In addition, a control group participant

(#13) was removed due to the incidental finding of an area

of calcification being identified in the RF muscle during

review by a radiologist. Thus, 15 participants remained, sev-

en in the DH group and eight in the control group. There

was no significant difference in mean baseline MVC

between the final DH group and the control group

(P 5 0.23). However, total work performed by the DH

group was significantly greater than by the control group

(P < 0.03).

Effect of DH on Physiological and Biochemical
Measurements
Both the DH group and control group showed a significant

increase in CK concentration (P < 0.03), increase in pain

score (P < 0.05), and decrease in MVC (P < 0.02) after 48

hours compared to baseline (Fig. 5). The magnitude of the

effect was generally greater in the DH group than the

control group for MVC (mean decrease 105 Nm, Cohen’s d

1.67 vs. 62 Nm, 2.27) and CK (mean increase 633 IU/l,

Cohen’s d 0.89 vs. 514 IU/l, 1.19) but the increase in sub-

jective pain was reduced in the DH group in both extension

(mean increase 3.7, Cohen’s d 0.95 vs. 3.75, 0.67) and flex-

ion (mean increase 1.85, Cohen’s d 0.96 vs. 2.79, 0.64).

However, Mann–Whitney U-tests revealed that 48 hours

postexercise there were no significant differences between

the groups for any of the physiological or biochemical mea-

sures (MVC P 5 0.88, pain P > 0.85, CK P 5 0.90). Pain

measurements in flexion and extension 48 hours after the

protocol were highly correlated in both DH and control

groups (r 5 0.978, P < 0.001 and r 5 0.982, P < 0.001,

respectively).

Five days after the EIMD protocol MVC measure-

ments for the DH group were not significantly different

than baseline (P > 0.24, Cohen’s d 0.61). However, the

control group was still producing significantly lower force at

this timepoint (P < 0.02, Cohen’s d 1.89), indicating faster

recovery in the DH group. CK concentration was signifi-

cantly increased in both groups over the entire study period

(P < 0.05). Pain measurements in extension and flexion

were not significantly different from baseline in either group

after 5 (P > 0.25), 7 (P > 0.21), and 9 (P > 0.39) days

post-EIMD protocol. No long-term adverse effects resulted

from completion of the EIMD protocol.

Effect of DH on Stiffness of the Damaged Muscle
Example images of jG*j and u for four of the participants are

shown in Fig. 6. Mean OSS-SNR was >3 in all but three par-

ticipants. Of these three cases OSS-SNR was <3 in the ham-

strings (2/3 cases) and the VM (1/3 cases). Two participants,

one with OSS-SNR <3 in the hamstrings and one with OSS-

SNR <3 in the VM were excluded from analysis having not

experienced an MVC reduction of >10%. In the other case,

with OSS-SNR <3 in the hamstrings, the hamstrings mea-

surement from that participant was excluded. Analysis of the

MRE data (Table 4) revealed a significant increase in jG*j in

the RF muscle in both the DH (P < 0.02, Cohen’s d 1.29)

and control groups (P < 0.03, Cohen’s d 0.81) 48 hours after

the EIMD protocol (Fig. 7). In addition, there was a trend

whereby the VI muscle group also showed an increase in jG*j
in the DH Group (P 5 0.06, Cohen’s d 0.86). These findings

are consistent with the CK and MVC changes in indicating

greater damage in the DH group, although the differences

between groups were not significant (P 5 0.09). Analysis of

the second MRE parameter, u, for the RF and VI muscles

revealed there to be no significant changes in either the DH

or control group following the EIMD protocol. However, in

the DH group u was significantly increased in both the VM

muscle group (P < 0.03) and over the entire quadriceps ROI

(P < 0.02) following the EIMD protocol, with no

corresponding effect observed in the control group.

Effect of DH on T2-weighted Images
Inspection of the T2-weighted images revealed that hyperin-

tense signal was localized to the RF (6/15 participants

[40%]; three in the DH group and three in the control

group) with diffuse hyperintensity also present in the VI

TABLE 1. Measured and Manufacturer Provided Values for Stiffness of Inclusions in CIRS 049 Test Object (Pa)

Testing Method Target 1 Target 2 Target 3 Target 4

Quasi-static (manufactuer) 2700 6000 16000 27000

3D Multi-frequency MRE 3731 6 189 5722 6 198 12827 6 291 23713 6 241
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(5/15 participants [33%]; four in the DH group and one in

the control group) muscle groups. Fisher’s exact test revealed

that the occurrence of hyperintensity in RF and VI muscles

was not significantly related to the application of DH (P <

0.6 and P > 0.1, respectively).

