
Late Byzantine Mineral Soda High Alumina Glasses from
Asia Minor: A New Primary Glass Production Group
Nadine Schibille*

Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, United Kingdom

Abstract

The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the
identification of raw materials and technological traditions of their production. Several lines of evidence point towards the
large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian
mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the
eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well
as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass
samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed
by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS).
The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different
glass production technologies, one of which had not previously been recognised in the glass making traditions of the
Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current
model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-
century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina
levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were
produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional
Byzantine primary glass production in Asia Minor.
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Introduction

The elemental composition of glass reflects the raw materials

and the techniques that were employed in its manufacture. The

chemical analysis of glass can therefore provide evidence about the

origin of the raw materials, while the comparison of compositional

data between archaeological sites can potentially reveal patterns in

the production and the trade of glass. This in turn can shed light

on the economic and cultural connections linking any one specific

site to the wider world. Hence, the analytical study of

archaeological glass can contribute substantially to our under-

standing of technological and cultural processes.

Yet, one of the most remarkable characteristics of Roman and

early medieval glass (up to the 9th century CE) from the

Mediterranean is its compositional homogeneity. It is a soda-

lime-silica glass with little variation in its major and minor element

composition. The typically low levels of potassium and magnesium

oxides (,1%) are usually attributed to the use of a pure form of an

evaporate mineral soda (so-called natron), most likely from the

Wadi Natrun in northern Egypt [1]. It is believed that these

mineral soda glasses were produced on a very large scale in a

limited number of primary glassmaking installations from two

ingredients alone, namely imported natron (fluxing agent) and a

silica source (network former) that was locally available. This

implies that the remaining elements were introduced as contam-

inants of the main two ingredients. For example, the third most

abundant component in ancient glass, calcium oxide (stabiliser), is

present in the form of seashells or limestone in sands used as silica

source. The so produced raw glass was then broken up into chunks

and distributed to numerous secondary workshops throughout the

Mediterranean as well as central and northern Europe, where the

glass was remelted, colourants and/or opacifiers were added as

required and where the glass was finally worked into artefacts [2–

8]. There is ample evidence for the large-scale production of glass

in the form of enormous glassmaking furnaces in Greco-Roman

Egypt [9,10] and in the late antique and early medieval Levant

[11,12]. Several shipwrecks from the same period contained

substantial amounts of glass ingots and thus attest to the far-flung

maritime trade in glass as well as to the division of labour [13–15].

However, evidence comes above all from the chemical makeup of

glass assemblages from throughout the Mediterranean and Europe

that can be related back to the known primary glass production

groups in the Levant and Egypt (e.g. [3,5,16]). There may have

been some primary glass production in western Europe during the

Roman period [17–20]. Natural variations in the composition of

the raw materials of glass over time can possibly account for some

of the observed minor chemical differences [19,21]. Similarly,

technical factors inherent in the glass manufacturing processes

have been shown to considerably impact the final glass

composition [22,23]. In any case, most of the analytical data to
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date indicate an eastern Mediterranean origin for the majority of

first millennium CE glass.

The manufacture of natron-based glass appears to have ceased

during the eighth/ninth century CE, when soda-rich plant ash at

first complemented and eventually completely replaced the use of

natron across the Islamic world, in the Near East (e.g. at al-Raqqa

in Syria [24]) as well as in Egypt [25]. Simultaneously, medieval

Europe saw the emergence of wood-ash glasses (e.g. [26]). The

chemistry of plant or wood ash glasses is more complex than that

of natron glasses as unrefined ashes can be highly variable,

especially with regard to their sodium, potassium, magnesium and

calcium oxide concentrations. Depending on whether crushed

quartz pebbles or sand was used as the silica source, calcium oxide

is introduced into the glass batch either exclusively as part of the

plant ash (in case of quartz), or with both, ash and sand (shells or

limestone). This can potentially result in the failure of the melt due

to excessive lime levels [27]. The replacement of mineral soda with

plant ash as fluxing agent for the manufacture of vitreous materials

was presumably the direct consequence of shortages in the supply

of Egyptian natron, possibly due to increasing demands, climatic

factors or political disturbances in the Nile Delta [1,28].

This concept of radical technological change in the manufacture

of glass rests on analytical data limited both in chronological and

geographical scope. Scholarly focus to date has been on the late

antique and early medieval glass from the Middle East and Egypt

[2,9,13–15,24,25,29,30]. Little is known, however, about the

manufacture of Byzantine glass and its relationship to the glass

making traditions of the eastern Mediterranean, as there is a

distinct lack of analytical data of glass from the heartlands of the

Byzantine Empire. In order to shed light on the chemical and

technological aspects of Byzantine glass production, this study

presents the chemical data of Byzantine glass finds from the

residential area at the ancient city of Pergamon (Asia Minor)

dating to the fourth to fourteenth century CE. The material from

Pergamon is of high scientific and historical interest, because the

city of Pergamon remained largely under Byzantine rule until the

fourteenth century and the assemblage spans the transitional phase

with respect to the technology of glass production. It may thus be

expected that the elemental compositions of the glass finds from

Pergamon reflect the different major glass-making traditions (natron

versus plant ash). The main objective of this study thus was to

relate the analytical data of the glass from Pergamon to the current

model of glass production and distribution in the Mediterranean

during the period of interest and to specifically trace the transition

in the consumption of glass at Pergamon from late antiquity up to

the fourteenth century. A model for the supply and consumption

of Byzantine glass at Pergamon was developed by comparing the

generated analytical data with those of recognised primary glass

production groups as well as with glass from other contemporary

consumer sites. The known glass production groups of the eastern

Mediterranean, however, could not account for the analytical

results of most of the middle and late Byzantine glass fragments

from Pergamon, strongly indicating the existence of Byzantine

primary glass production centres, possibly in Asia Minor itself.

Materials and Methods

Byzantine Pergamon and Its Glass
The fate of post-Roman Pergamon remains obscure and the

archaeological and historical records are particularly scarce for the

late antique and early medieval periods. The once prosperous city

seems to have been in steady decline from the late third century

CE onwards. Some building activities during the early fifth

centuries bear witness to a short-lived economic prosperity, but the

recurring outbreaks of plaque in the sixth century probably

reduced both the city’s size and population [31]. Pergamon

virtually ceased to exist for about two centuries as a direct result of

the Arab conquest in 716 CE [31,32]. There is some evidence for

a Byzantine re-settlement under Leo VI (886–912 CE), but a more

substantial recovery seems to have taken place only towards the

end of the eleventh and the beginning of the twelfth century

[31,33]. This is when the fortifications were refurbished and

expanded and new clusters of houses were built over the ancient

ruins. The archaeological record reflects a continuous growth of

the population and an increase in commercially used building

complexes in the second half of the thirteenth century [31]. The

Ottomans finally conquered Pergamon during the early decades of

the fourteenth century [31,33].

