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Simple Summary: Fish meal (FM) is the primary ingredient of the farmed fish’s diet. However,
the decline in wild fish catches, and the growing demand for aquaculture feed have resulted in a
dramatic reduction of FM supply. Thus, it is essential to seek for alternatives, such as insect meal
(IM), to support sustainable aquafeed production. Among insects, the black soldier fly larvae are
promising because they are rich in essential amino acids, minerals, and vitamins. Therefore, the
present study was performed to assess the effects of IM as a partial or total replacement of FM on
the growth and hematological parameters and skin mucus immunity of Nile tilapia. Growth and
feed utilization efficiency indices, feed intake, survival rates, and hematological parameters were
not significantly different between FM and IM fed fish, while the mucosal immune response was
improved in IM fed fish. In conclusion, these results show that IM can be used to substitute FM
in the Nile tilapia diet. These findings can be used to develop alternative aquafeed for sustainable
aquaculture.

Abstract: Fish meal (FM) is no longer a sustainable source for the increasing aquaculture industry.
Animal proteins from insects may be used as a FM alternative source as long as they do not create
adverse effects in fish. Black soldier fly larvae meal (BSFLM) was tested in a 12-week experiment on
Nile tilapia (Oreochromis niloticus). Four hundred and twenty (14.77 ± 2.09 g) fish were divided into
seven groups and were fed seven diets: control (0% BSFLM-100% FM), and FM replaced by BSFLM
at rates of 10%, 20%, 40%, 60%, 80% and 100%. Growth indexes, feed utilization efficiency indices,
feed intake, and survival rate were not significantly different (p > 0.05) between FM and BSFLM fed
fish. Values of red blood cell, white blood cells, hemoglobin, hematocrit, mean corpuscular volume
and hemoglobin, mean corpuscular hemoglobin concentration, red blood cell distribution width,
and platelet values were not affected by BSFLM. Skin, mucus lysozyme, and peroxidase activities
were improved in BSFLM fed fish. BSFLM can be used as a substitution for FM in the Nile tilapia
(O. niloticus) diet at up to a 100% rate with no adverse effects.

Keywords: sustainable aquaculture; fish meal; black soldier fly larvae meal; Hermetia illucens; Nile
tilapia; Oreochromis niloticus; growth performance; haematological parameters; skin mucus immunity
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1. Introduction

The aquaculture sector increases by around 5.8% yearly because of rapid expansion
and intensification across the industry [1]. Fishmeal (FM) has been used as the primary
protein ingredient in aquaculture for decades because of its balanced essential amino acids,
easy digestibility, and palatability, crucial attributes to enhance nutrient digestion and
absorption [2]. Nevertheless, the gradual decline in wild fish catches, and the growing
demand for aquaculture feed resulted in a dramatically reduced supply of FM and the
elevation of diet prices [3,4]. FM is believed to no longer be capable of supporting the
development of the aquaculture industry in the coming years [5,6]. This raises the need to
seek better alternatives to FM for sustainable aquafeed production [7].

Protein sources of animal origins, such as insect meal (IM), can be used as alternative
sources for fish meal in aqua-feed [8–10]. In recent years, interest in the study of IM in fish
farming as a feasible alternative to feed has risen dramatically [11,12]. IM is a good source
of protein, minerals, and vitamins, similar to FM [13]. It is also rich in essential amino acids,
especially lysine, methionine, and leucine, containing no anti-nutritional elements [14,15].
Among insects, the black soldier fly larvae (BSFL) are particularly promising because of
their ability to turn food waste into premium protein, and as such mass production has
increased over recent years [7,8]. The BSFL contain about 30–58% protein and 10–30%
lipids and essential amino acids, similar to FM [16–18]. They also contain many macro-
and micro- minerals, as well as valuable vitamins [19].

The partial or total replacement of dietary FM with BSFL has been successfully demon-
strated in various fish species, such as: rainbow trout, Oncorhynchus mykiss [20]; Japanese
seabass, Lateolabrax japonicus [21]; Atlantic salmon, Salmo salar [8,10]; European sea bass, Di-
centrarchus labrax [7]; hybrid tilapia (Nile × Mozambique, Oreochromis niloticus × O. mozam-
bique) [22]; marron, Cherax cainii [23]; and rice field eel, Monopterus albus [24]. However, as
far as we know, there is limited information regarding the effects of black soldier fly larvae
meal (BSFLM) on the growth, hematology, and skin mucus of Nile tilapia, which occupies
the second highest position in the world in terms of production due to its high demand,
rapid growth, and fair prices [25,26]. Therefore, the present study was performed to assess
the effects of using BSFLM as a partial or total replacement for dietary FM on the growth,
hematology, and skin mucus immunity of Nile tilapia, O. niloticus.

