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Insights into a 429‑million‑year‑old 
compound eye
Brigitte Schoenemann1* & Euan N. K. Clarkson2

In all arthropods the plesiomorphic (ancestral character state) kind of visual system commonly is 
considered to be the compound eye. Here we are able to show the excellently preserved internal 
structures of the compound eye of a 429 Mya old Silurian trilobite, Aulacopleura koninckii (Barrande, 
1846). It shows the characteristic elements of a modern apposition eye, consisting of 8 (visible) 
receptor cells, a rhabdom, a thick lens, screening pigment (cells), and in contrast to a modern type, 
putatively just a very thin crystalline cone. Functionally the latter underlines the idea of a primarily 
calcitic character of the lens because of its high refractive properties. Perhaps the trilobite was 
translucent. We show that this Palaeozoic trilobite in principle was equipped with a fully modern type 
of visual system, a compound eye comparable to that of living bees, dragonflies and many diurnal 
crustaceans. It is an example of excellent preservation, and we hope that this manuscript will be a 
starting point for more research work on fossil evidence, and to develop a deeper understanding of the 
evolution of vision.

Trilobites are extinct marine arthropods that dominated the ecosystems of the Palaeozoic. From the very begin-
ning of their appearance they were equipped with compound eyes, which during the Cambrian explosion and 
later differentiated into highly diverse visual systems. A well-known trilobite is the small Aulacopleura koninckii 
(Barrande, 18461), occurring in great numbers within a layer of mudstone of 1.4 m thickness on Na Černidlech 
Hill and Špičatý Hill near Loděnice in the Czech Republic (Silurian, Wenlock, Liten Formation, Motol Member, 
Monograptus flexilis-Zone). Sedimentary evidence from the mudstone beds, probably deposited over a period of 
just a few thousand years, together with the mode of occurrence of the biota itself, suggest that A. koninckii lived 
in an environment of fluctuating oxygen availabilty, and its ’olenimorph’ morphology commonly is associated 
with oxygen-poor settings2,3. The French-Czech paleontologist Joachim Barrande, a pioneer of trilobite research, 
was the first to have excavated this location and he described the trilobite as Arethusina konincki in 1846. The 
name Arethusina, however, had been used already for a foraminiferal protist, and Hawle and Corda suggested 
the name Aulacopleura in 18474.

A. koninckii (Figs. 1a–d, 2j) is a morphologically conservative trilobite5. It has been the subject of many recent 
studies, particularly of growth and ontogenetic development6,7. To obtain insight into sensory structures, such 
as those of compound eyes, is another challenge for different reasons. For a long time it has been thought to be 
most unlikely that soft tissues, such as neural tissues or even receptor cells could be preserved in the fossil record. 
Special modes of preservation, such as phosphatisation, or those of so-called Lagerstätten sensu Seilacher8,9 are 
needed. In such Lagerstätten carcasses were buried under anoxic conditions and with a low presence of bacteria, 
thus hardly any decomposition took place, and both—major as well as fine biological features—became pre-
served. Examples of Lagerstätten are the Maotianshan Shales and Burgess Shales of the Cambrian, the Devonian 
Hunsrück Shales, the Carboniferous Mazon Creek, or the Eocene Green River Formation, but there are many 
others with different compositions of their sediments, faunas and floras. Furthermore, to find tissue relicts at a 
cellular level, for the enclosing sediments a particle size smaller than the size of cells is necessary. Thus it is very 
uncommon to find fossilised individuals that retain internal structures of any former sensory system. Some 
records analysing nervous systems, such as brains10–13 and visual systems on receptor-cell-level, however, have 
been published14–19.

Recently, the eyes of a very early trilobite were described from the Lower Cambrian (base of the Atdaban-
ian) of Estonia; this species Schmidtiellus reetae (Bergström, 1973)20 is amongst the oldest trilobites of all18. First 
known only as trace fossils at the stratigraphical level from which it comes, trilobite fragments then were found, 
and finally an almost complete, well preserved specimen was discovered. It is probably ’physically’ (in body 
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preservation) one of the oldest trilobites that will ever be found. Being excellently preserved in phosphate, it 
shows distinctive ommatidia. In some ways this is simpler than the eyes of modern apposition type21,22, yet the 
structures are clearly ommatidia. This eye shows a columnar ommatidium with ~ 8 receptor cells, and a central 
rhabdom. A whole series of ommatidia can be observed, and each of them is situated in a kind of cellular ’basket’, 
separating the individual systems from each other, unlike typical modern apposition eyes. Another difference 
is that no clear lens can be distinguished, probably because the lens-generating part of the cuticle still had not 
originated in this early very thin shelled and fragile trilobite. Other points are pigment cells which are evidently 
not yet defined, and possibly there existed an elongated, pyramidally-shaped crystalline cone, although its shape 
is not very distinct. Nevertheless S. reetae possessed a typical apposition eye, even if at a quite primordial state18.