During the archaeological excavations of the residential area on

the southern slopes of the ancient acropolis at Pergamon,

conducted by the German Archaeological Institute between

1973 and 1993, a considerable collection of glass finds were

uncovered, dating from the Hellenistic to the Islamic era of the

city. Several pieces of evidence point to the trade of glass jewellery

during the second half of the thirteenth century CE [31], and the

presence of glass chunks among the late Byzantine finds confirms

that secondary processing of glass took place at Pergamon during

this later period. No unambiguous evidence for the primary

production of glass from its raw materials has been identified thus

far. The glass fragments analysed in this study were excavated

from a variety of contexts at the Byzantine levels and date to the

fourth to fourteenth century CE. The set of samples consists of

three pieces of glass chunks, five window fragments and twenty-

three vessels including a rare prunted beaker (PEP-037), some

painted or enamelled fragments (PEP-016, PEP-032, PEP-074)

and two deep red opaque samples (PEP-043, PEP-096). Apart

from the two red samples, all the vessels and windows are of a

transparent or translucent quality and range from colourless,

pinkish and aqua to darker shades of amber and green. Since the

stratigraphic sequence is not ascertained beyond doubt [34], the

artefacts were mainly dated on grounds of typological parallels

[35, Schwarzer (in preparation) Antikes, byzantinisches und

islamisches Glas aus Pergamon. Pergamenische Forschungen].

The assemblage was classified according to their typological

attribution into three main archaeological phases: early Byzantine

(4th–7th century), middle Byzantine (8th/9th century) and late

Byzantine (12th–14th century).

Analytical Methods
For electron microprobe analysis (EPMA), small sections (about

1–2 mm3) were removed from the individual glass samples and

mounted in epoxy resin blocks that were subsequently ground and

polished down to 1 mm grade. The polished resin blocks were then

coated with a thin conductive carbon layer. The chemical analysis

of the major and minor components was carried out with a Jeol

8600 electron microprobe equipped with four wavelength-

dispersive spectrometers (WDS) in the Research Laboratory for

Archaeology and the History of Art at the University of Oxford.

The operating conditions were a 15 keV accelerating voltage and a

6 nA incident beam current with the electron beam defocused at

10 mm and counting times of 30 s on peak and 15 s on

background for the major and minor elements. 22 elements were

analysed (Na, K, Mg, Ca, Ba, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al,

Si, Sn, Pb, P, As, Sb, S, Cl) and converted into weight percent

(wt%) oxide values using the PAP correction programme (table 1).

To ascertain the homogeneity of the samples and to obtain more

representative results several measurements were taken of each

sample and the mean calculated (n$5). The precision (defined as
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the relative standard deviation s/A, where s is the standard

deviation and A is the arithmetic mean) was within 1% for SiO2

and within 2% for Na2O and CaO, at about 3–4% for MgO, K2O

and Al2O3 and typically within 10% for TiO2, MnO and Fe2O3.

The detection limit was about 0.04 wt% for Cl and 0.07 wt% for

P2O5 and TiO2. For all other trace elements, values below

0.1 wt% were below the detection limit and not taken into

account. The accuracy of the measured data was evaluated against

Corning ancient glass standards A and B (Table S1). To evaluate

the major and minor elements in relation to the sand and alkali

source (i.e. the base glass composition) and for comparison with

published data the measured alumina and lime concentrations

were corrected by +5% and by 210% relative, respectively. These

corrections brought the measured results in line with the certified

values of the Corning standards, making the data directly

comparable to other published results. The glass compositions

were then reduced to the seven main constituents SiO2, Na2O,

CaO, MgO, K2O, Al2O3 and Fe2O3 and normalised to a sum of

100% as discussed by Brill [36].

The trace element composition of the glass fragments was

determined by laser ablation-inductively coupled plasma-mass

spectrometry (LA-ICP-MS) in the Field Museum at Chicago. The

analytical parameters and protocol of the procedure have been

previously described in detail [37]. In short, the trace element data

are the result of an average of four measurements per mounted

sample (table 2), taken with a laser beam diameter of 55 mm at

70% of the laser energy (0.2 mJ) at a frequency of 15 Hz. The

laser ablation analyses were performed in helium as the carrier gas

Table 1. Results from the EPMA analysis (n$5; values given in wt% of oxides) divided into chronological and chemical sub-groups.

Sample Colour Artefact SiO2 Na2O K2O CaO MgO Al2O3 FeO TiO2 MnO P2O5 Cl SO3 CuO Sb2O5 PbO Sum

Early Byzantine natron-type glasses

PEP_028 colourless vessel 71.70 17.22 0.49 6.24 0.38 1.78 0.29 0.08 0.03 1.09 0.28 0.89 100.48

PEP_033 blue vessel 69.61 15.14 0.50 8.20 0.47 2.35 0.77 0.42 0.16 0.96 0.24 2.05 0.58 101.49

PEP_063 colourless vessel 71.18 18.03 0.44 6.09 0.50 2.00 0.34 0.08 0.02 1.26 0.25 0.58 100.76

PEP_064 light blue window 67.21 14.99 0.70 8.55 0.63 2.55 0.68 0.65 0.18 0.89 0.20 0.37 0.98 1.78 100.35

PEP_065 aqua window 73.49 14.54 0.53 7.26 0.44 3.13 0.49 0.12 0.05 0.79 0.15 100.99

PEP_066 aqua vessel 66.27 14.51 0.57 8.43 0.62 2.43 0.99 0.09 0.53 0.16 0.67 0.21 0.52 1.29 2.93 100.21

PEP_085 aqua vessel 66.52 18.00 0.78 8.60 0.95 2.50 0.85 0.16 0.79 0.15 0.84 0.21 100.37

PEP_099 greenish window 65.85 18.57 0.49 6.27 0.89 2.53 1.20 0.47 2.64 0.05 1.00 0.28 100.23

PEP_100 colourless window 68.68 16.23 0.73 9.10 0.57 2.81 0.35 0.07 1.15 0.09 0.94 0.21 100.93

Middle Byzantine high alumina glasses

PEP_043 dark opaque red vessel 56.67 14.48 2.14 7.36 2.24 11.03 2.74 0.72 0.28 0.99 0.16 0.67 99.48

PEP_053 amber vessel 55.34 17.82 1.78 5.32 1.58 9.90 1.95 0.63 3.66 0.36 0.95 0.15 99.44

PEP_096 dark opaque red vessel 57.64 18.47 1.82 4.73 1.47 9.90 2.12 0.68 0.16 0.32 1.19 0.16 1.50 100.16

Late Byzantine high alumina glasses

PEP_015 dark green transl. vessel 56.51 17.26 1.77 5.03 1.42 9.74 1.60 0.65 2.95 0.36 0.98 0.13 98.40

PEP_032 colourless vessel 60.34 15.52 1.62 8.27 1.26 7.37 1.09 0.30 1.43 0.10 0.44 0.34 98.08

PEP_037 colourless vessel 67.90 14.55 1.25 9.36 0.89 3.22 0.55 0.10 1.46 0.11 0.06 0.51 99.95

PEP_039 pinkish vessel 65.11 14.05 2.06 9.14 0.84 5.88 0.64 0.12 1.28 0.10 0.08 0.51 99.80

PEP_047 yellowish pink vessel 63.81 18.30 1.21 4.41 1.18 6.73 1.41 0.50 0.63 0.27 1.15 0.15 99.74

PEP_048 colourless vessel 62.00 15.18 2.22 9.99 1.12 5.90 0.90 0.15 0.72 0.14 0.15 0.33 98.79

PEP_051 colourless vessel 59.72 18.36 1.51 10.80 1.23 5.40 0.94 0.21 0.92 0.16 0.40 0.56 100.20

PEP_062 Red transl. vessel 57.38 22.30 1.08 4.80 1.34 8.13 1.85 0.60 1.38 0.22 1.14 0.31 100.52

PEP_071 yellowish vessel 57.85 19.25 1.27 5.34 1.57 9.77 2.16 0.82 0.59 0.24 1.14 0.06 100.05

PEP_078 colourless vessel 64.00 15.82 1.58 9.64 1.02 5.31 0.66 0.11 0.56 0.06 0.08 0.46 99.31

