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Abstract

Silymarin (SM), and its flavonolignan components, alter cellular metabolism and inhibit

inflammatory status in human liver and T cell lines. In this study, we hypothesized that SM

suppresses both acute and chronic immune activation (CIA), including in the context of HIV

infection. SM treatment suppressed the expression of T cell activation and exhaustion mark-

ers on CD4+ and CD8+ T cells from chronically-infected, HIV-positive subjects. SM also

showed a trend towards modifying CD4+ T cell memory subsets from HIV+ subjects. In the

HIV-negative setting, SM treatment showed trends towards suppressing pro-inflammatory

cytokines from non-activated and pathogen-associated molecular pattern (PAMP)-activated

primary human monocytes, and non-activated and cytokine- and T cell receptor (TCR)-acti-

vated mucosal-associated invariant T (MAIT) cells. The data suggest that SM elicits broad

anti-inflammatory and immunoregulatory activity in primary human immune cells. By using

novel compounds to alter cellular inflammatory status, it may be possible to regulate inflam-

mation in both non-disease and disease states.

Introduction

Inflammation is a protective and reparative response that is induced by pathogen or host-

derived engagement of pattern recognition receptors (PRR) as well as through the engagement

of cytokine and non-cytokine cellular receptors [1, 2]. Receptor activation triggers cellular sig-

nal transduction, causing production and release of pro-inflammatory cytokines and chemo-

kines from cells, which in turn, recruits immune effector cells to the site of inflammation.

Upon resolution of infection and/or damage, inflammatory responses normally return to
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baseline. Human immune cells are on the front line of many inflammatory responses, and

include CD4+ and CD8+ T cells, monocytes, and mucosal associated invariant T (MAIT) cells.

Temporally, monocytes and MAIT cells comprise the initial innate phase of an inflammatory

response, while CD4+ and CD8+ comprise the adaptive phase and require proper inflamma-

tory cues (from MAIT cells or monocytes) for their effector function, the quality of the

immune response, and formation of a memory population. Dysregulated inflammation inter-

rupts this regimented, temporal process.

In the case of persistent infections, dysregulated inflammation is maintained, establishing a

state of chronic immune activation (CIA), which can lead to various disease states. Chronic

HIV infection, despite the effective control of viremia with antiretroviral therapy (ART), is a

state of CIA that leads to a host of inflammatory disorders in many infected patients [3]. With

CIA, memory T cell effector functions are lost, inhibitory factors are induced, and immune

cell metabolism is altered [4]. In both ART-treated and untreated HIV-infected individuals,

CIA is associated with significantly elevated immune activation markers [5], various inflam-

matory diseases [6], cardiovascular diseases [7], both AIDS-defining and non-AIDS defining

cancers [8], as well as HIV disease progression and mortality [9].

CIA in the context of HIV infection may be due to several factors [10] and can be assessed

by measuring exhaustion or proliferation markers on immune cells [11], changes in immune

cell inflammatory function [12], and the loss of the CD4+ T-cell population causing in an

inverted CD4+/CD8+ ratio [13]. For example, the activation marker, CD38, on CD8+ and

CD4+ T cells, is considered one of the best correlates for disease progression [14]. Pro-

grammed cell death protein (PD-1), which is highly expressed on exhausted T cells, is also

upregulated in T cells in HIV-infected persons [15]. As such, various approaches have been

used to reduce CIA including direct blockade of cellular exhaustion markers, such as targeting

PD-1 and cytotoxic T lymphocyte antigen 4 (CTLA4) [16]. In addition to targeting exhaustion

markers, dysregulated inflammation has also been shown to be suppressed with anti-inflam-

matory drugs such as aspirin [17], chloroquine [18], prednisone [6], and statins [19], all of

which have been shown to reduce some parameters of CIA.