Aulacopleura koninckii (Barrande, 18461) is a rather flat trilobite, usually not more than a millimeter or two 
in height. The preserved shell is very thin. It is no more than a few micrometers in thickness, often is stripped 
off, and normally just the internal mould (Steinkern) remains. Thus only the standard, typical features of the 
fossil arthropod are normally preserved. The eyes, protruding dorsally from the cephalon as small semi-ovals 
are particularly susceptible to damage, and are frequently broken off. The specimen documented here consists 
of part and counterpart, and the shell is partly preserved (Fig. 1b–d). In an exceptionally good, and possibly 
unique way it presents the internal structures of this compound eye in the Silurian trilobite. Partly it confirms 
what is known of the ocular anatomy of the Cambrian system of S. reetae18, but also offers new insights into 
vision in trilobite eyes.

Figure 1.   The apposition compound eye of Aulacopleura koninckii (Barrande, 18461). (a) Aulacopleura koninckii 
(Barrande, 1846), specimen investigated here (Špičatý Hill Loděnice, Motol Fm., Cyrtograptus lundgreni-Zone, 
Silurian, Wenlock, Homerian. (b) Drawing of A. koninckii. (c) Oblique surface rendition. (d) Oblique view 
of the cephalon. (e) Left eye of an intact specimen. (f) Overview of the investigated eye, arrows indicate here 
illustrated visual units (i,j, Fig. 2a). (g) The same as (f), the enhanced contrasts here clearly show the empty 
cavities as left by the fallen-out visual units. Note the flaky white relics of decayed units still residing in the 
cavities. (h) Individual visual unit. (i) Rosette formed by the fossilised relics of the receptor cells surrounded 
by empty cavities. (j) Rosette formed by the fossilised relics of the receptor cells, note that the upper adjacent 
elements also shows a rhabdom very clearly (red arrow). The central rhabdom shows up several subunits. 
Inserts: Position of the relics of receptor cells; schematic drawing of (j). (k) Fossilised relic of a complete visual 
unit with lens, and putatively a thin crystalline cone (red arrow).
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Apposition compound eyes and trilobites
The compound eyes, a plesiomorphic character of all arthropods23 during the last half billion years developed a 
high diversity of adaptations, in response to many different ecological constraints and opportunities. The most 
basic type, and still very common among especially diurnal arthropods, is the so-called apposition compound 
eye21,22,24,25.

Such eyes are today mainly represented among diurnal insects and crustaceans. They consist of up to 30,000 
individual, more or less identical receptor units, so-called ommatidia (Fig. 2n), optically isolated from each 
other by a set of screening pigment cells. In terrestrial systems the cuticle forms a distinct lens, and a cellular 
crystalline cone directly below allows space for focusing the light onto a light guiding structure, the rhabdom. 
The latter is part of the receptor cells, and contains the visual pigments. The energy of the incident light changes 
their sterical configuration, which finally causes the generation of an electrical signal, led by the optical nerve to 
the central nervous system of the arthropod for further processing26.

In aquatic systems the difference of optical densities of chitin, the material of the cuticle, and water is not 
high enough for a cuticular lens to refract the light effectively. Here the functional part of the dioptric apparatus 
often consists mainly of the crystalline cone, forming an index gradient lens. All contrasts and colours inside 
the visual field of the ommatidium are focused onto the rhabdom, and in total over the entire compound eye 
it results a mosaic-like vision as first described by Müller in 182627, and consequently by Exner28. Their acuity 
depends, among other factors on the number of facets, and the acceptance angle of the ommatidia representing 
the fineness of scanning of the environment. In more advanced systems the receptor cells may share functions 
such as the possession of sensitivity for different wavelengths, and adaptations to lower light intensities. Such 
elegant advancements as different kinds of superposition eyes, however, probably did not develop before the 
Devonian (419.2–358.9 Mya)29.