PEP_081 pinkish vessel 67.39 14.84 1.00 10.07 0.97 2.38 0.71 0.12 1.37 0.10 0.09 0.52 99.55

PEP_087 pinkish window 61.50 16.60 1.75 10.09 0.99 5.20 0.51 0.12 1.56 0.08 0.07 0.53 99.02

PEP_088 dark olive vessel 58.54 2.09 2.14 22.77 2.59 7.45 2.04 0.33 0.15 0.22 0.28 98.60

Late Byzantine high magnesia (i.e. plant ash) glasses

PEP_016 colourless vessel 70.01 10.67 2.54 8.43 3.59 0.94 0.37 0.22 0.90 0.25 0.72 0.28 98.92

PEP_017 colourless vessel 70.06 11.95 2.16 8.41 3.13 1.23 0.57 0.23 1.00 0.32 0.81 0.21 100.08

PEP_074 yellowish vessel 69.03 12.00 1.69 10.33 2.55 1.45 0.97 0.25 1.60 0.35 0.90 0.16 101.26

Late Byzantine glass chunks

PEP_009 opaque olive high Al 53.00 19.55 1.71 7.44 2.21 11.43 2.85 0.64 0.27 0.27 1.01 0.13 100.50

PEP_052 blue high Mg 66.30 14.58 3.47 8.50 4.52 0.68 0.38 0.29 0.86 0.23 99.84

PEP_093 black obsidian 75.14 4.16 5.02 0.80 0.12 13.49 0.92 0.14 0.05 99.83

doi:10.1371/journal.pone.0018970.t001
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after a pre-ablation time of 20 s that served to eliminate the

transient part of the signal and any possible surface corrosion or

particles. 29Si was used for internal standardization and data were

calibrated against two standard reference materials (NIST SRM

610, 612) and Corning B, C and D. The elemental compositions

were then calculated according to Gratuze [38]. Detection limits

range from 0.01–1 ppm for most of the elements, while the

accuracy varies from 5% to 10%, depending on the elements and

their concentrations [37]. Major and minor elements were also

analysed by LA-ICP-MS and were in line with the results obtained

by EPMA (variation for silica of 2%, sodium 5.5%, potassium and

calcium oxides 6%, magnesia 8%, alumina 10%, manganese 12%

and iron oxides 15%).

Multivariate statistical analysis of a subset of the data was

carried out using SPSS 11 software to compare the analysed

samples with published data. In order to identify and explain

group structures, principal component analysis (PCA) was

performed on the base glass data of the high alumina glasses

(SiO2, Na2O, CaO, MgO, K2O, Al2O3 and Fe2O3). Additionally,

PCA was done on trace elements that are likely to have been

introduced to the glass with the silica or the alkali source (Rb, Sr,

Y, Zr, Ba, La, Ce, Pr) rather than with any additives. Uranium was

included in these analyses to discriminate between different high

alumina glass groups as had been suggested previously [39,40]. To

minimise the errors inevitably caused by the difference in

concentration the data were initially subjected to auto scaling.

Table 2. Trace element results from the LA-ICP-MS analysis (n = 4; values given in ppm) divided into chronological and chemical
sub-groups.

Sample Li Be B Sc Ti V Cr Ni Co Zn As Rb Sr Zr Nb Ag Sb Cs Ba La Ce Pr Y Bi U W Nd Th