Silymarin (SM) is an herbal extract derived from the seeds of the milk thistle plant Silybum
marianum [L.] Gaertn. [Asteraceae] and is frequently consumed by HCV- and HIV-infected

subjects [20]. SM is known to suppress HCV infection in vitro [21–25] while an intravenous

formulation of silibinin (a major component of SM) inhibits HCV replication in vivo [26–29],

and inhibits HIV-1 infection in vitro [30]. In addition to its antiviral activities, SM suppresses

various inflammation pathways: including inhibition of pro-inflammatory signaling pathways

(e.g., NF-κB and forkhead box O [FOXO]), and the expression of pro-inflammatory cytokines

and chemokines (e.g., CXCL1, CXCL2, CXCL8, CXCL10, IL-1, TNF-α [21, 22, 31, 32]. Fur-

thermore, SM treatment blocks T cell activation [21, 22, 24, 33] and PHA-induced activation

of peripheral blood mononuclear cells (PBMC) in vitro [30].

In this study, we explored the in vitro anti-inflammatory and immunomodulatory activities

of SM in different primary human immune cells and contexts, including monocytes, MAIT

cells, and T cells from HIV-infected and non-infected subjects.

Materials and methods

Silymarin preparation

Powdered extract (Product No. 345066, Lot No. 286061) of the seeds (achenes) of Silybum
marianum [L.] Gaertn. was obtained from Euromed, S.A. (Barcelona, Spain), which is a part of

the Madaus Group (Cologne, Germany). To eliminate stability concerns with freeze-thawing

solutions of SM and the hygroscopic nature of DMSO, single use aliquots of SM were prepared
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as described [34, 35]. SM was reconstituted to a concentration of 10 mM in MeOH (based on a

molecular weight of 482 g/mol for the seven main flavonolignan diastereoisomers). Then,

100 μL of this solution was dispensed into 0.7 mL microcentrifuge tubes and allowed to freeze-

dry overnight, imparting 0.482 mg of SM per tube. The dried aliquots were stored at -20˚C.

Single-use aliquots of silymarin were reconstituted in 40 μL of DMSO and extensively vortexed

to generate a 25 mM stock solution. DMSO solvent controls ([DMSO]� 0.3%) were used for

all experiments.

Monocyte and MAIT cell isolation and culture

Human monocytes were isolated from cryopreserved PBMCs from HIV-negative subjects

using MACS CD14 Microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). CD14

+ monocytes were rested or stimulated with LPS, a TLR4 agonist, or ssRNA, a TLR8 agonist,

and then treated with SM or DMSO for 24 hours, followed by supernatant collection, and then

analyzed by Luminex. Following the CD14 microbead isolation of monocytes, the remaining

cells were stained with antibodies against CD161 and Va7.2 and MAIT cells were isolated by

FACS [29]. MAIT cells were rested, stimulated with IL-12/15/18 (100ng/ml each) or stimu-

lated with anti-CD3/CD28 beads (Dynabeads, Invitrogen) + IL-12/15/18 as described [36].

Rested and stimulated MAIT cells were incubated with or without SM. Cellular phenotypes

were assessed based on marker expression (measured by flow cytometry) and cellular function

was based on cytokine production (measured by Intracellular Cytokine Stain [ICS] assay).

PBMC samples and culturing

PBMC samples from HIV-infected subjects were obtained from the University of Washington

(UW) Center for AIDS Research (CFAR) Specimen Repository. All PBMC specimens are

linked to comprehensive clinical data within the UW HIV Information System allowing the

identification of patients who HIV-positive and receiving ART, or HIV-positive and ART-

naïve or not on ART at the time of donation. Inclusion and exclusion criteria and subject char-

acteristics are listed in Tables 1 and 2.

Table 1. Inclusion and Exclusion Criteria for selecting PBMC samples.

Inclusion Criteria Exclusion Criteria

• Men and women who are 18 years of age and

older.

• HIV-1 plasma RNA <50 copies/ml for at least

three years with at least two viral load measures

per year, and the most recent viral load within

three months of screening.

• Episodes of a single HIV plasma RNA 50–199

copies/ml will not exclude participation if the

subsequent HIV plasma RNA was <50 copies/ml.

• Receiving combination antiretroviral therapy (at

least three agents).

• In the last six months have two CD4+ T-cell

counts greater than 500 cells/μl.

• Documented subtype B HIV infection.

• Able to give informed consent.

• Any significant acute medical illness in the past 8

weeks.

• Any evidence of an active AIDS-defining

opportunistic infection.

• Active alcohol or substance use.Moderate to severe

hepatic impairment. Hepatic transaminases (AST or

ALT) > 3 x upper limit of normal (ULN).