It is only in trilobites that the lens usually consisted (mainly) of calcite—a highly refractive material30–36. 
Especially if the lens is spherical, then it would have a short focal length. This would determine a short crystal-
line cone to give space for focusing the light onto the rhabdom. Thus, if A. konickii has a flat crystalline cone, 
this would be a strong indication that the lens genuinely contained calcite to a high degree. The taxonomic 
placement of trilobites has been much debated. Although they have been assigned to chelicerates37 there is a 
general consensus, based on many morphological characters that they belong to the group of Mandibulata38,39. 
By contrast with mandibulates, however, trilobites, seemed not possess crystalline cones. Very recently, however, 
the existence of crystalline cones has been suggested for trilobites18,40, but the evidence is far from unambiguous.

Figure 2.   Ommatidial structures and their interpretations. (a) Overview of another sensory unit, fossilised 
in a different way (red arrow); another, slightly weathered adjacent (pink arrow). Insert: Position of the relics 
of receptor cells marked. (b) (a) in detail. Note the rhabdom embraced by spherical elements, interpreted as 
putative ‘palisades’63–65. (c–h) More examples of receptor-cell-rosettes with rhabdoms (red arrows) surrounded 
by palisades, f repeats the spherical elements very clearly. (i) Schematic drawing of (Fig. 1k), the putative thin 
crystalline cone in blue. (j) Translucent head of Artemia salina (Linnaeus, 1758), showing up the screening 
pigments inside of the compound eye. (k) Overview of the counterpart of the eye, red arrow indicates the 
position of the individual visual unit of Figs. 1k, 2i. (l,m) Illustration of how the isolated visual unit may have 
come up to its position, being stripped of the layer of lenses seen at their proximate surface below. (n) Modern 
compound eye of a hornet (Vespa crabro Linnaeus, 1758) and schematic drawing of an apposition compound 
eye, ommatidium and its cross-section. c cavity, formerly containing the receptor unit, cc crystalline cone, p 
palisade, pc pigment cells, rc receptor cell, rh rhabdom, ru receptor unit, L lens; o–q, s from the right eye.
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There are other organisms that use calcitic lenses, such as brittle stars or chitons e.g.41–43, but these ’eyes’ func-
tion more or less just as light detectors. It has been challenged recently that trilobite lenses were formed of pri-
mary calcite44, but any clear evidence that it is not so, is missing so far. The trilobites are thus, as far as is known, 
the only arthropods to use calcite in lenses for image-forming vision, and a short (or even missing) crystalline 
cone would be a strong evidence that their lenses were to a high degree of calcite with its high refractive power.

The discovery of sensory units (ommatidia) in the compound eye of Aulacopleura koninckii 
(Barrande, 1846).  Whereas the right eye of the specimen Aulacopleura koninckii (Barrande, 1846)1 inves-
tigated here is broken off, the left is still present. The visual surface sits on a low socle, and the visual surface 
towards the top is covered by a kind of lid, a so-called palpebral lobe, shading the light from above, and stabi-
lising the eye itself. The spherically curved former visual surface shows impressions (Ø ~ 35 µm) of where the 
former visual units were positioned (Fig. 1e–g). They are packed in a regular, more or less squared to irregular 
arrangement (Figs. 1e,g; 2a). In the aquatic habitat where light is absorbed more easily than it is in air, the rela-
tively small visual units indicate a life-style in a well-illuminated environment. Under good light conditions the 
diameter of ommatidial lenses can be smaller than under those of dim light, simply because under bright light 
conditions more photons per steradiant can enter the system to make it work efficiently. Consequently, enlarged 
facets will enhance sensitivity. So, to capture enough photons for threshold vision45,46 under bright light condi-
tions the lenses can be of comparably smaller diameter. This enables the apposition-eye-system to install more 
lenses in the limited space of a compound eye, enhancing resolution. In the sea just in shallow water these bright 
light conditions are possible, so we just here will find small facets—or, the other way round, if we find small facets 
in a marine arthropod, it will not have lived under mid- or deep-sea-conditions.