2. Materials and Methods
2.1. Black Soldier Fly Larvae Meal (BSFLM) Preparation

Black soldier fly larvae (Hermetia illucens) were provided by Prof. Dr. Patcharin
Krutmuang, Department of Entomology and Plant Pathology, Faculty of Agriculture,
Chiang Mai University, Chiang Mai 50200, Thailand. They were dried in a hot air oven at
50 ◦C for 24 h. They were then ground into a fine powder and kept at 4 ◦C for further use.

2.2. Experimental Diets

The basal diet, which has been demonstrated to be suitable for Nile tilapia [27] was
prepared with the substitution of FM with BSFLM: 0 (Diet 1—control), 10% (Diet 2),
20% (Diet 3), Diet 4 (40%), Diet 5 (60%), Diet 6 (80), and Diet 7 (100%). Ingredients and
proximate composition of the basal diet and proximate composition of BSFLM are given
in Tables 1 and 2, respectively. Powdered feed obtained from Baan Pramong Company
Limited, Bangrabow, Ban Sang, Prachinburi, 25150, Thailand was completely mixed into
the manufacturing of feed pellets, and soybean oil and water were added to make a stiff
dough. It was then moved to form the pellets through an extruder at a temperature
of 100 ◦C. The wet pellets (size 2 mm) were then collected and dehydrated in a 50 ◦C
hot air oven to achieve a moisture content of three percent, then placed in plastic bags
and stored at 4 ◦C. The composition of the diets was analyzed following the method of
AOAC-Association of Official Analytical Chemists [28].
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Table 1. Ingredients and proximate composition of the experimental diets.

Ingredients (g/kg DM)
Diets

Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7

Fish meal (FM) 100 90 80 60 40 20 0
BSFLM 1 0 10 20 40 60 80 100

Corn meal 200 200 200 200 200 200 200
Soybean meal 450 440 435 415 400 380 365
Wheat flour 60 60 60 60 60 60 60

Rice bran 150 160 165 185 200 220 235
Cellulose 20 20 20 20 20 20 20

Soybean oil 5 5 5 5 5 5 5
Premix 2 10 10 10 10 10 10 10

Vitamin C 3 5 5 5 5 5 5 5

Proximate composition

Dry matter (%) 97.15 97.05 96.95 96.95 97.10 96.85 96.95
Crude protein (%) 30.21 29.98 29.90 29.83 29.79 29.18 28.81

Crude fiber (%) 3.10 2.90 2.43 3.01 3.14 3.22 2.52
Crude lipid (%) 4.78 4.79 4.78 4.83 4.75 4.85 4.73

Ash (%) 6.92 6.62 6.17 6.16 5.65 5.39 4.95
Ca (%) 0.98 0.87 0.87 0.75 0.56 0.39 0.25
P (%) 1.00 1.03 0.97 1.00 0.90 0.92 0.93

Gross energy (kJ/g) 17.37 17.37 17.29 17.37 17.37 17.29 17.37
1 BSFLM = Black soldier fly larvae meal. 2 Vitamin and trace mineral mix supplemented as follows (IU kg−1 or g kg−1 diet): retinyl acetate
1,085,000 IU; cholecalciferol 217,000 IU; D, L-a-tocopherol acetate 0.5 g; thiamin nitrate 0.5 g; pyridoxine hydrochloride 0.5 g; niacin 3 g;
folic 0.05 g; cyanocobalamin 10 g; Ca pantothenate 1 g kg−1; inositol 0.5 g; zinc 1 g; copper 0.25 g; manganese 1.32 g; iodine 0.05 g; sodium
7.85 g. 3 Vitamin C 98% 5 g.

Table 2. Composition of BSFLM.

Composition Amount

Energy (Kcal) 461

Water (%) 23.33

Protein (%) 26.12

Fat (%) 36.47

Carbohydrate (%) 7.24

Dietary fiber (%) 3.62

Ash (%) 6.84

Lauric acid (%) 17.25

Total vitamin A (µg/g) 0

Vitamin B1 (mg/g) 0.26

Omega-3 (mg/g) 244.71

Omega-6 (mg/g) 2835.37

Omega-9 (mg/g) 4100.19

2.3. Experimental Procedure

Chitralada 3 Nile tilapia (O. niloticus) fingerlings were purchased from Inland Aqua-
culture Research and Development Division, Department of Fisheries, Thailand. Fish were
fed a commercial feed from Charoen Pokphand Foods Public Company Limited (CP, 9950)
for 4 weeks and a basal diet for 15 days. Afterward, 420 fish (14.77 ± 2.09 g fish−1) were
later captured and distributed into 21 glass tanks (volume 100 L tank−1) at a density of
20 fish/tank. Each aquarium was supplied with continuous aeration via compressed air.
Fish were divided into 7 treatments in triplicates and fed on tested diets up to apparent



Animals 2021, 11, 193 4 of 19

satiation at 9:00 and 16:00 h for 12 weeks. The light was maintained at a 12:12 h light:dark
cycle with natural light. To maintain clear and healthy water throughout the experimental
period, three-quarters of the aquarium’s water was siphoned daily to remove feces and
uneaten food and was replaced with clean well-aerated water from a storage tank.