• Chronic hepatitis C. Hepatitis B infection as indicated

by the presence of Hepatitis B surface antigen or

detectable DNA levels in blood. Receipt of

immunomodulating agents, immunization or systemic

chemotherapeutic agents within 28 days prior to

screening.

• Receipt of histone deacetylase inhibitors at any

time, and use of any of the following within 90 days

prior to entry: systemic cytotoxic chemotherapy;

investigational agents; immunomodulators (colony-

stimulating factors, growth factors, systemic

corticosteroids, rapamycin-like drugs, HIV vaccines,

immune globulin, interleukins, interferons); Coumadin,

warfarin, or other Coumadin-derived anticoagulants.

doi:10.1371/journal.pone.0171139.t001
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HIV+ cryopreserved PBMC were thawed in a 37˚C water bath, transferred to a 50 ml coni-

cal tube containing 10 ml of R10 medium (RPMI 1640 with 25 mM HEPES buffer and L-gluta-

mate [Gibco BRL Life Technologies, Waltham, MA, USA; 10% fetal bovine serum [FBS;

Gemini Bio-products, West Sacramento, CA, USA], and Penicillin-Streptomcyin [Gibco BRL

Life Technologies, Waltham, MA, USA]), centrifuged at 250 x g for 10 minutes, and the cell

pellet was resuspended in R10 medium. Cell count and viability were determined using a

Guava Viacount (EMD Millipore, Billerica, MA, USA), resuspended to approximately 2 x 106

cells/ml in PBS (Gibco BRL Life Technologies, Waltham, MA, USA), and stained for flow

cytometry analysis ex vivo or prepared for culture including treatment with SM (at 80 μM) or

DMSO (as a vehicle control) for 72 hours at 37˚C. After 72 hours in culture, cell counts and

viability were again measured prior to marker staining and flow cytometry. Thirty-three sam-

ples were initially evaluated, and eight samples were excluded because of low viability. Thus,

statistical analyses are based on samples from 25 subjects.

Eleven-color polychromatic flow cytometry

Using an 11-marker flow cytometry antibody panel (listed in Table 3), we assessed CD4+ and

CD8+ T cell phenotypes by measuring the expression of activation and exhaustion markers in

HIV+ PBMC. We adopted our protocol as described previously [37]. Samples were stained with

Aqua Live/Dead Fixable Dead Cell Stain (AViD; [38]) then surface-stained with antibodies

against CD25, CD38, CD127, CTLA4, HLA-DR, and PD1. Cells were then fixed and permeabi-

lized using FIX & PERM Cell Fixation and Cell Permeabilization Kit (ThermoFisher Scientific,

Waltham, MA, USA). Cells were stored at -80˚C in the dark overnight in FACS Wash (PBS

with 2% FBS) following permeabilization. The following day, cells were thawed at 37˚C for 10

minutes, and then intracellular staining was performed with antibody against CD3, CD4, CD8,

and Ki67. Following intracellular staining, cells were stored at 4˚C in PBS with 2% paraformal-

dehyde until samples were acquired on an LSRII BD flow cytometer using BD FACSDiva soft-

ware (BD Biosciences). Flow cytometric analyses were performed using FlowJo version 9 (Tree

Star). Criteria for evaluable responses were determined as previously described [39].

S1 Fig shows the gating and staining strategy to identify CD4+ and CD8+ cells and activa-

tion and exhaustion markers. A timing gate was used to minimize exclusion events, and dead

cells were excluded using the AViD (i.e., amine reactive dye) stain. In addition, single cell pop-

ulations were gated, and within the lymphocyte gate, CD3+ cells were identified followed by

Table 2. Characteristics of Subjects Whose PBMCs Were Analyzed by Flow Cytometry.

Clinical Parameter Median IQR*

ART Status

HIV- (n = 4) N/A N/A

HIV+ on ART (n = 14) N/A N/A

HIV+ART-naïve (n = 7) N/A N/A

Age

<50 years (n = 13) 38 32.5–46

�50 years (n = 12) 54 51.3–56.8

CD4:8 Ratio

HIV- (n = 4) N/A N/A

Good (� 1) (n = 6) 1.5 1.2–1.8

Poor (< 1) (n = 15) 0.3 0.2–0.5

*IQR, interquartile range.

doi:10.1371/journal.pone.0171139.t002
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gating on CD4+ or CD8+ cells. Using the OMIP-025 panel [48], a subset of HIV+ PBMC sam-

ples (N = 4) were separately stained using a T cell differentiation and memory panel. All HIV

+ PBMC, in both panels, were stained with LIVE/DEAD1 Fixable Aqua Dead Cell Stain Kit

(ThermoFisher Scientific, Waltham, MA, USA), washed, and stained with the activation/

exhaustion or differentiation/memory staining panels.

