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Abstract: Finding farm-proven, robust sampling technologies for measurement of odorous volatile
organic compounds (VOCs) and evaluating the mitigation of nuisance emissions continues to be a
challenge. The objective of this research was to develop a new method for quantification of odorous
VOCs in air using time-weighted average (TWA) sampling. The main goal was to transform a fragile
lab-based technology (i.e., solid-phase microextraction, SPME) into a rugged sampler that can be
deployed for longer periods in remote locations. The developed method addresses the need to
improve conventional TWA SPME that suffers from the influence of the metallic SPME needle on the
sampling process. We eliminated exposure to metallic parts and replaced them with a glass tube to
facilitate diffusion from odorous air onto an exposed SPME fiber. A standard gas chromatography
(GC) liner recommended for SPME injections was adopted for this purpose. Acetic acid, a common
odorous VOC, was selected as a model compound to prove the concept. GC with mass spectrometry
(GC–MS) was used for air analysis. An SPME fiber exposed inside a glass liner followed the Fick’s
law of diffusion model. There was a linear relationship between extraction time and mass extracted
up to 12 h (R2 > 0.99) and the inverse of retraction depth (1/Z) (R2 > 0.99). The amount of VOC
adsorbed via the TWA SPME using a GC glass liner to protect the SPME was reproducible. The limit
of detection (LOD, signal-to-noise ratio (S/N) = 3) and limit of quantification (LOQ, S/N = 5) were
10 and 18 µg·m−3 (4.3 and 7.2 ppbV), respectively. There was no apparent difference relative to
glass liner conditioning, offering a practical simplification for use in the field. The new method
related well to field conditions when comparing it to the conventional method based on sorbent tubes.
This research shows that an SPME fiber exposed inside a glass liner can be a promising, practical,
simple approach for field applications to quantify odorous VOCs.

Keywords: SPME; retracted SPME; TWA SPME; GC–MS; on-site sampling; air quality; air monitoring;
VOCs; odor; environmental analysis

1. Introduction

Offensive odors dispersed from animal feeding operations are a common concern for neighboring
communities [1]. These odors originate mainly from manure and other organic matters in livestock
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operations and are a complex mixture of many gases, of which the largest portion (by number) are
volatile organic compounds (VOCs). VOCs are complex chemicals distinguished by their ability
to evaporate easily at room temperatures. VOCs originating from industry and transportation are
studied extensively. Less attention is focused on VOCs found in animal production systems. However,
the research in this area, especially research on the mitigation of odor emissions, is still limited [1–5]
especially in regards to farm-scale proven technologies. Public concerns and research interest are
focused mainly on solving odor nuisance.

Addressing public concerns about odorous emissions from livestock operations is challenging
since many of these VOCs usually have a low odor detection threshold. Even at low concentrations
(ppbV, pptV), they can be potent and objectionable odorants [6]. Thus, sampling and analysis of VOCs
associated with animal operations are still challenging. Methods to detect and quantify VOCs from
animal facilities are important for measuring air quality, developing and testing technologies that can
mitigate odorous emissions. Many approaches used for sampling and analysis of VOCs are effective
for qualitative analysis, but many standard methods developed for urban air are typically either not
suitable for typical odorous VOCs or not sensitive enough to quantify trace concentrations.

Numerous VOCs can be found at animal facilities. Starting from 1965 when stearic acid was first
identified [7], the list of known VOCs at animal facilities is constantly expanding. The results of the
most recent studies show that more than 512 VOCs in total are found at swine facilities [7]. VOCs found
in animal facilities can be classified into several groups. They are acids, alcohols, aldehydes, amines,
hydrocarbons, indoles, nitrogen-containing compounds, phenols, sulfur-containing compounds,
volatile fatty acids, and others [8]. However, sulfur-containing VOCs (S-VOCs) and volatile fatty
acids (VFAs) were identified as the most dominant classes of VOCs at animal facilities which are
responsible for those offensive odors [6]. A derivative of phenolics, p-cresol, was reported to be one of
the main compounds responsible for characteristic odor at swine barns [6,9]. In order to test sampling
methods, most studies focused on 10–15 odorous VOCs, which were used to sample emissions from
livestock farms or to simulate them in a laboratory [6,10,11]. Some of the odorous VOCs include acetic,
propionic, butyric, and isovaleric acids; methyl, ethyl, and butyl mercaptans; dimethyl sulfide, p-cresol,
and others.

Acetic acid is considered the most abundant VOC in any animal facility, including swine farms.
It is a colorless liquid that can be easily evaporated, and it has a strong and distinct pungent and
vinegar-like smell. It was reported that the concentration of acetic acid in gaseous emissions from
swine and dairy farms in the United States (US) could range from ~1 to 617 mg·m−3 [11]. Due to its
abundance, it is reasonable to consider acetic acid as a model compound to validate concepts involving
new VOC sampling methods and for testing the effectiveness of odorous VOC mitigation technologies
in the context of livestock agriculture.

1.1. Air Sampling of Odorous VOCs

Most odorous VOCs are found at low concentrations [11]. VOC quantification requires reliable
air sampling techniques and analytical methods that are representative of the air at the monitored
site. The time-weighted average (TWA) sampling approach can be useful in such cases. This approach
is used to determine the average concentration of an air pollutant over periods that can extend
from a few minutes to several weeks [12]. TWA concentrations are needed to estimate average
exposure to a contaminant. A number of different sampling techniques were introduced to obtain TWA
concentrations of VOCs in the field. To date, the most common techniques are whole-air sampling
techniques and sorbent tubes [13,14]. A short summary of those methods is given in Appendix A.
Those methods require specialized equipment [14–21] (cleaning and evacuation of canisters, flushing
air sampling bags with ultra-pure air or nitrogen, thermal desorption, air sampling pump) which
makes the methods laborious and expensive to work with. Thus, simpler and more reliable methods
to quantify VOCs at animal feeding operations are needed.
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1.2. The TWA SPME Approach

Solid-phase microextraction (SPME) combines passive air sampling and sampling preparation.
SPME uses a compact-size sampler that consists of a polymeric fiber that is kept inside a hollow metallic
needle. During air sampling, VOCs are collected on an SPME fiber. SPME was shown to provide
low detection limits reaching parts-per-trillion levels. After VOCs are transferred to an analytical
instrument (e.g., via hot gas chromatography (GC) injector), extracted VOCs are thermally desorbed
from the fiber, which can be reused. Thus, SPME eliminates the need for solvents and works with
existing analytical technologies.