Early Byzantine natron-type glasses

PEP_028 3 0.3 127 5 296 6 6 3 0.9 13 0 6 397 34 1.3 0.1 3994 0.1 126 5 8 1.1 5 0.0 1 0 4 0

PEP_033 3 0.9 117 4 206 15 12 24 458.2 32 10 7 441 40 2.1 1.3 10581 0.5 230 7 12 2.1 9 0.4 1 0 7 1

PEP_063 3 0.3 167 4 315 8 6 3 1.2 15 0 5 344 37 1.6 0.1 2567 0.0 124 5 9 1.3 5 0.0 1 0 5 1

PEP_064 4 0.3 137 3 307 19 9 21 101.4 100 8 8 429 35 1.8 2.5 6491 0.1 240 6 11 1.4 6 1.5 1 0 6 1

PEP_065 5 0.4 50 4 400 10 9 5 2.2 8 0 9 329 40 2.0 0.0 45 0.1 210 6 13 1.6 7 0.0 2 0 6 1

PEP_066 4 0.3 127 3 331 17 9 16 169.3 93 6 7 438 42 1.8 2.8 5922 0.1 239 7 11 1.6 7 1.3 1 0 6 1

PEP_085 7 0.8 149 5 679 27 15 14 12.0 31 0 9 546 65 3.0 0.8 50 0.5 260 7 13 2.3 8 0.4 2 1 7 2

PEP_099 5 0.4 188 6 1232 50 50 16 11.0 27 5 5 424 173 5.2 0.2 5 0.1 1236 8 15 2.0 9 0.1 1 1 8 2

PEP_100 3 0.6 108 3 199 17 10 6 5.2 13 3 10 446 33 1.5 0.0 1 0.1 432 6 12 1.5 7 0.0 1 0 6 1

Middle Byzantine high alumina glasses

PEP_043 26 2.4 580 11 1965 60 97 61 10.0 40 169 55 230 311 16.1 2.9 41 2.5 369 29 52 6.8 33 0.9 2 2 25 7

PEP_053 23 1.9 954 8 2621 57 85 43 6.3 672 524 36 408 266 14.3 1.1 196 2.4 733 27 54 6.8 27 0.0 5 2 25 9

PEP_096 19 1.8 694 7 1952 66 81 39 7.9 31 214 47 156 237 15.1 6.2 19 2.1 514 26 54 6.6 25 5.4 3 2 24 7

Late Byzantine high alumina glasses

PEP_015 18 2.2 941 9 3123 310 83 40 26.7 41 227 35 207 279 16.4 0.2 3 1.4 5259 29 59 7.2 29 0.0 7 49 26 8

PEP_032 258 3.3 1337 8 1641 153 44 22 21.2 34 6 71 1986 169 14.3 0.2 15 22.4 2766 19 41 4.8 22 0.2 8 7 17 11

PEP_037 303 2.6 1433 5 308 226 9 7 20.0 29 27 75 2895 31 3.9 0.2 42 44.1 2977 8 15 1.6 5 0.1 2 23 6 5

PEP_039 277 2.9 1367 5 366 123 9 6 14.4 31 34 112 2517 43 9.9 0.2 10 49.5 2714 13 57 3.0 11 0.1 4 14 10 9

PEP_047 16 1.5 1066 7 1264 67 70 26 9.1 22 1451 29 161 232 10.8 0.1 1 1.2 484 20 41 5.0 22 0.1 5 2 18 5

PEP_048 339 2.9 1451 5 363 66 10 9 13.0 26 28 117 2663 49 10.2 0.2 8 49.7 1139 12 27 2.6 9 0.1 4 19 9 10

PEP_051 300 3.0 1362 6 791 82 30 12 19.9 27 242 87 3079 129 10.0 0.1 8 44.9 1973 15 30 3.5 17 0.1 3 9 13 9

PEP_062 17 1.1 657 6 1909 43 66 27 4.8 44 341 20 193 215 10.3 0.2 578 0.8 249 20 42 5.1 20 0.0 14 1 19 6

PEP_071 24 2.2 712 9 3757 82 103 34 15.6 31 140 25 221 400 17.7 0.2 2 1.2 1334 36 74 9.1 35 0.1 6 1 33 12

PEP_078 352 2.7 1784 5 592 66 6 7 6.3 26 0 97 2644 35 8.4 0.1 9 54.1 1139 10 26 2.3 7 0.1 5 14 7 12

PEP_081 388 3.0 1810 5 587 169 8 7 15.9 24 2 66 3120 28 3.4 0.1 14 52.5 2754 8 15 1.7 5 0.0 1 24 6 3

PEP_087 438 3.9 1722 5 447 172 6 7 14.4 35 0 112 2979 27 8.7 0.1 9 50.0 2789 8 24 2.0 9 0.2 4 15 7 9

PEP_088 32 2.0 51 8 1705 42 61 23 5.9 53 0 64 382 182 7.9 0.2 1 2.3 286 25 48 6.3 21 0.2 3 1 23 9

Late Byzantine high magnesia (i.e. plant ash) glasses

PEP_016 6 0.9 70 5 1047 20 16 9 7.2 69 0 9 541 125 3.6 0.1 0 0.2 359 6 13 1.6 7 0.0 1 1 6 1

PEP_017 6 0.8 57 5 1072 18 19 9 7.8 94 0 9 554 119 3.5 0.2 0 0.2 208 6 12 1.5 7 0.1 1 0 6 1

PEP_074 8 1.2 55 5 809 23 23 14 6.7 131 2 8 505 118 4.2 0.1 1 0.4 234 7 14 1.7 10 0.0 2 0 7 1

Late Byzantine glass chunks

PEP_009 24 2.2 1424 11 3156 78 92 50 9.3 38 259 34 188 282 14.6 0.1 1 1.3 537 29 58 7.2 29 0.2 9 2 26 10

PEP_052 11 0.2 93 3 139 6 3 5 58.6 98 0 10 544 8 0.5 0.1 2 0.1 44 2 3 0.4 2 0.0 0 0 1 0

PEP_093 63 3.0 32 4 451 3 3 2 0.3 39 5 173 90 96 27.1 0.1 1 7.7 390 39 74 6.3 9 0.5 6 3 18 18

doi:10.1371/journal.pone.0018970.t002
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PCA was carried out on the matrix of correlation coefficients of

each of the variables with every other variable. The relationships

between the most expressive principal components as defined by

an Eigenvalue of 1 or more was then determined on the basis of

simple bivariate plots [41].

Results

The major and minor element compositions of the analysed

glass fragments from Pergamon indicate that with the possible

exception of one vessel (PEP-088) the glass is of the soda-lime-silica

type (table 1). Based on the magnesium, potassium and aluminium

oxide contents the assemblage can be divided into at least three

distinct groups (Fig. 1a&b). The first group comprises all the

samples associated with the early Byzantine period and has

magnesium and potassium oxide levels below 1%, suggesting that

these samples were produced using a mineral source of soda. A

second group has both oxides at concentrations between

approximately 1% and 2% and cannot be unambiguously

classified as mineral soda, mixed natron-plant ash or plant ash

on grounds of the major and minor element composition alone.

Most of the middle and late Byzantine fragments belong to this

intermediate group. The samples in this group also show very high

aluminium concentrations (Fig. 1b). Finally, a set of seven samples

has magnesia contents in excess of 2% and potash ranging from

1.7% to 3.5%, which may be indicative for the use of plant ash.

Yet, only three vessels (PEP-016, -017, -074) and possibly one glass

chunk (PEP-052) can be singled out by their strong positive

correlation between potassium and magnesium oxides (Fig. 1a)

and above all on account of their substantially lower alumina levels

than the other late Byzantine glasses (Fig. 1b). Two of these three

thirteenth-century vessels (PEP-016 & PEP-074) exhibit painted

decorations that can be attributed to the Mamluk period [35]and

their chemical characteristics correspond to typical Islamic soda

plant ash glass. This group of samples will therefore be examined

separately in the discussion of high magnesia glasses. The

remaining three samples with levels of magnesia in excess of 2%

also display high alumina concentrations and are therefore

discussed together with the other high alumina glasses (Fig. 1b).

Before elaborating on the individual glass groups in more detail,

it is necessary to comment briefly on the vessel fragment PEP-088

and on the chunk glass PEP-093 as they will not feature again in

this study. Its chemical characteristics identify sample PEP-093

clearly as a lump of black obsidian (e.g. [42]). The translucent dark

olive green bottle PEP-088, attributed to the late Byzantine phase,

is exceptional in its exceedingly high lime concentrations (,23%)

that are reminiscent of medieval European wood ash glass.

However, the low levels of potash (,2%) and the high alumina

contents (,7.5%) of PEP-088 are not compatible with the typical

composition of European wood ash glasses (10-20% K2O and 1–

3% Al2O3; see [26]). Instead, the sample’s aluminium oxide and

trace element pattern are closely related to the coloured high

alumina glasses in the Pergamon assemblage. This sample may

thus represent a sub-type of these glasses, whose lime content was

drastically increased, possibly through wood ash contamination,

the melt’s reaction with the parting layer of the crucible or a

combination of both factors (table 1&2) [22].

Early Byzantine natron-type glass
The group of nine samples attributed to the early Byzantine

period seem to define a relatively homogeneous group in terms of

their lime, alumina, magnesia and potash concentrations. The

generally low levels of potassium and magnesium oxides clearly

point to the use of a mineral source of soda (Fig. 1a). Upon closer

inspection, however, some variations are noticeable in the lime

concentrations of these samples (Fig. 1b). Five samples form a very

tight cluster with lime concentrations between 8% and 9% and

alumina levels between 2.3% and 2.8%. The other four samples

have notably lower lime levels (,6–7%). Given that the lime and

alumina concentrations are diagnostic of the silica source, these

differences strongly imply that the early Byzantine glasses at

Pergamon originated from more than one silica source, possibly

indicating slight chronological differences.

This interpretation can be further corroborated by superim-

posing the data from Pergamon on those of the different primary

Figure 1. Major element compositions of 31 analysed glass
fragments from Pergamon. (A) The comparison of potassium and
magnesium oxide concentrations highlight the use of different sources
of alkali for the production of different glass groups. The early samples
from Pergamon (4th–7th c., blue diamonds) show low levels of magnesia
and potash (#1%), indicating the use of mineral soda. Three late
Byzantine samples (12th–14th c., green triangles) have high and
positively correlated potassium and magnesium oxide concentrations,
implying the use of plant ash. Most of the middle (8th/9th c., grey circles)
and late samples (12th–14th c., red triangles), however, have interme-
diate potash and magnesia levels (1–2%). Data from analysed glass
chunks are shown as yellow squares. (B) Calcium and aluminium oxide
contents confirm the division of the Pergamon assemblage into sub-
groups. The early Byzantine glasses (blue diamonds) define a relatively
narrow cluster, the late plant ash glasses (green triangles) are
characterised by very low alumina concentrations, while the majority
of the middle (grey circles) and late (red triangles) fragments have
significantly increased alumina concentrations.
doi:10.1371/journal.pone.0018970.g001
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glass production groups that have been identified in the eastern

Mediterranean during the period of interest (Fig. 2a). The cluster

of five glasses seems to be associated with Levantine I glass, two

samples correspond closely to somewhat earlier Roman glass from

the first to fourth centuries, one window glass fragment is a clear

example of HIMT glass while another window glass sample

appears to be related to the Levantine II type. In order to

substantiate these observations, we performed trace element

analysis of the samples to clarify their affiliation with the different

glass reference groups. Following the protocol introduced by

Freestone and colleagues [5,8] those trace elements were chosen

that are believed to reflect the silica source used in the production

of the base glass rather than other additives such as colourants or

opacifiers. The data were then normalised against the average

composition of the weathered upper continental crust [43]. The

trace element compositions of the five samples that appear to be

associated with Levantine I glass were averaged and represented as

one mean trace element profile (Fig. 2b). This composition was

compared to the mean of the two Roman fragments (PEP-028, -

063), to sample PEP-065 that was attributed to the Levantine II

type and to sample PEP-099 that was identified as HIMT glass

(Fig. 2b&c). The compositional profiles of all but the HIMT

sample are very similar and show consistently low levels of most

trace elements. The sole exceptions are strontium and barium that

are either close to or up to three times higher than the mean

continental crust (Fig. 2b). This pattern strongly implies the use of

mineralogically mature sand that is rich in quartz and low in heavy

minerals and simultaneously high in strontium [8]. Such a trace

element distribution is in fact characteristic of Levantine coastal

sands as well as first millennium glasses from the Levant [3].

