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The idea of “receptor mosaics” is that proteins may form complex and dynamic networks
with respect to time and composition. These have the potential to markedly expand the
diversity and specificity of G protein-coupled receptors (GPCR) signaling, particularly in
neural cells, where a few key receptors have been implicated in many neurological and psy-
chiatric disorders, including addiction. Metabotropic glutamate type 5 receptors (mGlu5)
can form complexes with other GPCRs, including adenosine A2A and dopamine D2 recep-
tors. mGlu5-containing complexes have been reported in the striatum, a brain region critical
for mediating the rewarding and incentive motivational properties of drugs of abuse. mGlu5-
containing complexes and/or downstream interactions between divergent receptors may
play roles in addiction–relevant behaviors. Interactions between mGlu5 receptors and other
GPCRs can regulate the rewarding and conditioned effects of drugs as well as drug-seeking
behaviors. mGlu5 complexes may influence striatal function, including GABAergic output
of striatopallidal neurons and glutamatergic input from corticostriatal afferents. Given their
discrete localization, mGlu5-[non-mGlu5] receptor interactions and/or mGlu5-containing
complexes may minimize off-target effects and thus provide a novel avenue for drug discov-
ery. The therapeutic targeting of receptor–receptor functional interactions and/or receptor
mosaics in a tissue specific or temporal manner (for example, a sub-population of receptors
in a “pathological state”) might reduce detrimental side effects that may otherwise impair
vital brain functions.
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DRUG ADDICTION
Drug and alcohol addiction is a major problem in Western soci-
ety where substance abuse is associated with considerable social,
medical, and financial costs (Collins and Lapsley, 2002). It has
been estimated that annually around $7.5 billion is associated
with alcohol and alcohol-related problems in Australia and about
5% of the total annual mortality is due to this (Collins and
Lapsley, 2002). The Australian Institute of Health and Welfare
estimated that in 2004, more than 56,000 people had used opiates
in the previous 12 months and around 1% of the population had
used cocaine (AIHW 2005). Due to the impact on society and
limited success of current therapies to treat addiction, extensive
research into the pathophysiology underlying alcoholism and drug
abuse is ongoing. In particular, research efforts are focused toward
understanding the persistent vulnerability to relapse displayed by
drug-addicted individuals despite months or even years of absti-
nence (Gossop et al., 1989; Dejong, 1994; Jupp and Lawrence,
2009).

Current preclinical research into potential treatments for addic-
tion is focused on gaining a greater understanding of the neuro-
biological mechanisms underpinning both relapse vulnerability

and the transition from casual to compulsive drug use. This
knowledge will enable the identification of potential therapeu-
tic targets for drug development. At present there is a paucity
of pharmacotherapies on the market for the treatment of addic-
tions; none of which are particularly effective and involve multiple
off-target effects (Jupp and Lawrence, 2009). For this reason it is
vital that new therapeutic targets are identified that have potential
in this regard. Complexes containing the metabotropic glutamate
receptor type 5 (mGlu5), and/or functional interactions between
mGlu5 and other G protein-coupled receptors (GPCRs), represent
a novel therapeutic option worthy of investigation due to the pos-
sibility of limiting off-target effects. mGlu5 has been implicated
in numerous central processes, thus targeting mGlu5-containing
complexes/functional receptor interactions that are restricted to
addiction–relevant brain areas provide an avenue to selectively
target those mGlu5 involved in reward and drug-seeking behavior
(Bird and Lawrence, 2009b).