SPME is applicable for assessment of TWA concentrations in continuous sampling mode where
the SPME fiber is retracted into the needle at a known distance during the desired sampling time.
In contrast to the exposed fiber where an analyte reaches an equilibrium with the SPME, extraction
of VOCs via the retracted fiber is controlled by diffusion. Since the fiber is kept inside the needle
and extraction of VOCs is controlled by diffusion, the extraction rates are lower. Thus, the fiber
in the protecting needle can be used for longer periods before reaching an equilibrium with the
environment [22]. Analytes accumulated on the SPME fiber enable the measurement of the average
gas (e.g., a VOC or total VOCs) concentration to which the fiber was exposed [23].

Quantification of the TWA concentrations with a retracted SPME fiber follows Fick’s first law of
diffusion (Equation (1)): the mass extracted on the fiber is proportional to (1) the diffusion coefficient
of the analyte (Dg), (2) the concentration of the analyte in the gas phase (Cgas), (3) sampling time (t),
and (4) cross-sectional area of the SPME needle opening (A); it is inversely proportional to the diffusion
path length (Z, i.e., the distance from the needle opening to the tip of retracted fiber).

n = Dg
A
Z

∫
Cgas(t)dt (1)

1.3. Application of the TWA SPME for VOCs

Despite the advantages of the TWA SPME approach, comparatively few studies were conducted
to bring the approach to the field. The studies [12,24–30] showed that SPME devices could be used
as TWA samplers to access exposure to different volatile (hydrocarbons, formaldehyde, and others)
and chlorinated semi-volatile organic compounds [12] at the source. VOCs were also quantified
from biomass gasification process streams in fast-moving environments at elevated temperatures
such as syngas stream [28,29] and idling vehicle exhaust [30,31]. A major challenge with the TWA
SPME approach is the influence of the metallic SPME needle assembly on the VOC extraction process,
as documented earlier [28–31]. The metallic surface of the SPME needle (studied using “broken
fiber”, i.e., fiber without coating) had adsorptive properties that were significant compared with the
adsorption by the fiber itself. Similarly, Koziel et al. [32] evaluated the contribution of the metallic
parts first before quantifying five biomarkers (VOCs) such as dimethyl disulfide, dimethyl trisulfide,
pyrimidine, phenol, and p-cresol emitted during aerobic digestion of animal tissue. The current
suggestion to overcome this issue for the TWA SPME for quantification of VOCs is the mandatory
evaluation of the contribution of mass extracted by a “broken fiber” so this effect can be accounted for.
Thus, while reproducible, the contribution of metallic SPME parts on the TWA SPME process adds
more steps to method development.

Recent modeling of the TWA SPME process by Kenessov et al. [22] provided an insightful
identification of limitations for the use of retracted SPME fibers and possible means to address them.
In their study, they found that a Carboxen/polydimethylsiloxane (Car/PDMS) SPME fiber with a
greater size of a protecting needle (23 ga; as opposed to 24 ga) extracted greater amounts of analytes
(about 19% more) than the fiber with a smaller protecting needle gauge size. This study suggests
that the space between the SPME coating and the inner wall of the protecting needle plays a crucial
role in extracting mass, since it allows faster diffusion of analytes not only to the tip of the fiber but
also to its sides. The paper also recommends using a 23-ga SPME fiber for quantification of analytes
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with lower detection limits. However, no research reported the quantification of major VOCs that are
responsible for the characteristic offensive odor downwind from animal feeding operations using a
TWA SPME approach.

In this research, we aimed at addressing two major needs and gaps in knowledge: (1) to minimize
or eliminate the need to consider the effect of the metallic SPME needle on air sampling of VOCs
with TWA SPME, and (2) to enable SPME technology to be used for odorous VOC quantification in
farm environments.

1.4. Objectives

The goal of this work was to develop a method for the quantification of target odorous VOC
(using acetic acid as a model compound) with a TWA SPME approach that is more accurate and
less laborious. Unlike the previous TWA SPME approaches where an SPME fiber is retracted into a
metallic needle, this research proposes to use an SPME fiber that is exposed inside the GC glass liner to
achieve the effect of a traditional retracted fiber without the need to estimate and account for the inherent
adsorption of VOCs onto metallic parts of SPME needle during sampling. Since a GC glass liner has a greater
cross-sectional area than a traditional retracted SPME fiber (Figure 1), the new approach should allow
for greater amounts of the analyte extracted on the fiber, and increased exposure of the side surfaces of
the coating to the sample, resulting in lower detection limits and greater accuracy.
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Figure 1. Time-weighted average (TWA) gas sampling with solid-phase microextraction (SPME).
Comparison of proposed (A) and conventional (B) TWA SPME. (A) Sampling with SPME fiber exposed
and retracted inside of a glass liner; (B) a typical case of TWA SPME where the SPME fiber is retracted
inside of a conventional SPME needle. Gray arrows represent the diffusion path between bulk gas
(left side) and the retracted fiber tip (Z tip). Red arrows represent the “apparent” diffusion path
extending beyond the tip to the SPME fiber coating side. The “apparent” diffusion path represents the
extracting process enhanced by the sides of the SPME coating. Z* may continue to increase after the tip
is saturated.