2.4. Water Quality Measurement

Water quality assessment was conducted every two weeks. Water temperature and
dissolved oxygen were measured using a YSI Model 52 meter. pH and NH4+ + NH3 were
measured using an IQ scientific meter and Phenate-hypochlorite following the method
of [29]. The TSD and conductivity were measured using HI 98311 (Hanna Instruments,
Bangkok, Thailand). The temperature (0 ◦C), conductivity (µS/cm), TDS (mg/L), dis-
solved oxygen (mg/L), pH, and total ammonia (mg/L) were 28.93 ± 1.60, 341.93 ± 31.07,
135.25 ± 21.76, 5.41 ± 0.23, 7.30 ± 0.17, and 0.09 ± 0.07, respectively.

2.5. Sample Collections
2.5.1. Blood Collection and Hematological Parameters

Fish were fasted for 24 h prior to the blood collection and anesthetized using clove
oil (5 mL L−1). Then, one mL of blood was taken from the fish’s caudal vein (15 fish per
treatment). The anticoagulant was heparin sodium. The blood with the anticoagulant
was immediately transferred into a 1.8 Eppendorf tube and stored at 4 ◦C for further
analysis. The red blood cell (RBC), hemoglobin (Hb), hematocrit (HCT), mean corpuscular
volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin
concentration (MCHC), red blood cell distribution width (RDW-CV), and platelet (PLT)
values were measured via a blood cell analyzer (Sysmex/XN-1000 S/N 19393, Meditop,
Soi Lat Phrao, Thailand). The measurement of RBC and white blood cell (WBC) counts
were performed as described in [30], while differential counts of lymphocytes, monocytes,
and neutrophils were detected by smears stained with Wright Giemsa.

2.5.2. Skin Mucus Preparation

Skin mucus was collected from 3 fish and pooled as reported in [31]. Briefly, the
anesthetized fish with clove oil (5 mL L−1 of water) were put in a polyethene bag con-
taining 10 mL of 50 mM NaCl. Fish were gently rubbed inside the bag for two minutes.
Afterward, the solution was immediately released into a 15 mL sterile tube and centrifuged
at 1500× g at 4 ◦C for ten minutes (5810R Eppendorf, Engelsdorf, Germany). Then, 500 µL
of supernatant were gathered and kept at −80 ◦C for further analysis.

2.6. Growth Parameter Calculations

At every 2 weeks interval, all fish were fasted for 24 h, and then growth parameters
and survival rates were determined using the following formulae: Daily weight gain
(DWG) = (mean final weigh − tcmean initial weight) ÷ t (days); Weight gain (WG) = (mean
final weight − mean initial weight); Specific growth rate (SGR %/day) = 100 × (lnWt
− lnWo) ÷ t (days); Relative growth rate (RGR%) = [Wf (final weight) − Wi (initial
weight)]/Wf × 100; Food conversion ratio (FCR) = Total amount of the feed consumed
(g)/Wet weight gain; Feed efficiency (FE%) = (1/FCR) × 100, and Survival: (SR%) = 100
(Nf ÷ Ni) with Nf and Ni: final and initial number of fish.

2.7. Fish Morphometric Indices

After exsanguination, 15 fish per treatment were dissected for hepatopancreas and vis-
cera collection. After that, they were placed in saline solution (0.86%) and stored at −20 ◦C.
The fish’s morphometric indices were calculated as the following equations: Condition
factor (CF) = 100 × BW in g/(TL in cm3); Hepatosomatic index (HSI) = 100 × (liver weight
(g)/whole fish weight (g)); Viscerosomatic index (VSI) = 100 × (viscera weight (g)/whole
fish weight (g)).
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2.8. Digestible Efficiency Measurement

Apparent digestibility coefficients were determined following the method reported
in [32] with the use of 0.5% chromic oxide as a marker. Fish’s feces in each tank were
collected and stored at −20 ◦C, and then oven-dried at 50 ◦C for 48 h. The dried feces
were used for analyzing chromic oxide and nutrients, according to the method described
in [33]. Apparent digestibility coefficients (ADC) were measured by the following equa-
tion ADCdiet = [1 − (dietary Cr2O3 level × feces nutrient or energy level: feces Cr2O3
level × dietary nutrient or energy level)] × 100.

2.9. Mucosal Immune Responses
2.9.1. Skin Mucus Lysozyme Assay

Skin mucus lysozyme was determined using the method reported in [34] with slight
modifications, as mentioned in [35]. Briefly, 100 µL of skin mucus from each fish were
loaded into 96 well-plates, in triplicate. Micrococcus lysodeikticus (100 µL, 0.3 mg mL−1 in
0.1 M citrate phosphate buffer, pH 5.8; Sigma-Aldrich, Co Ltd, Bangkok, Thailand ) solution
was loaded into each well and gently mixed. The change in turbidity was recorded every
30 s for 10 min at 540 nm, 25 ◦C using a microplate reader. The sample’s equivalent unit
of activity was determined and compared with the standard, and expressed as µg mL−1

serum.