Comparing the trace element profiles of the early Byzantine

samples from Pergamon with those of the Levantine I glasses from

Apollonia suggests that apart from the HIMT specimen all natron-

type glasses from Pergamon were made from the same or a very

similar silica source as the one utilised for the Levantine glasses

(Fig. 2b). There is a slight but noticeable difference between the

Levantine and the Roman glasses. The Roman samples are on

average more depleted in their trace elements, indicating an even

purer silica source than the one used for the Levantine glasses.

Nonetheless, their overall trace element distribution is closely

similar and since some local variations can be expected, it is likely

that all of these glasses were made with sand from the coastal

stretch between the Nile and northern Israel [16]. Our data

thereby confirm that the samples that otherwise exhibit the well-

recognised characteristics of Roman glass were also made from

Levantine coastal sands [9,44]. The trace element pattern of

sample PEP-099 differs from the other natron-type glasses in that

it shows higher zirconium and barium concentrations (Fig. 2c).

This is broadly in line with the pattern observed for HIMT glasses

(e.g. an HIMT sample from Billingsgate), although the zirconium

and barium contents of HIMT glasses are highly variable [16].

Nonetheless, the elevated iron, manganese and titanium levels of

PEP-099 (table 1) unambiguously identify this sample as HIMT

glass. In summary, the compositional characteristics of the early

Byzantine samples from Pergamon resemble those of typical soda-

lime-silica glasses from the south-eastern Mediterranean coast.

While the majority of the fragments correspond relatively closely

to the Levantine I type, there appears to be also a component of

possibly earlier Roman as well as HIMT and Levantine II glass

among the Pergamon assemblage. Significant levels of antimony

and lead oxide in three of the five Levantine I fragments and their

slightly elevated concentrations of cobalt, iron, manganese and

titanium provide some evidence of recycling (table 1). These

samples also show somewhat higher phosphorous values, which

might indicate prolonged or repeated exposure to fuel ash and

vapour during recycling [45]. Given the presence of antimony

oxide, it is likely that recycled Roman glass constitutes a

considerable proportion of the material used to produce these

fragments. These glasses have at the same time on average higher

iron, manganese and titanium contents relative to Roman or in

fact Levantine I glass, suggesting the admixture of a glass type

different to typical colourless Roman glass, either one similar to

HIMT glass but without the increased zirconium levels, or

coloured Roman glass with noticeable amounts of trace elements

that ultimately derived from the colourants. The fact that two of

these glass fragments are of a blue colour possibly indicates the use

of Roman opaque blue mosaic tesserae, containing calcium

antimonate as an opacifier and cobalt as the main chromophore

(PEP-033, -064). Nonetheless, the close proximity of all the

different natron-type glasses from Pergamon in terms of their trace

element distribution strongly imply a common geographical region

of origin for their silica source. This, however, does not mean that

an identical silica source was used. The variations in the lime and

alumina concentrations clearly show that different sands along the

Levantine coast must have been exploited.

High magnesia plant ash glasses
Three vessels were singled out on the basis of their high levels of

magnesia (.2.5%) combined with elevated levels of potash

(.1.5%) and phosphorous (0.25–0.35%). The compositional data

indicate unequivocally that these high magnesium glasses were

made using plant ash as the fluxing agent rather than the mineral

soda employed in the early Byzantine glasses (Fig. 1a; table 1). The

high magnesia glasses have also substantially lower alumina

contents (,1–1.5%) than the early Byzantine fragments (,2–3%).

Since the alumina level reflects the sand source, this difference

would seem to suggest that the high magnesia glasses derived from

a different silica source than the early Byzantine samples (Fig. 1b).

It is widely assumed that Islamic plant ash glass was mostly

produced with either relatively pure quartz-rich sands or crushed

quartz pebbles [30]. Somewhat unexpectedly, however, the trace

element pattern of these three high magnesia fragments resembles

those of the early Byzantine glasses closely (Fig. 3). It deviates only

in terms of somewhat increased levels of strontium and zirconium.

While a significant proportion of the strontium was certainly

introduced as part of the plant ash, the zirconium is likely to be

derived from the silica source. In conjunction with considerable

amounts of titanium oxide (0.2–0.25%) and manganese oxide

(,1%) a silica source similar to the one utilised for HIMT glass

seems possible. This silica deposit must have been relatively poor

in alumina and lime, as most of the calcium oxide in these glasses

would have been introduced together with the plant ash.

That Islamic plant ash glasses of a similar low alumina

concentration and overall chemical pattern as the ones described

here were indeed produced from Levantine coastal sand has

recently been convincingly demonstrated on the basis of strontium

and neodymium isotope analyses [46]. The eleventh- to thirteenth

century glasses from Banias have major and minor element

compositions that are comparable to the three high magnesia

glasses from Pergamon [29]. Degryse and colleagues have shown

that the neodymium isotopic signature of these Banias glasses is

consistent with Mediterranean coastal sands and that the silica for

the Banias glasses therefore most certainly originated from the

coastal stretch between the Levant and the Nile [46]. Judging from

the close resemblance of the Pergamon and Banias plant ash

glasses in terms of their major, minor and trace element

characteristics, we therefore hypothesise that the Pergamon high

magnesia glasses were made from a coastal sand, too.
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High alumina glasses
Disregarding two outliers (PEP-037, -081), the remaining

eighth- to fourteenth-century samples contain intriguingly high

amounts of aluminium oxide, ranging from about 5% to as much

as 12% (Fig.1b). What is more, the magnesia and potash levels of

these samples do not unambiguously determine whether a mineral

or an organic fluxing agent was employed in their production

(Fig. 1a). Compared to the so-called mixed alkali glasses (i.e.