mGlu5 AND ADDICTION
A variety of GPCRs have been shown to play critical roles in the
reinforcing and motivational properties of drugs, drug-induced
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plasticity and drug-seeking behavior (Traynor, 2010). A sub-
stantial body of evidence exists which implicates metabotropic
glutamate receptors in many of these facets of drug addiction
(Bird and Lawrence, 2009a; Olive, 2009) and among them mGlu5
seems to play a significant role. mGlu5 belongs to a distinct
family of eight GPCRs that are activated by l-glutamate, the
major fast excitatory neurotransmitter in the central nervous
system (CNS). At the signaling level, mGlu5 is known to be
associated with phosphoinositide hydrolysis and the activation
of phospholipase C, stimulation of adenylate cyclase and inhibi-
tion of voltage-operated calcium channels (Dhami and Ferguson,
2006). Signaling via mGlu5 is thought to play a role in synap-
tic plasticity, ultimately affecting learning and memory, neuronal
development and neurodegeneration (Lu et al., 1997). It is also
thought to have a role in a number of behaviors including stress
responses, anxiety-like, and depressive-like behavior (Tatarczyn-
ska et al., 2001). mGlu5 is highly expressed in the olfactory bulb
and tubercle, dorsal striatum, nucleus accumbens, cerebral cortex,
hippocampal formation, and amygdala (Shigemoto et al., 1993;
Romano et al., 1995). In the striatum, mGlu5 is located pri-
marily in the perisynaptic ring and at the postsynaptic density
(Kennedy, 2000; Smith et al., 2000), including striatal projection
neurons containing enkephalin (Testa et al., 1995). Evidence of
presynaptic localization of mGlu5 on cortical inputs to the stria-
tum also exists (Romano et al., 1995; Rodrigues et al., 2005). The
mGlu5 receptor is structurally linked to the NMDA receptor via
a protein scaffold (Naisbitt et al., 1999) and functional interac-
tions have been demonstrated between the two receptors (Attucci
et al., 2001). Thus, mGlu5 receptors are perfectly positioned to
influence the mesolimbic, corticotegmental, and corticostriatal
pathways known to be critical for the actions of drugs of abuse
and drug-induced plasticity.

The first evidence to suggest a role for mGlu5 in the rewarding
properties of drugs of abuse was provided by Chiamulera et al.
(2001) who reported that mice lacking mGlu5 failed to intra-
venously self-administer a range of doses of cocaine and failed
to show any hyperactivity after acute administration of the drug.
Subsequent pharmacological studies have supported these initial
findings. Antagonism of mGlu5 can reduce the self-administration
of multiple drugs of abuse as well as reinstatement of drug-seeking,
indicating a facilitatory role for this receptor in these behaviors
(Olive, 2009). For example, the mGlu5 antagonists 2-methyl-6-
(phenylethynyl)-pyridine (MPEP) and 3-[(2-methyl-1,3-thiazol-
4-yl)ethynyl]pyridine (MTEP) reduce self-administration of alco-
hol, cocaine, and nicotine in rats (Kenny et al., 2003; Back-
strom et al., 2004; Cowen et al., 2005) as well as alcohol and
morphine in mice (Cowen et al., 2007; Brown et al., 2011b).
These antagonists can also attenuate reinstatement of alcohol-
(Backstrom et al., 2004), cocaine- (Backstrom and Hyytia, 2006),
nicotine- (Bespalov et al., 2005), opiate- (Brown et al., 2011b), and
methamphetamine-seeking (Gass et al., 2009) in animal mod-
els of relapse, indicating a clear role for mGlu5 in drug-seeking
behavior across a broad range of reinforcers. Genetic mouse mod-
els have also implicated mGlu5 in the reinforcing and motiva-
tional properties of drugs of abuse. In addition to the original
work by Chiamulera and colleagues, deletion of the mGlu5 gene
results in altered central reward processing in the case of ethanol

(Bird et al., 2008) and an absence of drug-induced synaptic plas-
ticity in the ventral tegmental area in the case of cocaine (Bird
et al., 2010). Thus, the putative involvement of mGlu5 in addic-
tive behavior suggests that selective inhibition of this receptor
may provide an exciting new approach for treatment of addictive
disorders.

More recently evidence has been forthcoming which impli-
cates mGlu5 in associative reward learning processes more gen-
erally. Published reports suggest systemic administration of the
selective mGlu5 antagonist MTEP prior to conditioning disrupts
the expression of conditioned reinforcement by food delivery
(O’Connor et al., 2010). This suggests a critical role for mGlu5
in the acquisition of incentive properties by a conditioned stim-
ulus (O’Connor et al., 2010); an observation which is supported
by the finding that mice with knockdown of mGlu5 in striatal
D1-expressing neurons exhibit diminished cue-induced cocaine-
seeking, as well as impaired incentive learning (Novak et al., 2010).
Hence mGlu5 may play a central role in associative reward learning
processes (Novak et al., 2010) in addition to the rewarding proper-
ties of drugs of abuse. This possible role in incentive learning is not
inconsistent with the involvement of mGlu5 in cue-induced drug-
seeking behavior (Backstrom et al., 2004; Backstrom and Hyytia,
2006). Indeed, in the operant conditioning paradigm, the discrete
cue is a conditioned stimulus and as such needs to acquire incen-
tive motivational properties in order to elicit drug-seeking upon
re-presentation. Collectively, these studies provide further insight
into the potentially complex role of mGlu5 in both reward and
reward learning.