The lens-diameters found here (~ 35 µm) are comparable to the facet dimensions of the shallow water bran-
chiopod crustacean Artemia salina (~ 20µm47, Fig. 2j), the waterflea Daphnia (~ 35.5 + 2.1µm48), the shore crabs 
Leptograpsus (22 < D < 50 μm49,50) and Uca lactea annulipes (20 < D < 30 μm51). Many crustaceans living today pos-
sess superposition eyes, where the light from many facets is exploited by each individual rhabdom. Here the lens 
diameters are of comparable size: modern shrimps, living in tidally influenced coastal ecosystems, for examples 
in light-flooded seagrass beds (Palaemonetes purgio 30 µm52, Acetes sibogae 30µm53–55). Lobsters, crayfish and 
langoustines with superposition eyes, living at greater depth, show lens diameters of around 50µm56–59. Thus, if 
the facet diameter of A. koninckii is equal or even slightly smaller than those, which have systems of mechanisms 
of intensified light-capturing, one may establish that A. koninckii rather probably lived in well-lit conditions, and 
was not crepuscular or even nocturnal. The facets of apposition eyes of crustaceans living at greater depth are 
much larger (the facet diameter off the midwater amphipod crustacean Phronima (dorsal eye) is 130µm58,60, of the 
deep-sea isopod Cirolana ~ 150µm61, and of Limulus (Xiphosura, active at night), ~ 180µm62, all apposition eyes.

While in the trilobite investigated here most of the visual units fell out, or persisted just as relics of decayed 
material, some of the cavities in the eye described here still are filled with the remains of primary structures 
well preserved (Figs. 1f–k, 2a–I, k–m). Clearly a circular arrangement of 8 round elements (showing as white, 
Ø ~ 10 µm each) forming a kind of rosette (Ø ~ 35 µm) can be distinguished, grouped around a central component 
(showing as yellow, Ø ~ 8 µm, Figs. 1f,g; 2a–h). Protruding from the level of the surface and examined in side 
view, one can see that these elements are tops of small columns. Because this configuration sits in the position of 
the hollow pattern mentioned before, it must be interpreted as a relic of the visual unit still retaining its original 
position. The elements consequently are the remains of the receptor cells, the central structure represents the 
relic of the rhabdom (Figs. 1i,j; 2a–h). In two cases, (Fig. 2b,f) even grainy structures accompanying the rhab-
dom can be observed clearly, in others they are indicated as a grey collar around the rhabdom (Fig. 2c–e,g,h). 
Very cautiously they may be interpreted as relicts of so-called palisades (’Schaltzone’ in old literature), a region 
of lower refractive index around the rhabdom, improving the properties of the rhabdomes as a light guide63–65.

Screening pigment cells belong to the ’standard equipment’ of ommatidia (apposition type) to isolate the 
individual receptive units against each other optically. In trilobites the facets are separated against each other by 
’cuticular walls’, the interlensar scleras, and any screening pigment would not be necessary—obligate perhaps, 
however, due to the general phylogenetic context. In the oldest system of apposition eyes in trilobites, in S. ree-
tae18, pigment cells are not visible. Indeed around the ommatidium of A. koninckii in Fig. 2a–h there is a dark 
ring without discernable cell structures around the receptor cells. Keeping in mind, however, that melanin66 and 
other screening pigments are very stable over millions of years66–70, we may be confronted here with relics of the 
former pigment screen. To establish such a melanin containing cell-girdle around the receptor cells is physiologi-
cally expensive. Its existence may indicate that the cuticle, thus the cuticular ‘walls’ which in trilobites isolate the 
ommatidia against each other (interlensar sclerae), and probably the whole cuticle of this trilobite was translucent, 
like in modern shrimps and other small aquatic crustaceans for example (Fig. 2j)—a perfect camouflage in water 
to be invisible. Fossil pigment cells as suggested here have been found so far for example in eurypterids19, fish12 
and fossil insects15,44. It would be the first report of pigment in the apposition eye of trilobites.

The investigation of the counterpart revealed the lenses (Figs. 1k; 2k–m), which originally covered the visual 
units. The cavities seen in the part had formed post-mortally after the lenses were lost. Secondly, and most strik-
ingly, there is actually a unique example of a complete visual unit residing within the membrane in the coun-
terpart (Figs. 1k; 2k–m). It probably was stripped off from the rest of the lens-bearing part of the visual surface, 
seen from the proximate side in Fig. 2l,m. The almost spherical sensory unit (showing as white) is still covered 
by the lens and gives a unique impression of what this more than 400 million-year-old visual unit looked like. 
Between the lens and the receptor unit there is an indication of a very small band, just few micrometers wide. In 
this extremely flat ’girdle’ no internal differentiations can be made out (no cone cells for example). To find them 
fossilized in the dimensions we discuss here, however, surely would be over-ambitious. Even though it seems 
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that we may find here putatively traces of a small structure between lens and receptor unit, which in all other 
mandibulates is a crystalline cone (Fig. 1k red arrow; Fig. 2i blue band).