Participants displaying RF and VI T2 hyperintensity had

significantly increased jG*j compared to baseline after 48

hours (1.16 6 0.21 kPa ! 1.77 6 0.34 kPa, P < 0.03 and

1.29 6 0.05 kPa! 1.63 6 0.22 kPa, P < 0.05, respectively).

Participants without hyperintense T2 signal also showed a sig-

nificant increase in RF stiffness after 48 hours (1.31 6 0.33

kPa! 1.46 6 0.39 kPa, P < 0.02); however, VI stiffness was

not significantly different (1.33 6 0.23 kPa ! 1.36 6 0.31

kPa, P > 0.5).

Analysis of the mean increase in jG*j of the RF and VI

between participants who displayed hyperintensity on T2-

weighted images and those who did not showed that the mean

increase in jG*j of the RF was significantly higher in partici-

pants with T2 hyperintensity following damage compared to

participants without T2 hyperintensity (0.61 6 0.31 kPa vs.

0.15 6 0.17 kPa, P < 0.006). A similar trend was observed in

the VI muscle group, with participants with T2 hyperintensity

having a greater mean jG*j increase following damage,

although it did not reach significance (0.34 6 0.26 kPa vs.

0.03 6 0.36 kPa, P 5 0.06).

TABLE 2. EIMD Protocol Performance Results and MVC Data for 20 Participants

Subject DH T2 RF T2 VI MVC (Nm) MVC change (%) Workload (J) Total Reps

1 No No No 316 220 3871 156

2 Yes Yes Yes 269 255 3778 179

3 No No No 197 232 3227 224

4 Yes Yes Yes 355 251 5972 291

5 No Yes No 260 218 4538 349

6 No Yes Yes 213 255 4200 273

7 Yes No Yes 406 244 4789 152

8 Yes Yes No 220 234 5400 285

9 No Yes No 375 214 5193 365

10 Yes No No 213 24 3121 146

11 No No No 252 9 3722 147

12 Yes No Yes 254 218 5209 312

13 No Yes Yes 266 254 5055 326

14 Yes No No 227 231 6007 353

15 No No No 167 219 3245 124

16 Yes No No 276 212 5901 216

17 No No No 255 234 5773 296

18 Yes No No 219 1 3932 170

19 No No No 188 221 3619 177

20 Yes No No 222 3 3704 156

Participants highlighted with gray cells were excluded from the analysis (#10, #11, #13, #18, and #20). Participant #13 was removed
due to the presence of an incidental finding.

FIGURE 4: MVC force data for all participants at baseline and
2 days after EIMD protocol. The rectangles highlight the four
participants in whom the reduction in MVC was <10%.

Kennedy et al.: MRE of Exercise Induced Muscle Damage

October 2017 1121



Discussion

The CIRS 049 phantom had been previously used to verify

MRE measurements.55,56 In both cases different inversion

approaches to the ones used here (i.e., finite element model-

ing) were applied; however, the recovered stiffness values were

found to be lower than values reported by the manufacturer

for the stiffest target and higher for the softest target. This was

reflected in the results generated in this study also. The dis-

crepancy between the calculated stiffness and the manufactur-

er reported values could be due to several factors. For example,

the manufacturer may have performed the measurements at a

lower frequency. Alternatively, temperature variations could

FIGURE 6: T2-weighted images and maps of jG*j and u for four participants. Hyperintensity on T2-weighted images suggests ede-
ma is present in the RF (a–d) and VI muscle groups (a,b). Less severe hyperintensity is denoted by red arrows.

FIGURE 5: Time course of (a) MVC, (b) CK concentration, and (c) pain at baseline and during recovery from the EIMD protocol.
Error bars are omitted for clarity. SD values are presented in Table 3.

TABLE 3. Mean Values of MVC, Pain Score, and CK Concentration Over the Study Period for the Seven Partici-
pants in the DH Group and the Eight Participants in the Control Group

Measurement
MVC (Nm) Pain (VAS cm) CK (IU/L)

Group Control DH Control
Ext

Control
Flex

DH
Ext

DH
Flex

Control DH

Baseline 246.3 6 66.5 286.9 6 63.6 1.8 6 1.2 1.5 6 0.8 1.9 6 1.1 1.6 6 0.6 135 6 58 199 6 129

48 hours 183.6 6 69.7 181.9 6 41.8 5.5 6 5.5 4.3 6 4.3 5.6 6 3.3 3.4 6 1.8 629 6 381 833 6 691

5 days 216.2 6 65.8 234.8 6 32.2 3.4 6 2.6 2.1 6 0.8 2.2 6 0.8 1.6 6 0.7 716 6 805 1491 6 1457

7 days 234.3 6 71.2 247.7 6 36.1 2.1 6 1.4 1.6 6 1.0 1.5 6 1.0 1.3 6 0.9 1513 6 1246 1893 6 1024

9 days 240.0 6 75.4 241.3 6 28.4 2.0 6 1.5 1.7 6 1.6 1.4 6 1.6 1.0 6 0.6 737 6 613 1196 6 985
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also be a cause, with the investigations in the present study

being performed at room temperature and the testing by the

manufacturer likely to have been performed under controlled

conditions of temperature and humidity.