Our working hypothesis is that the glass liner enclosure might be less affected by the apparent
departure from the ideal quantification model (Fick’s Law, Equation (1)) that is associated with the use
of metallic needle enclosures to facilitate TWA SPME. The inside of the glass liner serves as a diffusion



Molecules 2019, 24, 406 5 of 18

path. Thus, extraction of VOCs is controlled by diffusion, and potentially can be used for sampling
of VOCs in remote locations. The method utilizes GC glass liners that are readily available in many
analytical laboratories. As the most abundant VOC in livestock operations, acetic acid was chosen as a
model compound to prove the concept.

The specific objectives of this research were to (1) build and verify a standard gas generation
system for odorous VOC that simulates typical dynamic animal facility air in the lab; (2) test the
performance of an SPME fiber retracted into a glass liner and the adherence of this air sampling
concept to the Fick’s Law; (3) test the new method for quantification of acetic acid on a typical Iowa
swine facility and evaluate its feasibility; and (4) compare the developed method side-by-side to a
standard method under field conditions.

2. Results and Discussions

2.1. Standard Gas Stability Check

The stability of standard gas generated by the standard gas generation system is shown in Figure 2.
For the purpose of checking stability, the standard gas was simultaneously measured with exposed
and “retracted” SPME fibers and sorbent tubes several times per day for three consecutive days.
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Figure 2. Standard gas stability needed for simulating steady-state conditions for TWA SPME sampling.
Extraction conditions: two 85-µm Car/PDMS SPME fibers (one was a standard exposed fiber, and the
other was an exposed fiber that was kept inside of a glass liner). Both were exposed to the standard
gas (acetic acid, Cgas = 617 µg·m−3). Retraction depth was 17.5 mm. Gas sampling was performed
every hour for three consecutive days. Sampling times were 20 s for the exposed SPME fiber and 1 h
for the retracted SPME fiber. The dashed lines on the graph indicate a ±7.5% band from the average.
The concentration of acetic acid was verified with sorbent tubes. The concentration of acetic acid in the
system obtained by sorbent tubes is shown on the right y-axis. Selected ion monitoring (SIM) mode at
m/z 60.0 was used for acetic acid detection and quantification.

The result of daily extractions with exposed and “retracted” SPME fibers and sorbent tubes shows
that the standard gas generation system was successful in generating a continuous supply of acetic acid.
As can be seen in Figure 2, the exposed SPME fiber responses were more variable (relative standard
deviation, RSD 5.6%) than the “retracted” SPME fiber (RSD 3.2%) in terms of extracted mass. Because
the exposed SPME fiber was fully in contact with the moving gas, it resulted in more than two orders



Molecules 2019, 24, 406 6 of 18

of magnitude higher extraction rates than the “retracted” SPME fiber. These results are consistent with
the findings from Baimatova et al. [30]. The limits of detection (LOD, signal-to-noise ratio (S/N) = 3)
and limits of quantification (LOQ, S/N = 5) were 10 and 18 µg·m−3 (4.3 and 7.2 ppbV), respectively.

2.2. Effects of SPME Fiber Type on TWA Sampling with Glass Liner

A glass liner facilitating TWA SPME was used. Two adsorptive SPME coatings were tested,
i.e., 85-µm Car/PDMS and 50/30-µm (divinylbenzene, DVB) DVB/Car/PDMS, and both types of
coatings effectively extracted acetic acid (Figure 3) for up to 12 h. Mass extracted by the fibers showed
a linear response with sampling time (R2 > 0.99). However, the results show that the average masses
extracted by both SPME fibers were higher than the theoretical value (Equation (1)) by 11.1% and
3.7% on average for Car/PDMS and DVB/Car/PDMS fibers, respectively. This (relatively small and
reproducible) discrepancy from theory (Equation (1)) could be considered excellent, considering that
no effects of metallic SPME fiber assembly were taken into account.

Molecules 2018, 23, x FOR PEER REVIEW  6 of 18 

 

2.2. Effects of SPME Fiber Type on TWA Sampling with Glass Liner 

A glass liner facilitating TWA SPME was used. Two adsorptive SPME coatings were tested, i.e., 
85-µm Car/PDMS and 50/30-µm (divinylbenzene, DVB) DVB/Car/PDMS, and both types of coatings 
effectively extracted acetic acid (Figure 3) for up to 12 h. Mass extracted by the fibers showed a linear 
response with sampling time (R2 > 0.99). However, the results show that the average masses extracted 
by both SPME fibers were higher than the theoretical value (Equation (1)) by 11.1% and 3.7% on 
average for Car/PDMS and DVB/Car/PDMS fibers, respectively. This (relatively small and 
reproducible) discrepancy from theory (Equation (1)) could be considered excellent, considering that 
no effects of metallic SPME fiber assembly were taken into account. 

 
Figure 3. TWA SPME where fiber is retracted into a glass liner. Comparison of the extraction efficiency 
of acetic acid by 85-µm Car/PDMS and 50/30-µm DVB/Car/PDMS SPME fibers. The theoretical mass 
on the SPME fiber (shown as a solid line) was calculated using Equation (1) (Fick’s law of diffusion). 
The experimental masses are shown as dotted and dash lines for Car/PDMS and DVB/Car/PDMS 
fibers, respectively. Extraction conditions: 85-µm Car/PDMS fiber exposed inside a glass liner, 
standard gas (acetic acid, Cgas = 617 µg·m−3). Retraction depth was 1.75 cm. SIM mode at m/z 60.0 was 
used for acetic acid detection and quantification. Experiments were completed in triplicate. 