A role for mGlu5 in extinction learning relevant to drug
use and drug-associated cues has also been established by
recent research using positive allosteric modulators of mGlu5
(Cleva and Olive, 2011). The first mGlu5 positive allosteric
modulators to be characterized were 3-cyano-N -(1,3-diphenyl-
1H-pyrazol-5-yl)benzamide (CDPPB; Lindsley et al., 2004)
and S-(4-fluoro-phenyl)[3-[3-(4-fluoro-phenyl)-1,2,4-oxadiazol-
5-yl]piperidin-1-yl]methanone (ADX47273; Liu et al., 2008) and
were suggested to be beneficial in alleviating the cognitive deficits
associated with chronic drug abuse (Reichel et al., 2011). Stud-
ies using animal models of addiction have also shown that
CDPPB facilitates extinction of both cocaine-conditioned place
preference (Gass and Olive, 2009) and operant responding for
cocaine (Cleva et al., 2011). This is supported by observations
from our laboratory, which demonstrate deficits in extinction
learning in mice lacking mGlu5 (Lawrence Laboratory, unpub-
lished observations). Therefore, positive allosteric modulators of
mGlu5 have potential use as pharmacological adjuncts to cue
exposure therapy in the treatment of drug addiction, with the
potential benefit of reversing cognitive deficits associated with
chronic drug use (Cleva and Olive, 2011). Recently, a range of
compounds that selectively inhibit mGlu5 function have been
published and tested in various neurological disorder models
and some of them exhibit good tolerability, long-term action,
and oral bioavailability (Keywood et al., 2009; Zerbib et al.,
2010; Lindemann et al., 2011). Consequently, there is a promis-
ing future for the development of new treatments for addic-
tion based on both positive and negative allosteric modulation
of mGlu5.
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GPCR HETEROMERIZATION AND A2AR–D2R–mGlu5
COMPLEXES
In order to maintain the speed and subtly of neuronal signal trans-
mission, intramembrane protein–protein interactions are likely to
play a role (Vilardaga et al., 2008). Consequently, researchers in the
GPCR field are now focusing their efforts on understanding GPCR
signaling and function in the context of higher-order structures
and not just monomers. Textbooks describing GPCR signaling as a
linear cascade, where agonist activation results in the receptor cou-
pling to one G protein and therefore the activation of one signaling
pathway, are now being updated to include receptor homomers
(macromolecular complexes made up of two or more identical
functional receptor units) and receptor heteromers (macromol-
ecular complexes composed of at least two different functional
receptor units with biochemical properties that are demonstrably
different from those of their individual components; Ferre et al.,
2009). Heteromerization not only provides a potential mecha-
nism for increased signaling diversity, but also specificity by, for
example, allowing the development of drugs to target in a tissue
selective manner and thereby minimize off-target effects (Mustafa
et al., 2010). Indeed, there are now numerous examples of phys-
iologically relevant GPCR heteromers (Dalrymple et al., 2008),
particularly in the CNS (Albizu et al., 2010), and new methodolo-
gies are being developed to investigate such complexes (Mustafa
et al., 2010).

Dopaminergic and glutamatergic inputs converge in the den-
dritic spines of γ-aminobutyric acid (GABA)ergic medium spiny
neurons (Totterdell and Smith, 1989; Sesack and Pickel, 1992)
which constitute more than 90% of the neuronal population of the
striatum (Smith and Bolam, 1990). Dopamine release in the stria-
tum activates two classes of GPCRs that are expressed by distinct
subpopulations of medium spiny neurons. Dopamine D1 recep-
tors (D1R) are localized on the striatonigral neurons of the direct
pathway whereas dopamine D2 receptors (D2R) are expressed by
the striatopallidal neurons of the indirect pathway (Gerfen, 1992;
Le Moine and Bloch, 1995). D2Rs are coupled to Gαi, and acti-
vation of these receptors triggers a cascade of signaling pathways,
reducing cAMP production and protein kinase A (PKA) activity
and activating phospholipase C (PLC)-dependent processes as well
as the release of Ca2+ from internal stores (Missale et al., 1998).
D2R has been linked to a number of behavioral disorders, includ-
ing Parkinson’s disease, obsessive–compulsive disorder, addiction,
and schizophrenia (Bonci and Hopf, 2005; Kreitzer and Malenka,
2008). Treatments targeting dopaminergic signaling have utilized
dopamine receptor agonists to alleviate symptoms of hypokine-
sia associated with Parkinson’s disease, and dopamine receptor
antagonists to treat hallucinations and delusions in schizophrenic
patients (Missale et al., 1998). However, side effects have been
associated with both therapies, presumably due to the difficulty
in re-establishing the balance in dopamine signaling required for
appropriate physiological function.