mixture of natron and plant ash) that have been identified among

the eleventh-century glass from the Serçe Limani shipwreck, and

the roughly contemporary mosaics at Torcello, Daphni and

Hosios Loukas, the high alumina glasses from Pergamon show

invariably higher sodium levels, while the magnesium, potassium

and phosphorous oxide contents are markedly lower [36,47,48]. A

similar mixture of mineral natron and plant ash for the Pergamon

samples seems thus rather unlikely. The majority of the glasses

have magnesia and potash levels below 1.5%, which is the

generally accepted cut-off between mineral soda and plant ash

glasses [49]. Even though this delineation may not always be

accurate, the low phosphorous content of these glasses is consistent

with that of the earlier mineral soda artefacts, supporting the

hypothesis that a mineral alkali source was exploited for their

Figure 2. Early glasses from Pergamon in comparison with contemporary glass production groups. (A) The lime and alumina
concentrations of the early Byzantine samples from Pergamon (red diamonds) were compared to the data of contemporary glass types (Roman glass
from Italy [57–61]; Levantine I glass from Apollonia, Dor and Jalame; Levantine II glass from Bet Eli’ezer; HIMT glass from Billingsgate, Augusta and
northern Sinai [by courtesy of Ian Freestone]; Egypt I and II glass [B. Gratuze, unpublished dissertation, University of Orleans, 1988: Analyse non
destructive d’objets en verre par des mŽthodes nuclŽaires. Application̂ l’Žtude des estampilles et poids monŽtaires islamiques]). Five Pergamon samples
overlap with Levantine I glass (empty triangles), one sample with Levantine II (black triangles), one with HIMT (circles), and two fragments with first-
to fourth-century Roman glasses (grey circles). (B) Concentrations of trace elements of the early Pergamon glasses, normalized to the mean
continental crust [43]. The mean value of five Levantine I samples from Pergamon (indicated in red), the Levantine II sample (green) and the average
of the two Roman glasses from Pergamon (blue) are compared to the average trace element pattern of 9 Levantine I glasses (black) from Apollonia
[29]. (C) The trace element composition of the HIMT glass from Pergamon (shown in red) exhibits a similar pattern as the average trace element
distribution of HIMT glasses (black) and in particular with an HIMT glass from Billingsgate (grey; [29]).
doi:10.1371/journal.pone.0018970.g002
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manufacture. Based on their colour (colourless/pinkish versus

coloured) and above all on grounds of their elemental composition

(see below), the set of sixteen middle and late Byzantine samples

can furthermore be separated into two sub-groups.

Colourless and pinkish high alumina glasses
The eight colourless and faintly pinkish samples form a relatively

homogeneous group, having an average of about 64% silica, 14–

16% sodium, 9–10% lime and 5–6% alumina; potash levels vary

between 1% and 2%, while magnesia is constant at about 1%

(table 1). Interestingly, with the exception of sample PEP-032 the

chlorine levels of these glasses are exceptionally low (,0.1%), which

is highly unusual for ancient glasses. Also notable is the presence of

titanium (0.1–0.3%) and manganese oxides (0.5–1.5%). The latter

may indicate the deliberate addition of manganese as a decolourant

to counteract the colouring effect of iron oxide (0.5%–1%). The

most remarkable feature of all these glasses, however, is their

extraordinarily high boron content (,1% B2O3), which is about

tenfold higher than the early Byzantine samples from Pergamon.

The boron levels are positively correlated with high lithium

concentrations (,0.1% Li2O) that are about two orders of

magnitude above the amount typically encountered in ancient glass

(Fig. 4a). Boron and lithium are furthermore associated with

considerable strontium levels (,0.2–0.4% SrO; Fig. 4b) that lie

about ten to twenty times above the average continental crust

composition (Fig. 5a). Unusually high are also the caesium, barium

and tungsten contents, while vanadium is only slightly elevated

relative to the mean continental crust (table 2). Other than that the

glasses are depleted in rare earth and trace elements, indicating the

use of a mature silica source (Fig. 5a). The faint pinkish hue of three

of the fragments (PEP-039, -081, -087) is probably the result of

significant amounts of manganese oxide (1.3–1.6%).

Coloured high alumina glasses
Seven vessels and one glass chunk belong to the group of

coloured high alumina glasses. The colours represented are

opaque and translucent deep red, translucent greenish yellow,

amber and dark olive green. The composition of this set of samples

is much more variable than that of the colourless high alumina

glasses. The average silica concentration is about 58%, the soda

contents range from about 14.5% to as much as 22%, lime varies

between 4.5% and 7.5%, the alumina contents lie between about

7% and 11.5% and magnesia and potash lie between 1% and

2.2% (table 1). Most of these glasses show considerable

concentrations of chlorine (,1%), titanium (,0.3–0.8%), manga-

nese (,0.2–3%) and iron oxide (,1.5–3%). Given the colour

palette of the samples, it is doubtful that manganese had any

colouring or de-colouring effect in these glasses. The increased

levels of iron oxide probably underlie the green and amber

colours, while copper presumably in the form of cuprites is present

in the opaque deep red fragments (PEP-043, -096). The boron

content of this group of samples is also relatively high (0.05–1%

B2O3), but the lithium levels do not stand out (#0.01% Li2O) and

at about 0.02% the strontium oxide concentration is much lower

than in the colourless samples (Fig. 4a&b). Disregarding the

transition metals that exhibit highly variable and increased profiles

Figure 3. Trace element pattern of the plant ash glasses from
Pergamon. Comparison of the average trace element distribution of
the three plant ash glasses (shown in green) and the five Levantine I
type fragments from Pergamon (red) with the mean of 9 Levantine I
samples (black) from Apollonia [29]. The measured concentrations were
normalised to the mean upper continental crust [43].
doi:10.1371/journal.pone.0018970.g003

Figure 4. Trace element concentrations of the high alumina
glasses from Pergamon. (A) The comparison of lithium and boron
concentrations differentiates the colourless and pinkish high alumina
glasses (light grey triangles), from the coloured high alumina glasses
(red triangles) and the natron-type glasses from Pergamon (blue
diamonds). The boron and lithium contents are positively correlated in
the colourless and pinkish high alumina Pergamon samples, and are
similar to the concentration in samples from Aphrodisias (black circles;
[36,54]. (B) The strontium levels further separate the colourless and
pinkish (light grey triangles) and the coloured high alumina glasses (red
triangles) from Pergamon. The fragments from Aphrodisias (black
circles) show intermediate strontium levels. The early natron-type
glasses from Pergamon (blue diamonds) are plotted for comparison.
doi:10.1371/journal.pone.0018970.g004
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that can be attributed in most cases to the colourants, the trace

element characteristics of these glasses are by far not as

conspicuous as the ones of the colourless high alumina glasses

(Fig. 5a&b, Table 2). On average, the zirconium levels are slightly

increased compared to the colourless glasses, whereas the barium

concentrations range from below the levels of the mean

continental crust (,396 ppm) to as much as 0.6% in the case of

sample PEP-015. This sample has extraordinarily high levels of

tungsten (,50 ppm). All other rare earth elements and trace

elements associated with the silica source are generally depleted in

this group of glasses when normalised against the average

continental crust composition (Fig. 5b).

Discussion

The analytical data of the 31 glass fragments excavated from the

late antique to late Byzantine contexts at Pergamon have revealed

the presence of three main primary glass compositions, within

which several sub-groups can be identified. There were no

surprises with respect to the early Byzantine mineral soda-type

glasses that seem to represent three or four of the major primary

production groups recognised in the south-eastern Mediterranean

during the late antique and early medieval period. Equally, a plant

ash recipe for some of the late Byzantine glasses at Pergamon was

to be expected. Interestingly, these plant ash glasses were probably

produced from coastal sand not so different from the earlier

Levantine or HIMT natron-type glasses. What is most intriguing,

however, is that only a very limited number of the eighth- to

fourteenth century glasses (i.e. three specimens out of twenty one)

are of a typical soda plant ash composition, while the vast majority

of the middle and late Byzantine samples contain excessive

amounts of alumina and could not be classified as plant ash glasses,

given their overall low magnesium, potassium and phosphorous

oxide levels. Instead, it seems rather likely that a mineral soda-rich

efflorescence was used to produce these high alumina glasses. The

use of mineral soda and concentrations of alumina in excess of 4%

are very unusual for Mediterranean glasses of this period. Such a

combination of mineral soda and high alumina is commonly

associated with the Indian subcontinent and East Africa

[37,39,50]. Only in recent years were high alumina glasses

identified among medieval assemblages in central Jordan [51] or,

in fact, among the eleventh- to thirteenth century glasses from

Sardis about 100 km south-east of Pergamon as the crow flies

[36,39,50].