The 85-µm Car/PDMS fiber provided a slightly higher response than the DVB/Car/PDMS fiber 
for acetic acid, which is consistent with the studies of Kenessov et al. [22] and Abalos et al. [33]. The 
total mass extracted by the SPME fibers was reproducible. The RSDs of MS responses with Car/PDMS 
(ranging from 2.3% to 12.2%) were lower in comparison with the DVB/Car/PDMS fiber (ranging from 
3.2% to 14.7%). A linear regression model with a log-transformed response showed that masses 
extracted were not significantly different between the two SPME fibers (p-value = 0.44), as well as 
between both fibers and theoretical values (p-value = 0.43). The differences in mass extracted with 
50/30-µm DVB/Car/PDMS at every sampling time were 9% less than the mass extracted with 85-µm 
Car/PDMS, respectively. Log-transformation of mass extracted on SPME fiber was performed 
because there was non-constant variance in the residuals. 

2.3. Effect of the Glass Liner Conditioning 

y (c) = 0.0165x
R² = 0.9992

y (d)= 0.0151x
R² = 0.9981

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900

M
as

s 
ex

tr
ac

te
d 

on
 S

P
M

E
 f

ib
er

 (
ng

)

Sampling time (min)

Car/PDMS (c) DVB/Car/PDMS (d) Theoretical mass

Figure 3. TWA SPME where fiber is retracted into a glass liner. Comparison of the extraction efficiency
of acetic acid by 85-µm Car/PDMS and 50/30-µm DVB/Car/PDMS SPME fibers. The theoretical mass
on the SPME fiber (shown as a solid line) was calculated using Equation (1) (Fick’s law of diffusion).
The experimental masses are shown as dotted and dash lines for Car/PDMS and DVB/Car/PDMS
fibers, respectively. Extraction conditions: 85-µm Car/PDMS fiber exposed inside a glass liner, standard
gas (acetic acid, Cgas = 617 µg·m−3). Retraction depth was 1.75 cm. SIM mode at m/z 60.0 was used for
acetic acid detection and quantification. Experiments were completed in triplicate.

The 85-µm Car/PDMS fiber provided a slightly higher response than the DVB/Car/PDMS fiber
for acetic acid, which is consistent with the studies of Kenessov et al. [22] and Abalos et al. [33].
The total mass extracted by the SPME fibers was reproducible. The RSDs of MS responses with
Car/PDMS (ranging from 2.3% to 12.2%) were lower in comparison with the DVB/Car/PDMS fiber
(ranging from 3.2% to 14.7%). A linear regression model with a log-transformed response showed that
masses extracted were not significantly different between the two SPME fibers (p-value = 0.44), as well
as between both fibers and theoretical values (p-value = 0.43). The differences in mass extracted with
50/30-µm DVB/Car/PDMS at every sampling time were 9% less than the mass extracted with 85-µm
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Car/PDMS, respectively. Log-transformation of mass extracted on SPME fiber was performed because
there was non-constant variance in the residuals.

2.3. Effect of the Glass Liner Conditioning

There was no apparent effect of the glass liner conditioning on sampling of acetic acid.
TWA sampling of acetic acid using exposed SPME fibers inside cleaned (new, unused) and “saturated”
(exposed to standard gas for an extended period) glass liners was carried out. The rationale for testing
the “saturated” glass liner was to test if that kind of conditioning is needed for practical air sampling.
Resulting total masses extracted on SPME fibers were reproducible. RSDs ranged from 4.3% to 8.2%
with cleaned and from 1.6% to 7.9% with “saturated” liners. A two-sample t-test did not show a
statistically significant difference in mass extracted on the SPME fiber exposed inside cleaned and
“saturated” liners. To determine if the rates of increase were different, a linear regression model with
a log-transformed response was used. Log-transformation of masses extracted on SPME fiber was
performed because there was non-constant variance in residuals. Fitting of the model showed no
significant difference in interaction between the condition of a glass liner and time (p-value = 0.74).
Upon analyzing the means of mass extracted on an SPME fiber with different glass liners at each time
point, the p-values were not significant (from 0.68 to 0.93 for each time point, respectively). However,
one of the interesting findings was that the percentage difference between both glass conditions was
the highest at a sampling time of 1 h (15.0%). Then, the percentage difference decreased to 2.6% at a
sampling time of 4 h and continued to decrease at longer sampling times. Figure 4 summarizes the
results of previous experiments with both SPME fibers, and both glass liner conditions (clean 85-µm
Car/PDMS vs. “saturated”).
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Figure 4. Comparison of the theoretical mass with the experimental masses extracted using
85-µm Car/PDMS (with clean and saturated glass liners) and 50/30-µm DVB/Car/PDMS fibers.
The theoretical mass extracted was calculated using Fick’s first law of diffusion (Equation (1)).

The result of the previous analysis shows that the SPME fibers extracted reproducible amounts
of the target compound. Thus, the theoretical mass extracted on the fiber was proportional to the
diffusion coefficient of the acetic acid, the concentration of the acetic acid in the gas phase, sampling
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time, and cross-sectional area of the glass liner opening, and it was inversely proportional to the
diffusion path (i.e., distance between glass liner opening and the SPME fiber tip) length.

We also showed that the mass of extracted VOC on the SPME fiber remains inversely proportional
to the retraction depth as a prerequisite for using Equation (1) for quantification. Thus, it was decided
to investigate the possible influence of SPME fiber retraction depths inside a glass liner on extracted
mass. Several diffusion path lengths (5, 10, 30, and 35 mm) were tested and compared to the fixed
retraction depth of 17 mm that was used in the previous experiments. The aim of these new tests was
to identify if different retraction depths would affect the mass extraction process inside of a glass liner.
The results of the effect of retraction depth are shown in Figure 5.
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Figure 5. Effect of diffusion path length (Z) on the extracted mass of acetic acid. Extraction conditions:
“retracted” 85-µm Car/PDMS, standard gas (acetic acid). SIM mode at m/z 60.0 was used for detection
and quantification of the target compound. A sampling time of 4 h was used.