Adenosine is often described as a neuromodulator, which acts
on a family of four adenosine receptors: A1,A2A,A2B, and A3 recep-
tors (Fredholm et al., 1994, 2001b). Of the four known adenosine
receptors, A1 and A2A receptors are primarily responsible for the
central effects of adenosine (Fredholm et al., 2001a). A1 receptors
are widely distributed in the brain (Fastbom et al., 1987; Fredholm

et al., 2001a) whereas A2A receptors are highly enriched in the ter-
minal regions of ascending dopamine projections, concentrated in
the dendritic spines of striatopallidal neurons, particularly in the
vicinity of glutamatergic synapses (Fink et al., 1992; Svenningsson
et al., 1997; Hettinger et al., 2001; Rosin et al., 2003). Adenosine A2A

receptors are also found presynaptically in glutamatergic, but not
in dopaminergic, terminals although with lower density (Hettinger
et al., 2001; Rosin et al., 2003). Therefore, it has been suggested that
the A2A receptor plays a role in the fine-tuning modulation of glu-
tamatergic neurotransmission onto striatal GABAergic neurons
both at the postsynaptic and presynaptic level (Hettinger et al.,
2001; Ciruela et al., 2006; Ferre et al., 2007b). Recently, presynaptic
A2A receptors were shown to be preferentially localized in corti-
cal glutamatergic terminals that contact medium spiny neurons of
the direct pathway (Quiroz et al., 2009), while their postsynaptic
counterparts are located on striatopallidal neurons of the indirect
pathway. Thus adenosine acting at A2A receptors has the capacity
to modulate neurotransmission of both output pathways of the
basal ganglia. Signaling via the A2A receptor has been implicated
in the reinforcing properties of multiple drugs of abuse (Brown
and Short, 2008). For example, in mice lacking the A2A receptor,
a reduction in self-administration of morphine has been reported
(Brown et al., 2009). Similarly, A2AR antagonists have also been
reported to reduce alcohol-seeking and opiate-seeking behavior
in rats (Arolfo et al., 2004; Yao et al., 2006).

A remarkable feature of the two striatal output path-
ways is the segregation of adenosine and dopamine recep-
tors. GABAergic/enkephalinergic neurons predominantly express
adenosine A2A (stimulatory, coupled to Gs/Golf) and dopamine
D2 (inhibitory, coupled to Gi) receptors, while GABAer-
gic/dynorphinergic neurons predominantly express adenosine A1

(inhibitory, coupled to Gi) and dopamine D1 (stimulatory, cou-
pled to Gs) receptors (Schiffmann et al., 2007). It is not surprising
therefore, that evidence has accumulated documenting interac-
tions between these GPCRs in relation to striatal GABAergic
efferent neuron function (Ferre et al., 2007c; Schiffmann et al.,
2007).

These interactions have been reported to include direct
receptor–receptor interactions as well as interactions at the sec-
ond messenger and behavioral levels, all of which have been
reviewed elsewhere (Ferre et al., 1994, 2004; Fredholm and Sven-
ningsson, 2003; Fuxe et al., 2003). The A2A–D2 interaction is
predominantly found to be antagonistic as activation of A2AR
reduces D2R binding, coupling, signaling as well as behavioral
effects; thus D2R exerts a tonic inhibition on striatopallidal neu-
rons which A2AR activation antagonizes (see reviews above). Evi-
dence for the existence of heteromers containing A2A and D2

receptors in expression systems has been provided by means of co-
immunoprecipitation and resonance energy transfer (RET) tech-
niques such as bioluminescence-RET (BRET) and fluorescence-
RET (FRET; Canals et al., 2003; Cabello et al., 2009). In terms
of their localization in the striatum, ultrastructural and confo-
cal analysis indicate this to be mainly on dendritic spines in
the perisynaptic zones of dopamine terminals and glutamatergic
synapses in striatopallidal neurons (Fuxe et al., 2010). In addition,
interactions involving the A2AR have been described for other
receptors, including adenosine A1, cannabinoid CB1 and, most
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relevant to this review, mGlu5 (Ferre et al., 2007a; Schiffmann
et al., 2007).