2.9.2. Skin Mucus Peroxidase Assay

Peroxidase activity was performed using the protocol reported in [36] with modifi-
cation as mentioned in [35]. Briefly, 5 µL of skin mucus from each fish were loaded into
96 flat-bottomed well-plates in triplicate. Then, 45 µL of Hank’s Balanced Salt Solution
(without Ca+2 or Mg+2) and 100 µL of solution (contains 40 mL of distilled water + 10 µL of
H2O2, 30%; Sigma Aldrich + one pill of 3,3’,5,5’-tetramethylbenzidine, TMB; Sigma Aldrich)
were added into each well. Once the reaction color turned blue (30–60 s), 50 µL of 2 M
H2SO4 were added to each well. The optical density was read at 450 nm by a microplate
reader (Synergy H1, BioTek, Winooski, VT, USA, USA). Samples not containing serum or
skin mucus were considered to be blanks. A single unit was defined as the amount which
produced an absorbance change, expressed as units (U) mL−1 of serum or mucus.

2.10. Statistical Analysis

One-way variance analysis (ANOVA) and Duncan’s Multiple Range Test) using SAS
software, 2003 were applied for data analysis after checking the normality of the data by
the Kolmogorov-Smirnov test. Various mean values (p < 0.05) and other measurements are
shown as mean ± SD. The optimum BSFLM level was determined using quadratic and
linear regression analyses [37].

3. Results
3.1. Growth Performance

Growth and feed utilization parameters are displayed in Tables 3 and 4. The results
indicate that the highest growth parameters were observed in fish Diets 3 and 4 (Table 3).

However, no significant differences were recorded between black soldier fly larvae
meal (BSFLM) and the control diets. No differences in appetite were detected between fish
fed on modified diets and controls. Moreover, no significant differences in total feed intake,
and rate of fish intake, fish conversion ratio, feed efficiency, and total digestibility were
displayed between the control and BSFLM substitution fed fish (Table 4). In con trast, a
significant increase in apparent protein digestibility coefficient was observed in fish fed
BSFLM compared to the control, and the highest value was observed in fish fed Diet 7
(Table 4).
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Table 3. Growth parameters (mean ± standard deviation, SD) after 12 weeks of feeding with control (0%BSFLM and 100%
FM, and FM replaced at 10%, 20%, 40%, 60%, 80%, and 100% of the BSFLM.

Diets IBW FBW DWG WG SGR RGR HPA SR

1 14.62 ± 1.90 44.04 ± 3.52 0.35 ± 0.03 29.42 ± 2.19 1.32 ± 0.10 66.85 ± 2.67 0.88 ± 0.07 100
2 15.31 ± 2.24 45.25 ± 5.40 0.36 ± 0.04 29.95 ± 3.17 1.29 ± 0.03 66.25 ± 0.95 0.91 ± 0.11 100
3 14.72 ± 3.36 46.35 ± 0.71 0.38 ± 0.04 31.63 ± 3.02 1.39 ± 0.26 68.28 ± 7.02 0.93 ± 0.01 100
4 14.66 ± 2.82 47.52 ± 3.86 0.39 ± 0.02 32.86 ± 1.51 1.41 ± 0.15 69.32 ± 3.75 0.95 ± 0.08 100
5 14.91 ± 2.06 47.38 ± 4.22 0.39 ± 0.03 32.47 ± 2.87 1.38 ± 0.10 68.57 ± 2.66 0.95 ± 0.08 100
6 14.67 ± 2.61 44.58 ± 4.40 0.36 ± 0.04 29.91 ± 3.02 1.33 ± 0.16 67.16 ± 4.31 0.89 ± 0.09 100
7 14.51 ± 2.06 43.02 ± 3.15 0.34 ± 0.04 28.50 ± 3.37 1.30 ± 0.17 66.19 ± 4.70 0.86 ± 0.06 100

p-value 1.000 0.734 0.442 0.442 0.937 0.946 0.734 100
Means overall 14.77 ± 2.09 45.45 ± 3.61 0.37 ± 0.03 30.68 ± 2.82 1.35 ± 0.14 67.52 ± 3.64 0.91 ± 0.07 100

IBW (g) = Initial body weight; FBW (g) = Final body weight; DWG (g) = Daily weight gain (g per day); WG (g) = Weight gain; SGR
(%/day) = Specific growth rate (% per day); RGR (%) = Relative growth rate; HPA = Harvest (kg per aquaria); SR (%) = Survival rate.

Table 4. Feed utilization (mean ± SD) after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at
10%, 20%, 40%, 60%, 80%, and 100% of the BSFLM.