Extracted masses at the diffusion path lengths followed a power-law distribution. RSDs for
extracted masses did not exceed 10% (7.6, 2.0, 5.5, 1.7, and 3.3% for 5, 10, 17, 30, and 35 mm, respectively).
Thus, a diffusion path length can be adjusted, e.g., for achieving lower detection limits and/or higher
accuracies at higher sampling times [22].

2.4. Verification of Glass-Liner-Facilitated TWA SPME via a Side-by-Side Comparison with the
Sorbent-Tube-Based Method

The new method was compared with sorbent-tube-based sampling (a conventional method).
Table 1 shows the comparison of measured concentrations of acetic acid in indoor air (laboratory,
office space) and at a commercial swine farm in Iowa. Triplicates were taken at each sampling site.
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Table 1. Comparison of measured acetic acid concentrations in different locations using time-weighted
average (TWA) solid-phase microextraction (SPME) (85 µm Car/PDMS) facilitated with a glass liner
and sorbent-tube-based measurement.

Location
Measured Concentration (µg·m−3)

% Difference (TWA SPME vs. Sorbent Tubes) p-Value
TWA SPME (Glass Liner) Sorbent Tubes

Office 17.7 (±2.7) 9.7 (±1.0) 58 0.002
Laboratory 15.2 (±0.8) 6.6 (±0.7) 78 0.0001

Farm 1, Day 1 3620 (±430) 755 (±20) 131 0.0004
Farm 1, Day 2 2400 (±310) 750 (±180) 104 0.0008
Farm 2, Day 1 685 (±70) 340 67 0.002
Farm 2, Day 2 750 (±90) 375 (±20) 67 0.0001

The concentration of acetic acid in the air was calculated using Fick’s first law of diffusion
(Equation (2)):

Cgas =
m·Z

Dg·t·A
(2)

Generally, the masses extracted by the SPME fibers were reproducible. In comparison with
sorbent tubes, SPME fibers were much simpler to operate and did not require a thermal desorption
system and additional instruments (a flowmeter and a pump) for VOC sampling in the field. It was
also convenient to use in quiet places such as an office; the noise of the running pump caused a little
discomfort to graduate students.

A comparison of the two methods showed that the concentrations obtained using the SPME
fibers were much higher than the result based on the sorbent tubes. The difference between those
methods varied depending on the sampling site. For example, in an indoor air setting, the differences
between the two methods in resulting concentrations of acetic acid were 58% and 78% in the office
and the laboratory, respectively. The differences between the two methods in the indoor setting were
statistically significant (p < 0.002). Both indoor sampling sites had nearly similar concentrations of
acetic acid. The small difference in concentrations between those two sampling sites could be explained
by the more efficient ventilation system in the laboratory, which helped keep the concentration of the
compound low, whereas the doors of the office were kept closed during the sampling, so there was
less air mixing between the office and the hallway.

The TWA concentration of acetic acid in swine barns was approximately 50–200 times higher
compared to indoor air environments. A sampling of acetic acid at Farm 1 for two days revealed
larger differences in results produced by “retracted” SPME and sorbent tubes. The differences were
statistically significant (p < 0.001). Sampling with tubes was much shorter over the entire period and,
thus, not capable of measuring variations. During the first day of sampling, the glass tubes housing
SPME fibers were placed in the direction facing the barn air flow. On that day, the differences between
both methods were the highest (130%). On the following day, when SPME fibers were placed pointing
in the direction of exhaust fans (i.e., glass liner opening faced the other direction), the discrepancies
decreased (by nearly 26%), but remained high. The effect of TWA SPME sampler positioning requires
additional research. An interesting fact is that the concentrations measured by the two methods were
higher than previously reported in the literature. At Farm 2, both methods showed less differences
than at the first farm. The differences between them did not exceed 70%. The RSDs of masses extracted
for both methods were under 11%. In Table 1, at Farm 2, only one sample with sorbent tubes was taken
on Day 1, so SD could not be calculated.

3. Materials and Methods

All materials and methods are described in greater detail by Tursumbayeva’s (2017) [34] graduate
thesis. Below is a summary of key details.
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3.1. Chemicals and Materials

Chemicals used in this study included acetic acid and helium. Acetic acid, glacial (certified
by ACS (American Chemical Society) ≥ 99.7%) was purchased from Fisher Chemical (Fair Lawn,
NJ, USA), and helium (≥99.99%) was purchased from Air Gas (Des Moines, IA, USA). The 85-µm
Car/PDMS and 50/30-µm DVB/Car/PDMS SPME fibers and manual SPME holders were obtained
from Supelco (Bellefonte, PA, USA).

3.2. Standard Gas Generation and Sampling System

The standard gas generation and sampling system were built to simulate typical air flow rates
through swine facilities (Figure 6).
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Figure 6. Schematic of standard mixture flow in the system. Passive gas sampling was completed with
SPME retracted inside a gas chromatography (GC) injector glass liner.

The standard gas generation system included sampling ports for air quality check, a mass flow
controller (Aalborg, Orangeburg, NY, USA), a motorized syringe pump (KD Scientific, Holliston, MA,
USA), a 50-µL gastight syringe (Hamilton, Reno, NV, USA), a mixing port, polytetrafluoroethylene
(PTFE) tubing (Thermo Scientific, Rochester, NY, US), and compression fittings. After the clean
compressed air was introduced into the standard gas generation system, it flowed through the air
quality check to be purified. Air flow (150 mL·min−1) was managed by a mass flow controller. The rate
of the target compound injection was controlled by a motorized syringe pump. Known volumes of
the target compound were introduced to clean air in a heated mixing port to produce the desired
concentrations. After standard gas (Cgas) was generated, it passed through the gas sampling system.