In the striatum mGlu5 is expressed postsynaptically on both
types of striatal GABAergic efferent neuron and potentially presy-
naptically on glutamatergic terminals (Romano et al., 1995;
Tallaksen-Greene et al., 1998; Smith et al., 2000). In striatopallidal
neurons, similar to A2AR, mGlu5 is predominantly found post-
synaptically and perisynaptically to asymmetric synapses (Smith
et al., 2000). This similarity in anatomical location led Ferre
et al. (2002) to investigate the possibility of the existence of het-
eromers containing these two receptors. Thus, co-localization of
A2AR and mGlu5 at the membrane level was demonstrated by
confocal laser microscopy in co-transfected human embryonic
kidney (HEK)293 cells. In addition, western blotting has provided
evidence for complexes containing A2AR and mGlu5 in mem-
brane preparations from both co-transfected HEK293 cells and
rat striatal tissue (Ferre et al., 2002). Binding of the A2A recep-
tor antagonist [125I]ZM241385 in mouse striatum is reduced as
a result of pretreatment with mGlu5 antagonist MTEP (Brown
et al., 2011a), providing a neurochemical correlate for a possible
allosteric interaction between these receptors. Potential for cross-
talk also exists between the receptors’ signal transduction pathways
(Agnati et al., 2003), and there is functional evidence of a relation-
ship between mGlu5 and A2AR to this effect. Firstly, an apparent
interdependence exists between the actions of A2AR and mGlu5
in the phosphorylation of dopamine and cAMP-regulated phos-
phoprotein of 32,000 kDa (DARPP-32) at Thr-34 (Nishi et al.,
2003). Thus, A2AR antagonism attenuates the ability of mGlu5
activation to phosphorylate DARPP-32 at Thr-34 in mouse striatal
slices and vice versa. In addition, co-activation of mGlu5 and A2AR
synergistically increases phosphorylation of DARPP-32 at Thr-34,
apparently via an extracellular signal-regulated kinase (ERK)1/2-
dependent mechanism involving increases in cAMP formation
(Nishi et al., 2003). These findings are consistent with an ERK1/2-
dependent synergistic interaction between A2AR and mGlu5 with
respect to c-fos expression in HEK293 cells (Ferre et al., 2002).
Collectively, these data have led some researchers in the field to
suggest that the existence of this A2AR–mGlu5 heteromer may
provide a point of temporal and spatial convergence of Gs and Gq

signaling onto the MAPK cascade, thereby providing the capacity
to influence striatal plasticity (Agnati et al., 2010a), thus raising
the possibility of the involvement of this heteromer in plasticity
resulting from repeated exposure to drugs of abuse. Of interest
is the observation that both A2AR and mGlu5 have been shown
to play a role in corticostriatal plasticity (d’Alcantara et al., 2001;
Sung et al., 2001).

In vivo microdialysis experiments have shown that perfusion
with the A2AR agonist 2-[4-(2-carboxy ethyl)phenethylamine-50-
n-ethylcarboxamidoadenosine (CGS21680) potentiates the facil-
itation of GABA release from striatopallidal neurons by the
mGlu5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG;
Diaz-Cabiale et al., 2002). In addition, A2AR and mGlu5 have been
shown to interact synergistically to modulate glutamate release
from corticostriatal afferents (Rodrigues et al., 2005). Submaxi-
mal concentrations of the A2AR agonist CGS21680 and mGlu5
agonist CHPG have been shown to synergistically facilitate gluta-
mate release, with the CGS21680-facilitated release prevented by

MPEP. Conversely, facilitation of glutamate release by CHPG is
prevented by the A2AR antagonist SCH58261 (Rodrigues et al.,
2005). These results demonstrate that in addition to modulating
striatal output, mGlu5–A2AR interactions also play a role in reg-
ulating cortical input into the striatum, providing an additional
avenue to influence striatal function and ultimately behavior.