Discussion
The visual system of the excellently preserved Silurian trilobite Aulacopleura koninckii (Barrande, 1846) is 
revealed as a classical apposition compound eye. It consists of eight receptor cells, grouped around a central 
element, the rhabdom. The rhabdom is whole, surrounded by small spherical elements (Fig. 2a,b,f), which may 
be the relics of so-called palisades, enhancing the light-guiding properties of the rhabdom63–65.

There is no interspace between the rhabdomeres, as could be typical for neural superposition eyes. If the 
rhabdom was divided into separated sub-elements (rhabdomeres) this would indicate a neuronal superposi-
tion eye. Here rhabdomeres of adjacent ommatidia oriented in the same direction are combined to neuronal 
cartridges, enhancing the field of light capturing, as we know, for example in the neural superposition eyes 
of dipteran flies71–73, and there are strong indications also that comparable systems occur in certain beetles, 
craneflies, earwigs and waterbugs74,75. It seems to be more probable, however, that the rhabdom here is uniform. 
Neural and optical superposition eyes do not appear until higher in the fossil record. Each of the receptor units 
in A. koninckii is topped by a thick lens, below which a small interface may be made out, perhaps indication of a 
(reduced?) crystalline cone. The system likely is embraced by a pigment screen. In summary, the visual system of 
this trilobite is surely an apposition compound eye, as typical of many diurnal crustaceans and insects of today.

As mentioned previously an even older compound eye of a trilobite has been described recently, that of the 
olenellid Schmidtiellus reetae Bergström, 197318 from the base of the lower Cambrian18. In this trilobite the 
ommatidia lay in separated cellular ’baskets’. Here in A. koninckii the visual units still also lie very much sepa-
rated from each other, though no cellular ’basket’ can be discerned. If it existed it may have been very thin. In 
A. koninckii traces of pigment cells can be observed. At a first glance, they were not needed, because the optical 
isolation of the visual units in trilobites could be guaranteed by the compartmentalising cuticular ’walls’, the 
so-called interlensar sclera36. If this optical isolation indeed were fully functional, the existence of the pigment 
girdle was a phylogenetic heritage. The physiological expensive establishment of a screening pigment system 
indicates, however, that the small trilobite A. koninkii likely was a translucent trilobite, comparable to modern 
shrimps and other smaller aquatic crustaceans with translucent shells (Fig. 2j), providing an excellent camouflage 
in water. This separation of the individual ommatidia by deep cuticular partitions, and the pigment screen pro-
truding up to the lens (Fig. 2a,b), argue against an optical superposition eye as existing typically in shrimps and 
other modern decapod crustaceans. Here the light from many facets is exploited by each individual rhabdom, 
thereby enhancing photon capturing. The essential clear zone in the superposition compound eye, is absent in 
A. koninckii. Thus, the visual organs of this trilobite cannot be interpreted as an optical superposition eye.

An interesting point is the potentially existence of a crystalline cone, putatively represented as a very thin 
(~ 5 µm) layer, from outside appearing as a thin brownish collar between the lens and the adjacent receptor units 
(Fi Fig. 1k red arrow; Fig. 2i blue band). In well-known material from the fossil record are inverse relations. While 
in A. koninckii we find a thick lens, and putatively a thin crystalline cone, in the Jurassic crustacean Dololcaris 
ingens van Straelen, 192376 we found, conversely, a thin lens and an elongated crystalline cone, as typical of many 
modern crustaceans17. In crustaceans often this elongated crystalline cone acts as an index gradient lens with 
high refractive properties, because the cuticular lens, due to its relatively low refractive index (chitin: n ~ 1.53, 
sea water: n ~ 1.334) cannot focus the light efficiently enough. If the crystalline cone is very thin, or even missing, 
it may be argued that the lens of A. koninckii is the focusing, light refracting element. The high refractive power 
of the system in A. koninckii is facilitated by the shape of the lens, which is approximately spherical. There is no 
question, in our view that trilobite lenses consisted to a high degree of calcite, which with its highly refractive 
power, optimised the system very efficiently, and a short or no crystalline cone were satisfactory. Finally, phy-
logenetically trilobites stay in the context to euarthropods, thus should possess crystalline cones, and the thin 
layer in this specimen between lens and receptor unit may be a relic of a thin, reduced crystalline cone, because 
of its relative position to the other elements of the ommatidium.