The gas sampling system consisted of two U-shaped gas bulbs submerged inside of a thermostated
water bath. Gas bulbs were filled with solid glass balls to help evenly distribute acetic acid in clean
air. Both sides of the bulbs were sealed with lids. A sampling port was installed on one of the lids
of a bulb. Sampling ports included an SPME fiber enclosed in a glass liner (Figure 6). The distance
between the opening of the liner and the tip of the fiber was fixed at 1.75 cm. As can be seen in
the inset of Figure 7A,B (close-up), a glass liner was inserted into the gas bulb. The PTFE tubing
was slid around the top of the glass liner. A septum was inserted into the PTFE tubing to close the
top of the glass liner and for SPME needle insertion. The water bath was covered with insulation
material to avoid excessive water evaporation. The temperature of the water in the bath was held
at 25 ◦C. After passing through the gas sampling system, air flow was checked with a volumetric
flowmeter (Bios Defender 520, MesaLabs, Butler, NJ, USA) to detect possible leaks in the system,
and then exhausted to the fume hood.
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quantifications. The SPME fiber is exposed inside of a GC glass liner; thus, the walls of the liner serve
as a protective needle in the conventional retracted mode.

The mass flow controller and the motorized syringe pump were used to produce the desired
concentration of acetic acid in the gas generation system. The maximum concentration of acetic acid
(617 µg·m−3) which was reported by Cai et al. [11] was chosen in our research to assess the method.
To achieve the desired concentration, the rate of acetic acid injection into a heated mixing port was
calculated using Equations (4)–(6) described in the study by Baimatova et al. [30]. Since the calculated
injection rate to generate 617 µg·m−3 acetic acid in the system was small (5.553 µg·h−1), it was decided
to dilute acetic acid with distilled water at the ratio of 5 to 1000. The syringe with the acetic acid
standard solution was refilled every day. The dilution with water also helped avoid big fluctuations in
the concentration of acetic acid since the dilution increased the number of solution injections into the
system (Figure 2). A description of quality assurance and quality control measured pertaining to the
liquid injection and flow rate verification are provided in Appendix B.

3.3. MS Detector Calibration with an Acetic Acid Standard Solution

To convert the peak area count of acetic acid extracted from the SPME fiber, we needed to know
the response factor. The response factor was obtained by injecting different volumes (0.1–0.3 µL)
of the analyte solution in hexane into the GC inlet working in splitless mode and determining the
corresponding peak areas. Direct injections were conducted in triplicate. The calibration curve
was constructed using four data points of average masses of acetic acid (from 500 to 5000 ng) that
were injected into the GC. Response factor was calculated from the average mass injections, and
corresponding peak area counts (Equation (3)).

RF =
PA
m

(3)

where RF is the response factor, PA is the peak area count, and m is the known mass introduced into a
column. Taking into account that the instrumental responses were linear over the tested period and the
intercept was statistically zero, the response factor was equal to 14,400 peak area units·ng−1. Knowing
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the response factor, the quantification of acetic acid mass extracted on the SPME fiber was done using
the same equation.

3.4. SPME Fiber Conditioning

A new SPME fiber was thermally cleaned in a heated GC injection port according to the
manufacturer’s instructions. Before each sampling, the SPME fiber was cleaned in the GC injector
port. This was done by holding the SPME fiber in the heated GC injection port at 240 ◦C for 3 min.
Then, the fiber was introduced into the glass liner at the sampling port. After adsorption of the target
compound, the SPME fiber was quickly transported to the GC injection port, where it was kept for
3 min for desorption. Between injections, the SPME fiber was kept in aluminum foil to avoid the
absorption of VOCs present in the laboratory air.

3.5. Conditions of GC–MS

A gas chromatograph coupled with a mass spectrometer (6890N/5975C, Agilent, Santa Clara,
CA, USA) was used in this study. Helium was selected as a carrier. The constant flow of helium in
the column was 7.5 mL·min−1. The flow was relatively high for an MS because the instrument was
fitted with an olfactometry port/open split interface (human panelists were not used in this research).
Temperatures of the ion source, quadrupole, and MS interface were 230, 150, and 240 ◦C, respectively.
Splitless mode on the GC injection port at 240 ◦C was used. The oven temperature was initially set at
40 ◦C for 3 min, followed by heating rate increments of 7 ◦C·min−1 up to 125 ◦C, and 30 ◦C·min−1 up
to a final 240 ◦C (held for 2 min). Total GC run time was 29.41 min. The retention time of acetic acid
was 12.7 min. The MS detector was autotuned daily.

3.6. Standard Gas Stability Check

The standard gas that was generated by the gas generation system was checked for stability.
For this purpose, the standard gas was checked several times for three consecutive days. The standard
gas was sampled with an SPME fiber every hour after injection with an exposed 85-µm Car/PDMS
fiber. A sampling time of 20 s was sufficient. Simultaneously, the concentration of acetic acid was
monitored with the same type of fiber, but in a “retracted” position. The sampling time for the
“retracted” fiber was 1 h. This stability check provided the information that the system was capable of
producing stable responses over time and that the data which were going to be collected in the future
would be reproducible. Furthermore, before starting a new set of experiments, the concentration of
acetic acid was verified with an exposed fiber. At the same time, the standard method (sorbent tubes)
was used to verify the concentration of acetic acid in the system. After 24 h, the syringe was refilled
with an acetic acid solution (50 µL).