Indeed, behavioral interactions between A2AR and mGlu5 have
been reported, particularly with respect to motor behaviors due
to the strong interest in these receptors for their potential in
the treatment of Parkinson’s disease. For example, central co-
administration of CGS21680 and CHPG has been found to reduce
the motor activity induced by phencyclidine at doses that have no
effect alone (Ferre et al., 2002). Furthermore, in both normal and
reserpinized mice, locomotion is enhanced in a synergistic man-
ner with combined treatment of MPEP and the A2AR antagonist
KW-6002 (Kachroo et al., 2005). Similarly, akinetic symptoms of 6-
hydroxydopamine-lesioned rats are improved with combinations
of sub-threshold doses of mGlu5 and A2AR antagonists (Coc-
curello et al., 2004). More recently, evidence has been forthcom-
ing which suggests the A2AR–mGlu5 interaction is also relevant
to reward and drug-seeking behavior (discussed in subsequent
section).

Recently, co-immunoprecipitation experiments in native stri-
atal tissue provided evidence for the existence of a higher-order
oligomeric complex containing mGlu5, D2R, and A2AR, localized
to the dendritic spines of striatopallidal neurons (Cabello et al.,
2009). These results supported earlier experiments which demon-
strated functional interactions between these three GPCRs. Early
studies reported synergy between A2AR and mGlu5 in reduc-
ing dopamine D2R-mediated behaviors such as phencyclidine-
induced hyperactivity (Ferre et al., 2002) and dopamine signaling
through DARPP-32 (Nishi et al., 2003). In rat striatal membranes,
the A2AR agonist CGS21680 potentiates the effect of mGlu5 ago-
nist CHPG in reducing the affinity of D2 receptors for the agonist
(Popoli et al., 2001). It therefore appears that A2AR and mGlu5
work together to antagonize D2R-mediated signaling in the stria-
tum. Under baseline conditions, there would be strong tonic
activation of D2R in the striatum which would impair the abil-
ity of the A2AR to signal through adenylate cyclase/cAMP/PKA.
Co-stimulation of mGlu5 thus allows A2AR stimulation to over-
ride the inhibitory tone imposed by endogenous dopamine act-
ing at D2 receptors (Ferre et al., 2002). This is supported by
behavioral data as activation of A2AR and mGlu5 causes atten-
uation of D2R agonist quinpirole-induced contralateral turning
in 6-hydroxydopamine-lesioned rats (Popoli et al., 2001).

Studies performed in heterologous expression systems uti-
lizing a range of biophysical and biochemical techniques have
provided evidence for the existence of this unique “biochemi-
cal fingerprint” as a result of the specific receptor interaction
(Agnati et al., 2010b). For example, in the case of A2AR–D2R
and mGlu5–D2R complexes, heteromerization appears to result
in an antagonistic allosteric effect where A2AR and mGlu5 ago-
nists, respectively, reduced the affinity of the D2 agonist-binding
sites (Ferre et al., 1999; Popoli et al., 2001; Torvinen et al., 2004). In
the case of the mGlu5–A2AR heteromer however, co-stimulation
of both receptors appears to result in a synergistic effect on down-
stream signaling (Ferre et al., 2002). mGlu5 and A2AR antagonists
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have been reported to reduce alcohol-seeking behavior in rats;
interestingly, co-administration of antagonists for these recep-
tors has a synergistic effect in rats, supporting the existence and
functional importance of the heteromer in addiction-associated
behaviors (Adams et al., 2008). We have consequently suggested
exploiting the limited overlapping expression of mGlu5 and A2AR
for developing potential therapies, which target a sub-population
of receptors (Bird and Lawrence, 2009b). By developing putative
heteromer-selective drugs, the problematic issue of modulating
the widely distributed and multifunctional mGlu5 receptor could
be potentially overcome.

CONCEPTS OF “RECEPTOR MOSAIC” AND “HUB RECEPTOR”
The idea of “receptor mosaics” suggests that proteins can form
even more complex and dynamic networks, with respect to time
and protein make up, which has the potential to make significant
contributions to the diversity and specificity of GPCR signaling,
particularly in neuropharmacology, where a few key receptors have
been implicated in multiple neurological and psychiatric disorders
(Agnati et al., 2009). Agnati and Fuxe first introduced this concept
of receptor mosaics in 1982 in the context of learning and mem-
ory (Agnati et al., 1982). As suggested by Fuxe et al. (2008) this
“receptor mosaic” term not only allows the interactions between
the different receptors (stoichiometry) to be taken into account
but also their spatial organization (topography) and their order of
activation. It has been proposed that by changing the order of acti-
vation, functionally distinct receptor mosaics can transduce signals
resulting in distinct biological responses. This may be of particular
importance for neuropharmacology where different agonist con-
centrations direct activation of one receptor mosaic activity over
another. This can be exemplified by considering a receptor mosaic
which consists of three different receptors; A, B, and C and there-
fore can potentially result in six functional outcomes (Fuxe et al.,
2008). For reviews on receptor mosaics and their implications see
(Fuxe et al., 2007, 2008; Agnati et al., 2010a,b; Fuxe and Kenakin,
2010).