Diet Total Feed
Intake (kg)

Rates of Feed
Intake

(g/fish/day)

Feed
Conversion

Ratio

Feed Efficiency
(%)

Total
Digestibility

(%)

Apparent
Protein

Digestibility
Coefficient (%)

1 1.96 ± 0.13 1.25 ± 0.08 2.22 ± 0.17 45.08 ± 3.32 47.65± 0.39 75.22 ± 0.52 d

2 1.93 ± 0.07 1.24 ± 0.05 2.15 ± 0.27 46.92 ± 5.39 48.19± 0.37 76.20 ± 0.16 c

3 1.99 ± 0.06 1.28 ± 0.04 2.15 ± 0.10 46.63 ± 2.03 47.83± 0.81 76.17 ± 0.30 c

4 2.02 ± 0.12 1.29 ± 0.08 2.14 ± 0.31 47.38 ± 6.39 47.92± 0.00 77.45 ± 0.23 b

5 2.03 ± 0.21 1.30 ± 0.13 2.16 ± 0.42 47.25 ± 8.31 48.72± 0.37 78.04 ± 0.27 b

6 1.92 ± 0.06 1.23 ± 0.04 2.16 ± 0.17 46.53 ± 3.83 48.18± 1.14 77.38 ± 0.45 b

7 1.91 ± 0.02 1.23 ± 0.01 2.23 ± 0.15 44.92 ± 2.90 48.19± 0.37 82.84 ± 0.60 a

p-value 0.757 0.758 0.998 0.993 0.687 0.000
Means overall 1.96 ± 0.10 1.26 ± 0.07 2.17 ± 0.21 46.39 ± 4.31 48.09 ± 0.55 77.61 ± 2.41

a,b—Different superscript letters indicate statistically different values.

The fish’s morphometric indices show that no noticeable discrepancies in condition
factor (CF), hepatosomatic (HSI), and viscerosomatic indexes (VSI) between the control
and BSFLM substitution diets (Table 5). However, the final total length was significantly
improved in fish fed Diet 3 (Table 5).

Table 5. Condition factor (CF), hepatosomatic index (HSI), and viscerosomatic index (VSI) after 12 weeks of feeding with
control (0% BSFLM and 100% FM), and FM replaced at 10%, 20%, 40%, 60%, 80%, and 100% of the BSFLM.

Diet Initial Total
Length (cm)

Final Total Length
(cm) CF HSI (%) VSI (%)

1 9.73 ± 0.80 14.69 ± 0.75 b 1.60 ± 1.60 1.67 ± 0.34 7.48 ± 1.52
2 9.84 ± 0.65. 15.30 ± 0.59 ab 1.57 ± 0.19 1.63 ± 0.43 6.50 ± 1.29
3 9.40 ± 0.89 15.55 ± 0.72 a 1.60 ± 0.06 1.68 ± 0.57 6.33 ± 1.15
4 9.71 ± 1.03 14.75 ± 0.74 b 1.54 ± 0.08 1.39 ± 0.30 8.01 ± 2.28
5 9.51 ± 0.87 15.17 ± 0.88 ab 1.60 ± 0.09 1.62 ± 0.38 6.10 ± 1.20
6 9.55 ± 0.78 14.69 ± 0.52 b 1.61 ± 0.10 1.79 ± 0.50 7.23 ± 1.74
7 9.70 ± 0.60 14.91 ± 0.99 b 1.62 ± 0.11 1.69 ± 0.48 6.67 ± 1.63

p-value 0.785 0.011 0.576 0.330 0.137
Means overall 9.63 ± 0.80 15.01 ± 0.80 1.59 ± 0.11 1.64 ± 0.44 6.90 ± 1.64

a,b—Different superscript letters indicate statistically different values.
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The optimum BSFLM was 47% based on quadratic regression of weight gain, final
body weight, daily weight gain, specific growth rate, and relative growth rate. However,
the linear regression showed no significant differences (Figures 1–6).
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Figure 1. Linear (a) and quadratic (b) estimate: When X = % Black soldier fly larvae meal (BSFLM)
replacement; Y = weight gained after 12 weeks of feeding with control (0% BSFLM and 100% fish
meal (FM)), and FM replaced at 10%, 20%, 40%, 60%, 80%, and 100% of the BSFLM.
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Figure 2. Linear (a) and quadratic (b) estimate: When X = %BSFLM replacement; Y = Final body
weight after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at 10%,
20%, 40%, 60%, 80%, and 100% of the BSFLM.
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Figure 3. Linear (a) and quadratic (b) estimate: When X = %BSFLM replacement; Y = Daily weight
gain after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at 10%, 20%,
40%, 60%, 80%, and 100% of the BSFLM.
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Figure 4. Linear (a) and quadratic (b) estimate: When X = %BSFLM replacement; Y = Weight gain
after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at 10%, 20%, 40%,
60%, 80%, and 100% of the BSFLM.
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Figure 5. Linear (a) and quadratic (b) estimate: When X = %BSFLM replacement; Y = Specific growth
rate after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at 10%, 20%,
40%, 60%, 80%, and 100% of the BSFLM.
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Figure 6. Linear (a) and quadratic (b) estimate: When X = %BSFLM replacement; Y = Relative growth
rate after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at 10%, 20%,
40%, 60%, 80%, and 100% of the BSFLM.