It is also quite remarkable that in the compound eye of A. koninckii the receptive unit is quite short (~ 30 µm). 
While for example in a bee the relation of the diameter of the ommatidium to the length of the receptive unit 
(length of the sensory cells) is ~ 1: 16 (aperture 20 µm, receptor length 320 µm26, p. 66), in A. koninckii it is ~ 1 : 
1 (~ 30 µm Ø upper part of the receptor unit, ~ 30 µm length of the receptor unit, Fig. 1h,i). A long rhabdom in 
the centre of the receptor cells enables light to be absorbed over a substantial distance, and this is not the case 
in A. koninckii. This may be compensated by a relatively wide rhabdom (~ 8 µm), modern rhabdoms of diurnal 
arthropods typically have a width of 1.5–3.5 µm26, p. 110. In the eyes of nocturnal arthropods, and in the short 
ommatidia present in small eyes, often the width of the rhabdoms is enlarged. This normally facilitates to increase 
the angle over which photons are captured, but at the expense of resolution77, p. 70. Thus, this discovery of quite 
wide rhabdoms accords well with observations of recent compound eyes adapted to efficient photon capturing, 
as in nocturnal insects (8 µm78–80), or in mesopelagic crustaceans adapted to greater depths (8 µm81). Rhabdoms, 
however, may be even larger, as evident, for the cosmopolitan amphipod Streetsia, living at depths of 20–3000 m. 
Their apposition compound eyes have rhabdoms of 18–20 µm width82. These are just some examples. The small 
lens diameter (Ø ~ 30 µm) supports the interpretation, as given before that A. koninckii was a diurnally active 
arthropod, living in well-lit environments. Being not equipped with superposition eyes as for example modern 
shrimps, as discussed before the relatively wide rhabdom may have been of advantage to capture photons more 
efficiently. The ’wasted space’ between the lenses, where wider lenses could have been installed, indicates that the 
need to capture as many photons as possible was not the reason for this design of the compound eye—regarding 
this, the similarity to the eye of S. reetae, however, indicates that the stout ommatidium with a wide rhabdom, 
separated from its neighbours, is a primordial character. One may mention, however, that just four million years 
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after the appearance of S. reetae, trilobites with densely packed facets were clearly present (Holmia18), and that 
trilobites with crustacean-like crystalline cones and numerous, very flat lenses17 are likewise known.

Conclusion
In conclusion we describe here, in the Silurian trilobite Aulacopleura koninckii (Barrande, 1846)1, from the Na 
Černidlech Hill and Špičatý Hill near Loděnice in the Czech Republic (Silurian, Wenlock, Liten Formation, 
Motol Member, Monograptus flexilis-Zone) well preserved the sensory structures of its compound eye. The 
analysis reveals that this trilobite had an apposition compound eye, each ommatidium consisting of a thick 
lens, a flat crystalline cone, and 8 (visible) receptor cells grouped around a quite wide rhabdom (~ 8 µm). Ele-
ments grouped around the rhabdom, putatively relics of palisades, may have enhanced the properties of the the 
rhabdom as a light guide. The receptor cells are encompassed by a pigmented system, probably pigment cells, 
the first reported for trilobites so far. The lens diameter suggests that A. koninckii lived under good light condi-
tions, thus inhabited clear shallow waters, and probably was diurnal. In comparison to many modern diurnal 
arthropods, however, the ommatidial capsule appears short and stout. The relatively large interspaces between 
the ommatidia (~ 10–20 µm), thus wasting potential for capturing photons, may indicate a phylogenetic legacy. 
The latter view is supported by the similarity of the much older system of the trilobite S. reetae18. Finally the flat 
rather than elongated supposed crystalline cone may indicate that the lens itself had a high refractive power, in 
line with the understanding that it consisted of primary calcite.

Thus, the Silurian trilobite Aulacopleura koninckii (Barrande, 18461) from the Czech Republic in principle 
had a typical apposition compound eye, comparable to that of modern bees, dragonflies or diurnal crustaceans. 
The almost spherical receptor units are more separated and not as densely packed as in the hexagonal arrays of 
many modern compound eyes, but their internal structure very probably is almost identical. This 429-million-
year-old trilobite already possessed a modern type of compound eye, and it is shown that the principles of 
vision in modern honey bee or dragon flies, as many crustaceans, is almost half a billion years old. Its excellent 
preservation expressly underlines the relevance and potentials of insights into the fossil record in understanding 
the evolution to functional principles to modern sensory systems of today.

Material and methods
The photographs were taken with a Keyence digital-microscope (VHX-900F, VHZ-00R/0/T, VHZ-100R/W/T, 
VHZ-J20) at the Institute of Biology Education (Zoology), University of Cologne. The trilobite figured in this 
contribution is stored in the Geological Institute of the University of Cologne, GIK 191.
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