An important result of the present study is the identi-

fication of the main sites of muscle damage produced by an

EIMD protocol of this type. Previous nonimaging-based

studies have focused on the study of biopsies obtained from

the VL muscle alone, likely due to the accessibility for biop-

sy.60–62 Future studies, whether imaging-based or not, need

to take into account the fact that the principal site of dam-

age produced using this EIMD protocol is likely to be the

RF and VI, and not the VL.

Analysis of the MRE data revealed that the magnitude

of shear stiffness, jG*j, was significantly increased in the RF

muscle in both groups. jG*j was also increased in the VI

muscle in the DH group, although the difference compared

to the control group was not significant. Hyperintensity on

T2-weighted images was more often present in the DH

group than the control group (71% vs. 50%), although the

difference was not significant. Analysis also showed that

jG*j of the RF and VI was significantly increased in the

present of T2 hyperintensity. This indicates the presence of

edema and potentially highlights an association between

edema and increased stiffness measured by MRE.

The present study is the first in which MRE has been

applied to investigate EIMD of the quadriceps muscles after

eccentric exercise. A previous study35 focused on the lower

leg muscles, namely, the medial gastrocnemius and soleus

and reported a significant 21% increase in storage modulus

(G0) of the medial gastrocnemius 48 hours postexercise. The

soleus muscle group showed no significant increase after 48

hours but a 9% increase was detected 1 hour after exercise,

indicating a short-term effect. In future studies it will be

interesting to investigate whether the EIMD protocol can

produce short-term responses in the muscles of the thigh,

perhaps due to increased muscle perfusion following

exercise.63

The values of jG*j obtained predamage in this study

were found to vary between 1–1.3 kPa over the thigh cross

section which is in good agreement with Green et al,35 who

reported values for shear stiffness of 1 kPa. Other studies

using similar techniques include Klatt et al,33 and Barnhill

et al,34 who reported values for the storage modulus (i.e.,

G0) in the ranges of 0.7 to 2 kPa, and 1.0 to 1.9 kPa,

respectively. These data, however, refer to a single frequency

acquisition. G0 values in the present study were derived

from multifrequency data and ranged from 0.7 to 0.9 kPa.

Multifrequency inversion will produce lower values due to

the frequency dependence of the measurements and the con-

tributions from acquisitions at frequencies lower than 50 Hz

(i.e., 25 Hz and 37.5 Hz). This is the first study to measure

u in muscle following exercise. The baseline values are inT
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good agreement with a previous study measuring u of the

quadriceps at rest.47 Phase angle, u, was found to decrease

in the quadriceps in the DH group, with no significant

change found in the control group. A reduction in u may

signify degradation of the structural matrix in the low-level

tissue architecture,64 perhaps indicating a greater destruction

of actin and myosin cross-bridges due to strenuous exercise.

This finding points to the DH group damaging more fibers

during the EIMD protocol, a distinct possibility considering

the significantly greater workload produced by the DH

group. The lack of change in the RF, the site of most

change in jG*j, may be due to the small size of the RF

muscle and hence the ROIs used, with scattering effects pro-

ducing more heterogeneous results. These scattering effects

are reduced in the jG*j measurement due to the magnitude

of both G0 and G00 being measured.

Several previous studies have investigated EIMD of the

quadriceps muscle using techniques other than MRI. For

example, Crenshaw et al65 used a Biodex system to produce

EIMD in eight healthy participants and showed that MVC

was reduced by an average of 45%. Torres et al66 also used

a Biodex system to produce damage in the quadriceps mus-

cle in 10 participants via eccentric contractions. The authors

measured muscle stiffness using a Wartenberg pendulum

test, whereby increased muscle stiffness was identified by

reduced range of motion and a slower angular velocity of

the pendulum. Since the magnitude of the stiffness increase

was similar to that found in the present study this suggests

that the increased stiffness measured by Crenshaw et al65 is

directly related to changes in the muscle belly and not to

contributions from tendons and ligaments.