Furthermore, it has been suggested that receptor mosaics are
composed of at least one so called “hub receptor” – a receptor,
capable of forming multiple connections, which can result in
differing pharmacology depending on these connections (Agnati
et al., 2010a). Hub receptors have been classified into three dis-
tinct groups; passive hubs which allow the flow of information;
intelligent hubs modify the information as it flows through; and
switching hubs, which direct the information to the correct des-
tination (Agnati et al., 2010a). It has been postulated that the D2

receptor acts as a “hub receptor,” with evidence in the literature for
its interaction with the A2A and mGlu5 receptors (Cabello et al.,
2009) as well as A2A and CB1 (Agnati et al., 2009) to form trimeric
receptor mosaics. Cabello et al. (2009) have reported the existence
of these receptor mosaics in the perisynaptic and extrasynaptic
parts of the neuronal plasma membrane. As mentioned above,
it is thought that this trimeric receptor mosaic plays a role on
the extrasynaptic striatopallidal GABA neurons and possibly in
corticostriatal glutamate terminals. As only a small population of
these receptors are expected to form complexes at any given time
or location, this may allow even more selectivity when designing
drug therapies. Modulation of specific interactions and pathways

has the potential to reduce side effects, of paramount importance
in the treatment of neurological disorders, where lack of specificity
could impair vital brain function.

mGlu5 RECEPTOR FUNCTIONAL INTERACTIONS: EVIDENCE
FOR A ROLE IN ADDICTION
Given the specific localization of apparent mGlu5 receptor com-
plexes in the striatum, as well as the established involvement of
plasticity in glutamatergic corticostriatal neurons in the reinstate-
ment of drug-seeking in animal models of relapse (Kalivas, 2009),
one may hypothesize that interactions between mGlu5 and A2AR
have the potential to regulate drug-seeking or the conditioned
effects of drugs of abuse. Indeed, two recent studies have provided
evidence as such. Firstly, as mentioned previously, functional inter-
actions between mGlu5 and A2A receptors were shown to regulate
operant self-administration of alcohol and cue-induced reinstate-
ment of alcohol-seeking (Adams et al., 2008). Sub-threshold doses
of SCH58261, a selective A2A receptor antagonist and MTEP, an
mGlu5 antagonist, were administrated in combination and were
found to act synergistically to decrease operant self-administration
of alcohol and cue-induced reinstatement of alcohol-seeking
(Adams et al., 2008). These doses had no effect when given alone.
In addition, no support was found for interactions between adeno-
sine A1 and A2AR, or A1 and mGlu5, suggesting this reduction in
alcohol self-administration and alcohol-seeking behavior was spe-
cific to a functional interaction between A2A and mGlu5 receptors
(Adams et al., 2008, 2010).

It is now recognized that reinstatement of drug-seeking involves
corticostriatal glutamatergic input into the striatum (Kalivas and
McFarland, 2003; Kalivas et al., 2005). Prior co-administration of
SCH58261 and MTEP may have prevented cue-elicited release of
glutamate in this context, thus preventing drug-seeking behav-
ior. This fits nicely with the role discussed earlier for A2AR and
mGlu5 in regulating glutamate release from corticostriatal afferent
neurons (Rodrigues et al., 2005). In rats, stimulation of corticos-
triatal afferents has been shown to result in phosphorylation of
ERK which can be prevented by A2AR antagonism (Quiroz et al.,
2009), thus providing one possible mechanism for this observa-
tion. Though no direct evidence exists as yet, it is also possible
that specialized receptor complexes containing multiple GPCRs
are involved in this behavior, and that plasticity may occur with
repeated drug use which alters the arrangement of or signaling
through this receptor complex. Though the exact nature of the
interactions between mGlu5 and A2A receptors are yet to be deter-
mined and involvement of potential “hub” receptors such as the
D2R remains to be explored, it is clear that a biologically relevant
functional interaction between these two GPCRs can act to regu-
late drug-seeking behavior providing evidence of the therapeutic
potential of targeting mGlu5 and A2AR in combination.