3.7. Experimental Design

Calibration of the SPME fiber was conducted by exposing the fiber inside a glass liner to the air
with an acetic acid concentration of 617 µg·m−3 at 25 ◦C generated by the standard gas generation
system. Retraction depth was fixed at 1.7 cm. The inner diameter of the glass liner (a standard GC
liner recommended for SPME injections) was measured using a digital microscope (CC-HDMI-CD1,
New Haven, CT, USA) and was equal to 0.844 mm. As an adsorptive fiber [35], the SPME fiber required
testing of different sampling times to make sure that the fiber did not reach its sorptive capacity.
Thus, sampling times of 1, 4, 8, and 12 h were examined to determine the longest sampling time before
the sorptive capacity limit of the fiber was reached. All experiments were completed in triplicate.
To improve the S/N ratio, quantification of acetic acid was performed using SIM mode at m/z 60.0.
Limits of detection (LOD) and quantification (LOQ) were calculated by estimating concentrations
corresponding to signal-to-noise (S/N) ratios 3:1 and 5:1, respectively.
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3.8. SPME Fiber Selection

Two commercially available SPME fibers, 85-µm Car/PDMS and 50/30-µm DVB/Car/PDMS,
were tested to select the most suitable fiber for extracting the target compound. Both SPME fibers
were inserted in each sampling port (Figure 6) and exposed inside a glass liner. Before every SPME
fiber injection, glass liners were washed and baked overnight. Extractions of acetic acid with the two
different fibers were conducted simultaneously. Three replicate samples were taken with each fiber.
Sampling times between 1 and 12 h were examined. Constant dry air flow at 150 mL·min−1 with a
diluted acetic acid injection rate of 5.55 µg·h−1 was used to generate the desired concentration.

3.9. Effect of Glass Liner

The possible effect of glass liner conditioning was examined because of the rationale based on
previous studies of Baimatova et al. [30,31] and Koziel et al. [32], which accounted for adsorption to
the SPME metallic assembly. In their work, SPME needle assembly was shown to extract a significant
portion of VOCs. To minimize or possibly eliminate this effect, the exposed SPME fiber was inserted
into a protective glass liner (Figure 1). Two different conditions of a glass liner were tested. In the
“cleaned” condition, glass liners were washed and baked overnight to evaporate all remaining VOCs.
Cleaned liners were inserted into the sampling port in the standard gas generation system immediately
before the SPME fiber insertion. In the “saturated” condition, glass liners remained in the sampling port
of the standard gas generation system for at least an hour before SPME fiber insertion. A t-distribution
was used to test the null hypothesis that the two population means (mass extracted on the SPME fiber
exposed to cleaned and saturated liners) had no statistical difference at the 95% confidence interval
(CI) (two-tailed test).

3.10. Sorbent Tubes

Sorbent tubes packed with Tenax TA were used to compare the results of the exposed SPME fiber
inside a glass liner. The sorbent-tube-based method was used as a “benchmark” for the new method.
Table A1 summarizes the pros and cons of compared and available methods. The procedure of sampling
with sorbent tubes was completed as described in the work of Zhang et al. [10]. Firstly, sorbent tubes
were thermally cleaned at 260 ◦C under a 100-mL·min−1 N2 flow for 5 h; then, before subsequent
uses, they were pre-conditioned at 260 ◦C under a 100-mL·min−1 N2 flow for 30 min. In the field,
sorbent tubes with two sections, sampling and breakthrough (against saturation), were connected to
an air sampling pump (SKC Inc., Eighty Four, PA, USA) at a 50 mL·min−1 set flow rate. The sampling
flow rate was monitored with a flow meter.

3.11. Application in the Field

After validating the described method in the lab, sampling of acetic acid was performed in indoor
and livestock settings. Indoor air sampling included two sites: a manure treatment laboratory and an
office space at Iowa State University. In the livestock setting, air sampling of acetic acid was carried
out inside of the barns. Livestock air samples were taken at two swine farms: a typical swine farm
located in Central Iowa (Farm 1) and a new farm with air scrubber and filtration technology for odor
reduction (Farm 2). Both the new method (i.e., an SPME fiber exposed inside of a glass liner) and
the conventional method (i.e., the sorbent tubes) were used at the sampling sites. The samplers were
placed upstream of exhaust fans. The opening of the “retracted” fibers and sorbent tubes were pointed
in the direction of the exhaust fans.

Three 85-µm Car/PDMS fibers were used at each site. Every fiber was thermally cleaned in
a GC injector port as described earlier. Then, the fiber was assessed for residuals. For SPME fiber
protection in the field, a “retracted” SPME fiber was placed inside of a 40-mL thermally cleaned
vial. This was done to make an additional barrier between the dusty and odorous environment and
the TWA SPME sampler (Figure 8). Thus, only the opening of the glass liner was exposed to the
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environment. Vials with a “retracted” SPME fiber were kept in thermally clean aluminum foil to
prevent any interaction with the environment before actual sampling. Depending on anticipated
concentrations at each monitoring site, the sampling time for the “retracted” SPME fiber was adjusted.
For the quantification of acetic acid in the indoor setting, a sampling time of 12 h was used. For testing
the method in the livestock setting, a sampling time of 40 min was sufficient. The diffusion coefficient
was equal to 1.1 × 10−5 m2·s−1 at 25 ◦C [36].Molecules 2018, 23, x FOR PEER REVIEW  14 of 18 
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sample diffuses through the opening in the GC glass liner (left side of the photo) onto an SPME fiber
fully exposed inside the liner. A short section of Teflon tubing and a half-hole septum seal the liner and
facilitate SPME insertion. A clear glass vial encloses the SPME assembly from dust and other gases in
the sampled air.

Quantification of acetic acid was also performed with Tenax sorbent tubes. The sorbent tubes
were thermally cleaned as described earlier. Multiple air samples were taken with two adjacent sorbent
tubes, and the results were averaged for the indoor setting. The sampling time was 20 min. For the
swine farm setting, a sampling time of 40 min was used.

After samples were taken, SPME fibers and sorbent tubes were covered with thermally cleaned
aluminum foil and placed in clean glass vials and then transported for further analysis. All samples
were analyzed within 5 h of sample collection. A t-distribution was used to test the null hypothesis
that the sample means received with the two methods were equal at the 95% CI (two-tailed test).