No primary manufacturing centre for high alumina glasses is

known to date. It has nonetheless been proposed that high alumina

glasses originated ultimately in India where large amounts of

mainly glass beads with high alumina concentrations are present in

the archaeological record and where mineral soda (e.g. reh) and

silica sources rich in alumina are readily available [36,40]. The

African high alumina glasses can in general be related to Indian or

south-east Asian assemblages, thus supporting the theory of a

south Asian source for these glasses. In contrast, the high alumina

glass found at Sardis seems exceptional in that it was the only

mineral soda and high alumina glass published by Dussubieux and

colleagues that occurred exclusively outside south and south-east

Asia [39]. Similarly, none of the Asian or African samples seem

closely related to the high alumina bangles from Tell Abu Sarbut

and Khirbat Faris [51]. However, these Jordanian assemblages are

rich in potassium oxide (,6–10%), indicating that they were made

from plant ash. Given their very specific chemical fingerprint,

these Jordanian glasses do not provide appropriate comparative

data for the type of high alumina glasses retrieved from Pergamon.

To clarify the relationship between the different high alumina

glass assemblages we conducted a principal component analysis

(PCA) of the seven base glass elements (SiO2, Na2O, CaO, Al2O3,

MgO, K2O, FeO), comparing the high alumina glasses from

Pergamon with glasses from India, Africa and Sardis. This analysis

unequivocally singles out the colourless fragments from Pergamon,

while the coloured samples overlap with the other groups to a

certain extent (Fig. 6). The colourless glasses from Pergamon are

distinctive in that they have higher silica and lime concentrations,

while they are on average significantly lower in all the other base

glass elements. The coloured specimens from Pergamon on the

other hand seem to bear some resemblance to the east African

assemblages and especially to the high alumina glasses from Sardis

[36,39,40]. This overlap, however, can largely be resolved by

exploring the trace element distribution of the individual groups

by PCA (Fig. 7a&b). For this analysis those trace elements were

chosen that reflect the base glass materials rather than any

colourants and/or opacifiers (Rb, Sr, Zr, Ba, La, Ce, Pr and Y) in

addition to uranium that has proved to be diagnostic for mineral

Figure 5. Trace element distributions of the high alumina
glasses from Pergamon. (A) The trace element pattern of individual
colourless and pinkish samples from Pergamon (black and open
symbols) and the average concentration (red line) were normalised to
the mean continental crust [43], and are displayed on a logarithmic
scale. (B) Trace element distributions of the coloured high alumina
glasses from Pergamon (black, grey and open symbols) and mean trace
element pattern (red).
doi:10.1371/journal.pone.0018970.g005
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soda high alumina glasses [39,40,50]. The analysis revealed that

the colourless glasses from Pergamon are enriched in rubidium,

strontium and barium (positively associated with PC2) and lower

in all other trace elements compared to the other high alumina

groups (Fig. 7a). The coloured glasses from Pergamon have

consistently lower trace elements than the Indian and the majority

of the Kenyan high alumina assemblages, with the exception of

zirconium that is slightly increased in the coloured Pergamon

samples (Fig. 7a&b). There might nonetheless be a certain overlap

between the coloured high alumina glasses from Pergamon and

glasses from the east coast of Africa, bearing in mind that the

comparative Kenyan data that were available for the present study

derive exclusively from glass beads and may thus not be

representative of other glass artefacts. A typological link had

previously been observed between glass vessels found in Sub-

Saharan Africa and the Middle East, which is not entirely

unexpected in light of Islamic trade routes that encompassed

Kenyan coastal ports [39, Dussubieux & Kusimba (forthcoming)

and references therein].

Despite these possible relationships, the most remarkable finding

of our study is that the high alumina glasses from Pergamon

represent two very distinctive compositional types neither of which

has been identified before. The two groups are different from each

other and, in fact, from the roughly contemporary assemblage from

Sardis. The colourless/pinkish group differs as much in their major

element composition from the other glasses (higher SiO2 and CaO;

lower Na2O, Al2O3, K2O, MgO, FeO) as it shows a unique trace

element pattern. The coloured glasses from Pergamon on the other

hand resemble those from Sardis in terms of the major components,

but can be distinguished from these with the help of their trace

element distributions. The most unusual feature of both high

alumina groups from Pergamon is their elevated boron concentra-

tion that is conspicuously absent from all other high alumina glass

assemblages. Boron is particularly high in the colourless and pinkish

fragments where it correlates positively with high lithium and

strontium concentrations (Figs. 4a&b).

The considerable concentrations of boron may in fact provide

clues about the raw materials used for the production of the

Pergamanian high alumina glasses and, by extension, indicate the

possible location of primary glass making centres during the

Byzantine period. Although the possibility that boron was present

as a contaminant in other raw materials such as the silica source

cannot be excluded, boron is more generally associated with alkali

and alkaline earth metals and has thus more likely been introduced

with the alkali source. The use of plant ash as the fluxing agent in

the production of these glasses was excluded on grounds of the

relatively low levels of both magnesium and potassium oxides. The

use of a mineral source of soda, however, is unprecedented for this

time and place and needs further elaboration. It is widely assumed

that a fairly pure mineral source of soda from the evaporitic

mineral deposits in the Wadi Natrun in northern Egypt supplied

most, if not all of the alkali for the Roman and early medieval glass

production in the Mediterranean, the Near East and even Europe

[1]. It is furthermore believed that this type of Egyptian natron was

no longer employed from the late first millennium CE onwards

and replaced by soda rich plant ash in the eastern Mediterranean

and by potassium rich wood ash in Europe [1,28]. Part of the

reason for this radical change in the raw materials and glass

production technology may have been that Egypt was no longer

able to meet the increasing demands in mineral soda, possibly due to

Figure 6. Principal component analysis of the major and minor elements. The high alumina glasses from Pergamon (colourless and pinkish
samples represented as grey triangles; coloured samples shown as red triangles) were compared with data sets from mineral soda high alumina
glasses from Sardis (black diamonds [36] and by courtesy of Laure Dussubieux), India (crosses) and Kenya (circles)[40], using principal component
analysis (PCA) of the major and minor base glass elements (SiO2, Na2O, CaO, Al2O3, MgO, K2O, FeO). The loading vectors are shown to illustrate the
multi-dimensional group structures (inset).
doi:10.1371/journal.pone.0018970.g006
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Figure 7. Principal component analysis of selected trace elements. The high alumina glasses from Pergamon, Sardis (by courtesy of Laure
Dussubieux), India and Kenya [40] were analysed by PCA for the trace elements associated with the base glass composition (Sr, Ba, Rb, Ce, La, Pr, Y, Zr)
in addition to uranium. Principal components PC1 and PC2 (A) or PC3 (B) distinguish the colourless and pinkish high alumina glasses from Pergamon
(light grey triangles) from the other groups. The loading vectors illustrate that these samples have higher strontium and barium concentrations than
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political disturbances [1]. Therefore, the manufacture of mineral