3.2. Blood Parameters

The blood parameters of Nile tilapia fed BSFLM are illustrated in Tables 6 and 7. The
results reveal that there were no significant differences in Red blood cell (RBC), hemoglobin
(Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin
(MCH), mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution
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width (RDW-CV), and platelet (PLT). values between the control and BSFLM fed fish
(Table 6).

Table 6. Blood parameters after 12 weeks of feeding with control (0% BSFLM and 100% FM), and FM replaced at 10%, 20%,
40%, 60%, 80%, and 100% of the BSF.

Diet
RBC Hb HCT MCV MCH MCHC RDW-CV PLT

106/µL g/dL % fl pg g/dL % 103/µL

1 1.46 ± 0.33 5.18 ± 1.37 23.24 ± 6.33 158.42 ± 19.69 35.36 ± 3.22 22.44 ± 1.53 12.41 ± 3.56 34.75 ± 43.05
2 0.77 ± 0.42 3.88 ± 2.42 12.90 ± 7.89 159.40 ± 22.48 48.82 ± 20.39 29.98 ± 9.14 10.45 ± 1.34 26.00 ± 4.18
3 1.29 ± 0.29 4.89 ± 1.29 20.17 ± 3.75 157.94 ± 18.11 38.23 ± 8.99 24.00 ± 3.10 11.68 ± 3.49 17.00 ± 12.73
4 1.23 ± 0.43 4.61 ± 1.57 20.03 ± 7.05 163.67 ± 21.82 37.95 ± 5.71 23.16 ± 0.75 14.30 ± 4.26 33.22 ± 37.68
5 1.01 ± 0.68 4.11 ± 1.92 16.10 ± 9.54 167.81 ± 19.46 48.93 ± 19.99 28.56 ± 8.95 16.97 ± 7.31 25.64 ± 25.49
6 1.24 ± 0.63 5.89 ± 2.70 22.40 ± 12.86 174.06 ± 23.98 48.01 ± 11.76 27.68 ± 6.04 15.01 ± 2.96 22.11 ± 11.50
7 1.07 ± 0.63 4.34 ± 2.58 17.03 ± 10.96 157.64 ± 20.84 43.13 ± 16.48 27.04 ± 8.23 11.17 ± 2.20 34.75 ± 34.34

p-value 0.340 0.547 0.378 0.639 0.236 0.171 1.69 0.85
Means
overall 1.18 ± 0.52 4.78 ± 2.04 19.28 ± 9.09 163.11 ± 20.70 42.65 ± 13.52 25.92 ± 6.28 13.20 ± 3.88 27.97 ± 28.00

Red blood cell (RBC), hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH),
mean corpuscular hemoglobin concentration (MCHC), red blood cell distribution width (RDW-CV), Platelets (PLT). Also, no significant
differences in white blood cell count (WBC), neutrophil, lymphocyte, and monocyte were detected between the control and BSFLM fed fish
(Table 7).

Table 7. White blood cell count WBC differential after 12 weeks of feeding with control (0% BSFLM
and 100% FM), and FM replaced at 10%, 20%, 40%, 60%, 80%, and 100% of the BSF.

Diet
WBC Neutrophil Lymphocyte Monocyte

103/µL % % %

1 3.59 ± 1.36 34.00 ± 26.25 50.78 ± 26.88 14.33 ± 15.51
2 3.05 ± 1.04 47.40 ± 24.94 36.80 ± 23.95 13.80 ± 5.45
3 3.58 ± 1.01 39.14 ± 19.34 47.00 ± 21.49 13.43 ± 9.52
4 3.87 ± 1.28 24.90 ± 13.64 63.03 ± 22.10 11.09 ± 12.49
5 4.25 ± 0.96 22.29 ± 18.95 63.00 ± 17.26 13.00 ± 8.87
6 3.59 ± 2.02 47.22 ± 33.32 40.33 ± 24.96 11.33 ± 10.91
7 3.69 ± 0.92 39.88 ± 21.57 45.25 ± 28.93 13.13 ± 10.43

p-value 0.838 0.261 0.260 0.996
Means overall 3.68 ± 1.28 35.95 ± 23.97 50.06 ± 24.59 12.77 ± 10.72

3.3. Skin Mucus Immune Response

Skin mucus lysozyme (SMLA) and skin mucus peroxidase (SMPA) activities of fish
fed BSFLM substitution diets are illustrated in Table 8. The results show that BSFLM
diets significantly (p ≤ 0.05) stimulated SMLA and SMPA after 12 weeks of feeding with
the maximum amounts recorded in Diet 4 and 5 compared to the control. No significant
differences in SMLA and SMPA (p ≥ 0.05) were detected in fish fed diets 2, 3, 6, and 7.