A similar functional interaction was found between mGlu5
and A2AR in relation to cocaine-driven behaviors (Brown et al.,
2011a) providing further evidence of the potential of this possi-
ble drug target. Despite preventing a conditioned place preference
to cocaine in wildtype mice, MTEP treatment had no impact on
the ability of A2AR knockout mice to develop a robust condi-
tioned place preference to cocaine, suggesting a functional A2AR
is required for mGlu5 to regulate the acquisition of incentive
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properties in a cocaine-paired context. This finding was mirrored
by conditioned hyperactivity data, whereby MTEP completely pre-
vented conditioned hyperactivity in wildtype mice but had no
impact in A2AR knockout mice. In contrast, MTEP was able to
block the locomotor-activating properties of cocaine in both wild-
type and A2AR knockout mice. It should be noted that conditioned
hyperactivity was assessed during the test session when all mice
were in a drug-free state. Conditioned hyperactivity therefore, as
with conditioned place preference, is driven purely by contextual
associations and is hence likely to be underpinned by similar neural
processes. Hence, it appears that a functional A2AR may be crit-
ical for the actions of MTEP in regulating both the conditioned
reinforcing and conditioned locomotor-activating properties of
cocaine, but not the direct locomotor effects of acute cocaine.
These data are in line with recent evidence supporting a role
for mGlu5 in incentive learning processes (Novak et al., 2010;
O’Connor et al., 2010).

As the ventral striatum is a key component of the neural cir-
cuitry underlying Pavlovian conditioning (Robbins et al., 2008),
it seems probable that it is a likely site of action for this interac-
tion. However it should be noted that both A2AR and mGlu5 were
recently shown to be co-localized in the hippocampus (Tebano
et al., 2005) and have been implicated in learning and memory
processes (Simonyi et al., 2005; Gimenez-Llort et al., 2007). For
example,A2AR have been shown to play a key role in hippocampal-
dependent associative learning in a classical eye-blinking paradigm
(Fontinha et al., 2009) and mGlu5 is implicated in spatial mem-
ory (Lu et al., 1997). Given that conditioned place preference is
a paradigm that relies on contextual learning, functional interac-
tions between mGlu5 and A2AR in the hippocampus cannot be
ruled out.

CONCLUSION
This review has outlined the evidence supporting a role for func-
tional interactions between mGlu5 and other GPCRs, particularly
the adenosine A2AR, in reward, drug-seeking, and drug-induced
plasticity. Though much evidence now exists describing the indi-
vidual contribution that mGlu5, D2R, and A2AR make to various
facets of addictive behavior, only a small number of studies thus

far have investigated interactions between mGlu5 and these other
GPCRs in this context. Initial studies suggest that mGlu5 receptor
interactions may play a role in the rewarding and incentive moti-
vational properties of drugs of abuse, drug-seeking, as well as the
conditioned effects of drugs of abuse. This is consistent with the
substantial influence that interactions between mGlu5 and these
other receptors appear to have on striatal function, regulating both
GABAergic output of striatopallidal neurons and glutamatergic
input from corticostriatal afferents. The specific nature of these
interactions has not yet been determined and though it is possi-
ble that striatal mGlu5-containing complexes are responsible for
regulating drug-seeking, future studies should aim to determine
whether or not this is the case as well as determine the exact site of
action as mGlu5 has recently been shown to co-localize with A2AR
in the hippocampus (Tebano et al., 2005). In addition, the role of
the D2 receptor as a potential“hub”receptor should be investigated
in this context. Furthermore, in order to overcome the problem-
atic issue of therapeutically modulating the widely distributed
and multifunctional mGlu5, the limited overlapping expression of
mGlu5, D2, and A2AR may be exploited when designing drug ther-
apies aimed at exhibiting little or no off-target effects. On the other
hand, if such “complexes” do not prove to be relevant in vivo in
humans, exploitation of specific functional interactions that have
biological significance (e.g., downstream mGlu5–A2A receptor
functional interactions which are well-established) could provide
an equally attractive proposition. Indeed, the therapeutic targeting
of receptor mosaics/functional interactions in a tissue specific or
temporal manner (for example, a sub-population of receptors in
a “pathological state”) has the potential to reduce detrimental side
effects that may otherwise impair vital brain function.
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