soda glasses during the end of the first and the beginning of the

second millennium CE, such as the ones in the Pergamon

assemblage, clearly contradicts the current view on the history of

glass production in the Mediterranean. What is more, the

contamination levels of the glasses from Pergamon with various

alkali and alkaline earth metals suggest the use of a fluxing agent

different to the pure form of soda usually extracted from the Wadi

Natrun. It thus seems necessary to consider possible alternatives of

evaporitic sodium-rich deposits. A potential source might be the

borate reserves in western Anatolia, not far from Pergamon, where

the world’s largest colemanite and ulexite deposits (Ca and Na-Ca

borate formations) can be found [52]. These borate deposits are

often associated with increased lithium and strontium levels, even

though the exact ratios and absolute concentrations of these

elements are highly variable [53]. Brill had linked fifth to seventh

century CE glass from Aphrodisias in western Asia Minor to this

local source of raw materials and speculated that either the salts

from the colemanite deposits in the region or the ashes from plants

growing there would probably result in high contaminations of

boron, lithium and strontium [54]. The cullet and vessels from

Aphrodisias indeed have concentrations of boron and lithium that

are virtually identical with the colourless glasses from Pergamon and

their strontium levels are likewise increased (Fig. 5a&b). It seems

doubtful, though, that the use of plant ash would result in boron

concentrations of nearly 1%, especially considering the toxicity of

boron for plants and the ability of boron-tolerant plants to

effectively efflux boron [55,56]. As regards the high alumina glasses

from Pergamon, we therefore propose the use of a soda-rich mineral

containing boron in association with lithium and strontium as the

fluxing agent, together with a silica source rich in alumina. Given

that the elemental composition of evaporites can vary widely within

the same deposit depending on the season, it is conceivable that the

same or similar borate deposits were exploited for both the

colourless and the coloured glasses from Pergamon. The silica

source, however, cannot have been the same, as demonstrated by

the alumina and trace element contents of the two sub-groups.

The chemical peculiarities of the high alumina glasses from

Pergamon have far reaching consequences for our understanding of

primary glass production towards the end of the first and the

beginning of the second millennium CE. Firstly, the specific increase

of a number of trace elements point to the exploitation of an

evaporite rich in soda and contaminants and different to the one in

the Wadi Natrun. Secondly, the two compositional sub-groups

among the high alumina glasses strongly indicate the use of at least

two different silica sources. If we assume that primary glass

production centres were commonly located close to the silica source,

this further implies the existence of more than one glass making

factory that used this mineral source of soda and that supplied glass

to Pergamon (and possibly Aphrodisias and Sardis). These findings

provide incontrovertible evidence for the existence of an as yet

unknown primary glass production group, that, judging from some

parallels with analytical data from Sardis and Aphrodisias may have

been typical of Asia Minor. This in turn points to a regional glass

manufacturing tradition hitherto unrecognised.

It is conceivable that the Pergamon assemblage is the result of

experimentation with new raw materials in response to the

shortage of Egyptian mineral soda. That these events are indeed

related is suggested also by the presence of the typical earlier

Levantine and Egyptian primary glass production groups among

the Pergamon assemblage. Only with the onset of the eighth

century, the period in which we see changes in the use of raw

materials in Europe and the Islamic Middle East and Egypt, do the

high alumina glasses appear in the archaeological record of

Pergamon. As such, the Pergamon samples may represent the

Byzantine equivalent to the development of European and Islamic

plant ash recipes. However, analytical data of glass from medieval

Byzantium are relatively scant and more analytical work needs to

be conducted on Byzantine glass assemblages from Asia Minor

and potential silica and alkali sources in the region of the borate

deposits. This might lead to the identification of the primary

production centres of these glasses and further strengthen the

concept of a Byzantine glass industry in Asia Minor that produced

characteristic high alumina high boron glasses.
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obsidian characterization at Catalhöyük,Turkey. Journal of Archaeological

Science 33: 893–909.
43. Kamber BS, Greig A, Collerson KD (2005) A new estimate for the composition

of weathered young upper continental crust from alluvial sediments, Queens-

land, Australia. Geochimica et Cosmochimica Acta 69: 1041–1058.
44. Freestone IC (2008) Pliny on Roman Glassmaking. In: Martinón-Torres M,

Rehren Th, eds. Archaeology, history and science: integrating approaches to
ancient materials Walnut Creek. pp 77–100.

45. Paynter S (2008) Experiments in the Reconstruction of Roman Wood-Fired

Glassworking Furnaces: Waste Products and Their Formation Processes. Journal
of Glass Studies 50: 271–290.

46. Degryse P, Freestone I, Schneider J, Jennings S (2010) Technology and
provenance of Levantine plant ash glass using Sr-Nd isotope analysis. In:

Drauschke J, Keller D, eds. Glass in Byzantium - Production, Usage, Analyses
RGZM - Tagungen 8. Mainz. pp 83–91.

47. Andreescu-Treadgold I, Henderson J (2006) Glass from the Mosaics on the West

Wall of Torcello’s Basilica. Arte Medievale V: 87–140.
48. Arletti R, Fiori C, Vandini M (2010) A Study of Glass Tesserae from Mosaics in

the Monasteries of Daphni and Hosios Loukas (Greece). Archaeometry 52:
796–815.

49. Sayre EV, Smith RW (1961) Compositional Categories of Ancient Glass.

Science 133: 1824–1826.
50. Lankton JW, Dussubieux L (2006) Early glass in Asian maritime trade: A review

and an interpretation of compositional analyses. Journal of Glass Studies 48:
121–144.

51. Boulogne S, Henderson J (2009) Indian Glass in the Middle East? Medieval and
Ottoman Glass Bangles from Central Jordan. Journal of Glass Studies 51:

53–75.

52. Helvaci C, Alonso RN (2000) Borate deposits of Turkey and Argentina; a
summary and geological comparison. Turkish Journal of Earth Science 9: 1–27.

53. Helvaci C, Mordogan H, Colak M, Gundogan I (2004) Presence and
distribution of lithium in borate deposits and some recent lake waters of west-

central Turkey. International Geology Review 46: 177–190.

54. Brill RH (1968) The scientific investigation of ancient glasses. Proceedings of the
VIIIth International Congress on Glass, London, Sheffield, The Society of Glass

Technology. pp 47–68.
55. Camacho-Cristobal JJ, Rexach J, Gonzalez-Fontes A (2008) Boron in plants:

Deficiency and toxicity. Journal of Integrative Plant Biology 50: 1247–1255.

56. Miwa K, Takano J, Omori H, Seki M, Shinozaki K, et al. (2007) Plants tolerant
of high boron levels. Science 318: 1417–1417.

57. Arletti R, Giordani N, Rarpini R, Vezzalini G (2005) Archaeometrical analysis
of glass of Western Emilia Romagna (Italy) from the imperial age. Annales du

16ème Congrès de l’Association Internationale pour l’Histoire du Verre:
London 2003: 80–84.

58. Mirti P, Casoli A, Appolonia L (1993) Scientific Analysis of Roman Glass from

Augusta-Praetoria. Archaeometry 35: 225–240.
59. Silvestri A (2008) The coloured glass of Iulia Felix. Journal of Archaeological

Science 35: 1489–1501.
60. Silvestri A, Molin G, Salviulo G (2005) Roman and medieval glass from the

Italian area: Bulk characterization and relationships with production technol-

ogies. Archaeometry 47: 797–816.
61. Silvestri A, Molin G, Salviulo G (2008) The colourless glass of Iulia Felix. Journal

of Archaeological Science 35: 331–341.

Late Byzantine Mineral Soda High Alumina Glasses

PLoS ONE | www.plosone.org 13 April 2011 | Volume 6 | Issue 4 | e18970