The physiological mechanism underlying the muscle

stiffness increase in EIMD has not been fully elucidated.

Allen et al67 postulated that the forcible lengthening of mus-

cle fibers in EIMD leads to disruption at the level of the

sarcomeres and which is exacerbated by repeated repetitions

of the eccentric movement. This muscle fiber damage leads

to release of Ca21 into the cytoplasm in sufficient quantities

that homeostasis is disturbed and contraction of fibers

occurs. Swelling has also been cited as a potential reason for

the increased passive stiffness.36–38 However, Chleboun

et al39 have shown that, whereas stiffness may increase

immediately following damage, swelling does not become

significant until after 24 hours. In the present study partici-

pants in whom hyperintensity was observed on T2-weighted

images were found to show greater increase in muscle stiff-

ness than participants who exhibited no increased T2 signal.

This may be interpreted to suggest that an increase in fluid

FIGURE 7: Values of jG*j (upper row) and u (lower row) in RF muscle for individual participants in the control (left column) and DH
(right column) groups at baseline and 2 days after EIMD protocol.
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volume associated with inflammation and edema produces

increased muscle tension.

In future work we propose to use recent developments

in MRE techniques including high SNR, high-resolution

data acquisition sequences such as spiral MRE,68 and state

of the art super-resolution MRE based on data acquisition

at multiple frequencies.47 We will also incorporate diffusion

tensor imaging (DTI) measurements of fiber orientation

along with anisotropic inversion algorithms to correct for

muscle fiber orientation.69 Another consideration is whether

the type of eccentric contraction has an effect on the distri-

bution of damage within the muscle. For example, Takaha-

shi et al70 induced EIMD via an eccentric movement based

on lowering the body down to a sitting position while bal-

anced on one leg. Takahashi et al did not observe hyperin-

tensity on T2-weighted images of the RF following this

eccentric movement; however, the VI, VM, and VL muscles

did display hyperintensity. The movement utilized by

Takahashi et al is a CKCE, and hence the vasti muscles are

expected to be preferentially effected compared to the

OKCE used in the present study.

There are several limitations of the study that should

be discussed. First, the inversion step used in the analysis of

MRE data assumes that the tissue is isotropic and homoge-

neous, but this is not strictly valid owing to the anisotropic

orientation of the muscle fibers. Recent advances in MRE

have led to the development of anisotropic inversion meth-

ods that utilize DTI to identify the primary fiber direction

in the muscle and which has been incorporated into MRE

data analysis.69 A recent study has also employed a three-

parameter inversion method to measure the anisotropic

shear elastic parameters of skeletal muscle.71 In addition, it

should be noted that the EIMD protocol was designed to

produce muscle damage regardless of the strength of the

individual participants on account of a personalized work-

load having been set based on peak eccentric and concentric

forces measured over three trials. However, if the participant

did not fully engage with the experiment a sufficiently chal-

lenging workload may not be set and so the protocol may

not produce EIMD. Each participant performed a familiari-

zation session 48 hours prior to the EIMD protocol that

aimed to reduce the former effects; however, perhaps further

motivation and/or familiarization may be required for some

participants. MRE data were only obtained on two occa-

sions, at baseline and 48 hours after the EMD protocol, at

which time muscle damage was suggested to peak.35 There-

fore, detailed knowledge of the time course of the stiffness

response is limited. An interesting further development will

be to obtain more detailed information on the changes in

the mechanical properties of the muscle via pixel-by-pixel

analysis of the MRE data for data obtained at intervals over

a longer time period, and also to replace the qualitative

assessment of signal intensity on T2-weighted images with

computation of T2 relaxation time maps70 coregistered with

the elastograms.

In conclusion, we have demonstrated that MRE has

the ability to detect skeletal muscle mechanical property

changes in the quadriceps as a result of a personalized

OKCE EIMD protocol. Complementary physiological and

biochemical measurements enabled the confirmation of

EIMD. DH participants were found to perform significantly

more work during the EIMD protocol, yet recover MVC

force faster. No significant difference in jG*j was observed

between groups; however, u was significantly decreased in

the quadriceps of the DH group. ROI analysis revealed that

RF and VI muscles are preferentially affected by the eccen-

tric contraction, with associated increased muscle stiffness

and frequent T2 hyperintensity. Muscles displaying T2

hyperintensity were found to have an elevated stiffness

change following damage compared to those which did not.

The information obtained in this study suggests that DH

rub may benefit participant force production during activity

and facilitate accelerated return to normal activity after

strenuous exercise. Further studies incorporating alternative

exercise strategies are needed to determine if this outcome

holds true following diverse exercise patterns.
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