Luminex experiments

Seven chronically-infected, HIV+ PBMC samples were thawed and treated with SM (80 μM)

or DMSO (vehicle control), cultured for 72 hours, with supernatants added to a final 1% Tri-

ton-X (Sigma-Aldrich, St. Louis, MO, USA) concentration, and then processed for Luminex

analysis. The Cytokine Laboratory, a Shared Resource of the Fred Hutchinson Cancer

Research Center, processed the Luminex samples.

Statistical analyses

For MAIT cells and monocyte experiments, differences in cytokine production were assessed

by paired Wilcoxon signed rank tests. Twenty-five PBMC samples were included in the final

flow cytometry analyses. We measured changes in marker expression on cells with SM treat-

ment relative to DMSO alone, and computed absolute differences in percentages of marker

expression (i.e., SM minus DMSO treatments). Subsequently, we assessed non-parametrically

whether differences in expected expression tended to be statistically significantly different from

zero, using a Wilcoxon signed rank test. Differences in expression with SM treatment minus

expression with DMSO-only treatment are negative if SM reduced expression and positive if it

increased expression. For markers showing a significant expression reduction with SM (versus

DMSO), we also used Spearman’s correlation to assess whether expression reduction was asso-

ciated with continuous measures like age and CD4:CD8 ratio; and we used Wilcoxon rank sum

test to assess whether expression reduction was associated with binary factors like ART use.

Results

We have previously shown that SM prevents activation and inflammatory responses in CD4+

and CD8+ T cells from both non-infected and HCV-infected subjects [21, 22, 32]. Therefore,

Table 3. Flow Cytometry Panel Used to Determine Activation and Exhaustion in PBMC Samples.

Marker Dye Reference

Viability

AViD V510 [38]

T cell

CD3 BV650 [40]

CD4 APCAx750 [41]

CD8 PerCPCy5.5 [42]

Activation and Exhaustion

CD25 PE594 [43]

CD38 PE-Cy5 [11, 44]

CD127 BV786 [45]

CTLA4 APC [46]

HLA-DR BV605 [11]

PD1 BV421 [16]

Ki67 FITC [47]

doi:10.1371/journal.pone.0171139.t003
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in the current study, we first investigated the effects of SM on other primary human immune

cells from non-infected donors stimulated in the context of different triggers of inflammation.

SM treatment showed a trend for reduced levels of MIP1-α, MIP1-β, IL-1α, IL1-β, RANTES,

and TNF-α production from both non-stimulated and PAMP-stimulated monocytes (Fig 1).

Due to the small sample size (i.e., 3 donors), the observed effect did not reach statistical

significance.

Mucosal-associated invariant T (MAIT) cells have a memory-like phenotype, make up one

to eight percent of circulating T cells, and are activated by IL-12, 15, and 18 to produce pro-

inflammatory cytokines TNF-α and IFN-γ, and granzyme B [49, 50]. SM treatment also

showed a trend for suppressing basal, cytokine (IL-12, 15, and 18), and cytokine and TCR-

mediated (IL-12, 15, and 18 plus anti-CD3/28 beads) IFN-γ and Granzyme B in CD8+ MAIT

cells (Fig 2). For this small sample size of three donors, the effects did not reach statistical sig-

nificance. The data suggest that SM treatment suppresses inflammation in resting and PAMP-,

cytokine-, and TCR-activated primary human monocyte and CD8+ MAIT cell types.

In the current study, we interrogated expression of traditional activation markers of CIA

(e.g., HLA-DR and CD38), as well as other markers of T-cell activation (e.g., Ki-67 [30]) and

markers for T-cell exhaustion, including PD-1 and CTLA-4 [40] using our flow cytometry

panel (Table 3). We analyzed the effect of SM treatment on T cell marker expression from 25

human PBMC samples (Table 2) including: four HIV-negative subjects, and 21 subjects who

were HIV-positive (i.e., 14 subjects were on ART and seven subjects were not on ART). We

used a dose of 80μM SM, which we have previously shown to be non-toxic to human cells [31].