Table 8. Skin mucus lysozyme (SMLA) and skin mucus peroxidase (SMPA) after 12 weeks of feeding with control (0%
BSFLM and 100% FM), and FM replaced at 10%, 20%, 40%, 60%, 80%, and 100% of the BSFLM.

Skin
Parameters Diet 1 Diet 2 Diet 3 Diet 4 Diet 5 Diet 6 Diet 7

SMLA 0.99 ± 0.04 c 1.45 ± 0.05 b 1.86 ± 0.07 b 2.59 ± 0.12 a 2.35 ± 0.09 a 1.55 ± 0.21 b 1.76 ± 0.13 b

SMPA 0.09 ± 0.006 c 0.12 ± 0.002 b 0.13 ± 0.007 b 0.18 ± 0.005 a 0.17 ± 0.003 a 0.12 ± 0.002 b 0.11 ± 0.005 b

a,b,c—Different superscript letters indicate statistically different values.
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4. Discussion

Fish nutritionists focus on the feeding strategies required for the optimal growth
of Nile tilapia in particular due to its popularity as an affordable, nutritious, and cheap
source of animal proteins [38]. The use of black soldier fly larvae meal (BSFLM) as a
potential source of protein in tilapia diets has been abundantly investigated [7,22,24,39].
Concurrently, the results of the present study illustrate that fish fed up to 100% of the
BSFLM inclusion level (total replacement of fish meal (FM)) had no adverse effects on the
growth performance, somatic indices, and survival rate of Nile tilapia. In this context,
Rana, Salam, Hashem, and Islam [40] elucidated that mono-sex tilapia fed diets with
BSFLM replaced with 50% of FM displayed similar growth performance to the control
group. Similarly, Ushakova, Ponomarev, Bakaneva, Fedorovykh, Levina, Kotel’nikov,
Kotel’nikova, Bastrakov, Kozlova, and Pavlov [41] reported that feeding Mozambique
tilapia with dried flour of BSFLM pre-pupae in a dose of 0.5 g kg−1 of feed for 30 days
resulted in a significant increase of average daily gain with no significant differences
in the survival rate. Additionally, Dietz and Liebert [42] reported that the inclusion of
50% BSFLM as a replacer for soy protein-concentrate did not compromise the growth
performance and feed conversion ratio (FCR) of Nile tilapia. Interestingly, when FM
was replaced with 50% of BSFLM, the results displayed no adverse effects on the growth
performance of Nile tilapia [43]. The replacement of 50% of the FM with a mixture of
BSFLM and Manihot esculenta leaf meal resulted in increased growth of Nile tilapia [44].
Likewise, Devic, Leschen, Murray, and Little [45] observed no adverse effects on the growth
performance of Nile tilapia fed up to 80 g BSF/kg diet. Toriz–Roldan, Ruiz–Vega, García–
Ulloa, Hernández–Llamas, Fonseca–Madrigal, and Rodríguez–González [46] illustrated
that dietary inclusion of BSFLM at the rate of 6% did not affect the growth performance;
however, the protein efficiency ratio was enhanced. More recently, Fisher, Collins, Hanson,
Mason, Colombo, and Anderson [8] indicated that Atlantic salmon fed diets containing up
200 g kg−1 of BSFLM showed growth performances similar to the control. Similarly, no
significant difference in the fish growth and survival rate was recorded in European sea
bass (Dicentrarchus labrax) that was fed BSF at rates of up to 50% [7]. Li, Kortner, Chikwati,
Belghit, Lock, and Krogdahl [10] reported that total substitution of FM with BSFLM does
not compromise the gut health of seawater phase Atlantic salmon.