4. Conclusions

A novel and simple TWA SPME-based method for the quantification of acetic acid in ambient air
was developed. The following conclusions can be drawn:

• An SPME fiber exposed inside a glass liner followed Fick’s law of diffusion. There were linear
relationships between mass of the analyte extracted and extraction time up to 12 h (R2 > 0.99),
and mass extracted and the inverse of retraction depth (1/Z) (R2 > 0.99). The amount of VOC
adsorbed via the TWA SPME using a GC glass liner to protect the SPME was reproducible.

• There was no statistically significant difference between cleaned and “saturated” (equilibrated)
glass liners. Thus, no special precautions are recommended for a practical application of
this approach.

• The 85-µm Car/PDMS fiber revealed a higher response than the DVB/Car/PDMS fiber. The mass
extracted by Car/PDMS was 8.9% higher than the mass extracted by the DVB/Car/PDMS
fiber coating.

• The limit of detection (LOD, S/N = 3) and limit of quantification (LOQ, S/N = 5) were 10 and
18 µg·m−3 (4.3 and 7.2 ppbV), respectively.
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• The new method was evaluated under field conditions by comparing it to the standard method
(sorbent tubes) in four different locations. The TWA SPME sampling with a glass liner showed a
reasonable match with the sorbent tubes.

The method shown is a relatively simple and practical, yet accurate sampling technique for the
quantification of acetic acid in both an indoor workplace and a swine farm building. The method
is reusable. Further research should be done to extend the number of odorous VOCs that can be
used with this method, allowing further improvement of TWA SPME modeling (e.g., Reference [22]),
and the incorporation of temporal changes in sampled air on TWA SPME [37].
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Appendix A. VOC Sampling Methods

There are numerous techniques for sampling VOCs, the most common of which are whole-air
sampling techniques and sorbent tubes. The choice of air sampling technique depends on the chemical
and physical properties of the VOCs of interest and on preferences motivated by regulatory reasons [9].

Whole-air sampling tools come in two common forms: evacuated stainless-steel canisters and
sampling bags. In the US, evacuated canisters were introduced in the 1980s [15]. Today, canisters
are applicable for sampling of up to 150 polar and nonpolar VOCs [16]. Canisters are equipped with
flow controllers, particulate matter filters, and a vacuum gauge. For TWA sampling of VOCs in the
field, the flow controller is pre-calibrated for the desired sampling time. Canister walls can modify the
original content of sampled gas, as VOCs adsorb and undergo reactions, and samples can have poor
recoveries [15,17].

Air sampling bags are used for the sampling of odorous gases [14,15]. Sampling bags are simple
(consisting of a polymer film and a connector) and inexpensive to use. Despite their simplicity
and cost-effectiveness, there are several limitations with regards to poor sample recoveries [14].
For example, Tedlar bags can desorb acetic acid and phenol, and absorb indole, p-cresol, nonanoic and
octanoic acids, and some other VOCs resulting in an increased or decreased total mass of those VOCs
in every sample [14]. Metalized bags can improve sample recovery for selected odorous VOCs [18].
Nalophane is the least expensive material; however, the material is not recommended for benzene and
other petrochemicals, and it is not recommended to store samples for more than 6 h [19]. Teflon FEP
bags are considered the most chemically inert among other bags, but they have a higher cost [20].

Sorbent tubes can be a good alternative to canisters and bags. Sorbents can be selected for
application to a wider range of analytes including odorous VOCs [10]. Unlike canisters, sorbent tubes
are compact and are easier to transport and store. Moreover, sorbent tubes have greater stability
when exposed to polar compounds (most odorous VOCs are polar). In this approach, contaminated
air passes through a tube containing sorbent material, which adsorbs VOCs. Usually, to facilitate
this process, the contaminated air passes through the tube at a constant rate with the help of an air
sampling pump. Sampling with sorbent tubes is one of the conventional sampling procedures for
VOC quantification in ambient air [10,13,14,21]. All methods are summarized in Table A1.
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Table A1. Comparison of sampling methods available for volatile organic compound (VOC) sampling.
TWA—time-weighted average; SPME—solid-phase microextraction.

Sampling
Technique

Whole-Air Sampling
(Sampling Bags and Canisters)

Active Sorbent
Tubes Sampling

SPME in Grab Sampling Mode SPME in Continuous (TWA)
Sampling Mode

Measurements in
TWA mode

Possible Possible Possible Possible

Advantages Simple, accurate Simple, accurate Simple, accurate, fast,
no pre-concentration and pump

needed, low detection limits

Simple in operation, reusable,
low cost, no pre-concentration

and pump needed

Disadvantages Relatively high cost; difficulties in
transportation and storage; pump
and pre-concentration required;

the need for evacuation and
cleaning in lab prior sampling;

could be problematic to reuse bags

Pump and thermal
desorption system

required

Several grab samples needed for
TWA concentration; mass

extracted greatly affected by
environmental variables

Complicated standard gas
generation system and

calibration required

Appendix B. Liquid Injection and Flow Rate Verification

Since the motorized syringe pump and the mass flow controller are key instruments to generate the
concentration of acetic acid in the standard gas generation system, the reliability of these instruments
was verified. To verify that the motorized syringe pump provided a correct rate of injection, a known
volume of water was injected into the empty vial. The mass of the vial was weighed before and
after injection. The results of the mass of injected liquid and the set point were compared, and the
difference between them did not exceed 3%. The rate of injection was constantly verified visually
during the experiments.

A similar verification for flow rate was completed to assure that the system did not leak.
Measurements for three different flow rates were compared with the mass flow controller and the
flowmeter. The difference between readings on the flow controller and the flowmeter depended on the
flow rate. Smaller flow rates yielded a higher difference between readings on the two instruments.
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