The measured feed efficiency indices, such as total feed intake, rates of feed intake, feed
conversion ratio, feed efficiency, and total digestibility were similar among tilapia groups
that were fed different levels of BSFLM. These results were similar to previous results
reported in rainbow trout (Oncorhynchus mykiss) [20,47], Atlantic salmon (S. salar) [8,10,48],
Japanese seabass (Lateolabrax japonicas) [21], zebrafish (Danio rerio) [49], and European sea
bass (D. labrax) [7,50]. Interestingly, a significantly higher apparent protein digestibility
coefficient was observed in fish fed BSFLM compared to the control diets, and the highest
value was observed in fish fed Diet 7. The results were in disagreement with a previous
study, which showed that the apparent digestibility coefficient of crude protein was lowest
in fish fed insect meal diets [51]. The presence of chitin in insect meal might interfere
with the utilization of protein [52,53]. Nonetheless, several investigations demonstrate that
chitinolytic enzyme activities were found in the organs of some fish, such as gastric mucosa,
intestinal mucosa, pyloric caeca, and pancreas [54–57]. Nile tilapia, an omnivorous species
with a great ability to fed on plankton, may possess some advantages in chitin degradation
and digestion [53,58,59]. The feeding nature and significant intake of chitin make it likely
that chitinolytic enzymes play an important role for tilapia digestive physiology [53].
Moreover, the dietary inclusion of chitin could increase gut microflora diversity and
act against several harmful bacteria, such as Escherichia coli, Anaerorhabdus furcosa, and
Aeromonas hydropila [60–64]. Additionally, it has been reported that BSFLM is a rich source of
omega 3,6, and 9 [15,65–69], a composition that may improve the growth performance of the
host. Based on quadratic regression analysis, the optimal BSFLM level was 47%. However,
it is important to underline that the lowest p-value for the quadratic analysis is p = 0.052,
slightly above the p < 0.05 limit considered "significant". The optimal BSFLM level is higher
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than in Atlantic salmon (Salmo salar) (12.5%) [39], hybrid tilapia (Nile × Mozambique,
Oreocromis niloticus × O. mozambique) (30%) [22], and rice field eel (Monopterus albus)
(15.78%) [24]; however, it is lower than in European sea bass (D. labrax) and grass carp
(Ctenopharyngodon idellus) (50%) [7,70] and Japanese seabass (L. japonicus) (64%) [21].

Hematological indices of fish are regarded as essential measurements for evaluat-
ing the general health status and physiological stress responses of fish fed formulated
rations [71]. Herein, the impacts of feeding BSFLM on several hematological indices of
tilapia were evaluated. The results displayed that the inclusion of BSFLM did not influence
the redblood cells (RBCs) or the white blood cells (WBCs). Also, Zhou, Liu, Ji, and Yu [72]
found that replacement of FM by BSFLM at 35, 70, 105, and 140 g BSFLM/kg had no
effects on Jian carp’s glucose, total protein, albumin, globulin, aspartate transaminase and
alanine transaminase. Yildirim–Aksoy, Eljack, Schrimsher, and Beck [22] also reported
that hybrid tilapia (O. niloticus × O. mozambique) fed a 30% BSFLM diet for 12 weeks
showed no influence on hematological values values. Likewise, Abdel–Tawwab, Khalil,
Metwally, Shakweer, Khallaf and Abdel–Latif [7], found that no significant changes were
observed in counts of WBCs, lymphocytes, monocytes, and neutrophils in BSFLM-fed fish
as compared to the FM-fed fish. Conversely, Ushakova, Ponomarev, Bakaneva, Fedorovykh,
Levina, Kotel’nikov, Kotel’nikova, Bastrakov, Kozlova, and Pavlov [41] observed increased
hemoglobin in Mozambique tilapia (O. mossambicus) fed on a diet supplemented with dried
black soldier flypre-pupae flour for one month.

The lysozyme activity can act as a non-specific molecule that beneficially protects the
fish from the infectious disease through the breakdown of 1,4 glycosidic bonds present
in the peptidoglycan of both Gram-positive and Gram-negative cell walls [73]. The en-
hancement of serum lysozyme activity will help in the stimulation of the fish’s immune
responses and may contribute positively to the fish’s resistance against the challenged
pathogens [24,74]. The results displayed an improved lysozyme and peroxidase activities
in the skin mucus of fish fed 4% and 6% BSFLM, which refers to the enhanced immunity of
fish in these groups. Xiao, Jin, Zheng, Cai, Yu, Yu, and Zhang [75] illustrated that the serum
lysozyme activity of yellow catfish was not significantly different between the groups fed
with BSFLM when compared with the control group. However, their values were increased
over the control fish. In addition, Foysal, Fotedar, Tay, and Gupta [23] illustrated that
marron (Cherax cainii) fed on both BSFLM supplemented diets showed significant enhance-
ment of serum lysozyme activity. It has been reported that several fish species are able to
synthesize endogenous chitinases, probably due to differences in their gut microbiota [51].
It is well known that dietary BSFLM has abundant amounts of chitin involved in increasing
the abundance of microbial communities in the fish gut, thus acting as prebiotic substances
that could induce immunostimulant impacts on fish [76,77]. However, further studies are
required to find out the reasons for the enhanced immunity of fish fed BSFLM.

5. Conclusions

It can be concluded that BSFLM is regarded as one of the best alternatives for partial
or complete replacement of FM in Nile tilapia diets. Fish fed the optimal level of included
BSFLM can grow ideally without any adverse effects on the feed efficiency, somatic indices,
and hematological parameters. The optimal level of included BSFLM also increased
activities of lysozyme and peroxidase in the skin mucus. Based on the obtained results,
BSFLM can completely replace FM in the diets of Nile tilapia without compromising the
growth performance, feed efficiency, and health condition.
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