We monitored cell viability of all PBMC cultures, determined as the percentage of AViD-nega-

tive cells. Using a Wilcoxon paired test, the 80μM dose of SM, after 72 hours of ex vivo cell cul-

ture, induced a small, but significant (p<0.0001) decrease in viability: the median decrease of

viability due to SM treatment relative to DMSO was 7%, (IQR [2%–12%]). Twenty-five PBMC

samples had greater than 50% viability and were included in statistical analyses. Moreover, all

flow cytometry data described below are based on viable cells.

Fig 1. SM inhibits basal and PAMP-induction of pro-inflammatory cytokines from primary human monocytes. Luminex analysis of

MIP1α (A), MIP1β (B), TNF-α (C), IL1α (D), IL1β (E), and RANTES (F) from supernatants collected from CD14+ monocytes cultured in the

absence or presence of SM (80 μM) for 24 hours in different activating conditions: rested (black), LPS-stimulated, a TLR4 agonist (dark gray),

or ssRNA-stimulated, a TLR8 agonist (light gray). Data shown are from three different donors, and data are displayed as mean +/- SEM.

Dotted line represents limit of detection (LOD).

doi:10.1371/journal.pone.0171139.g001
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SM treatment reduced the expression of activation markers in HIV-negative and HIV-

positive T cells (Table 4 and S2 Fig). Specifically, SM treatment significantly reduced the

expression of CD38+/HLA-DR+ (compared to DMSO) in both CD4+ and CD8+ T cells (i.e.,

difference of -0.7%; median IQR [-1.1% to -0.4%]; p-value = 0.001) and (-0.6%; [-1.7% to

-0.3%]; p-value = 0.0003), respectively (Fig 3). SM caused a greater suppression of CD38

+/HLA-DR+ expression on T cells from ART-naïve patients as compared to patients on ART.

This effect was observed on both CD4+ (p-value = 0.001) and CD8+ (p-value = 0.0074) T cells

(S3A–S3D Fig).

In the CD4+ T cell population, the median difference in CD38+/HLA-DR+ expression

between SM and DMSO treated cells was -1.3% (IQR -1.8% to -1.1%) for ART-naïve individu-

als and was -0.5% (IQR -0.7% to -0.2%) for subjects on ART (S2A and S2B Fig). In the CD8+

T cell population, the median difference of CD38+ and HLA-DR+ expression between SM

and DMSO treated cells was -3.3% (-8.0% to -0.9%) for ART-naïve individuals and was 0.4%

(IQR -0.8% to 0.1%) for subjects on ART (S2C and S2D Fig). Lower CD4:CD8 ratio was asso-

ciated with a significant decrease in CD38+ and HLA-DR+ expression on SM versus DMSO

treated CD8+ T cells (Spearman’s rho = 0.65, p-value = 0.002; S2E and S2F Fig) but was not

significantly associated with a decrease on CD4+ T cells (Spearman’s rho = 0.37, p = 0.095).

There were no age-related associations in the difference of CD38+/HLA-DR+ expression for

either CD4+ or CD8+ T cells (p = 0.27 and p = 0.34, respectively).

SM treatment also suppressed the expression of T cell exhaustion markers, CTLA4 and

PD1 (Table 4 and S3 Fig). Specifically, CTLA4+/PD1+ expression on CD4+ T cells was signifi-

cantly reduced by SM treatment in comparison to DMSO (difference of -0.9%; IQR [21.9% to

0.5%]; p-value = 0.037; Table 4, Fig 3). These effects were limited to CD4+ T cells, as SM did

not significantly reduce these markers on CD8+ T cells (p = 0.32). Moreover, the reduction of

CTLA4+/PD1+ on CD4+ T cells by SM treatment was strongly associated with CD4:CD8 ratio

(Spearman’s rho = 0.57; p-value = 0.010; S3A and S3B Fig). As with CD38+/HLA-DR+ mark-

ers, no association of CTLA4+/PD1+ markers was observed with age (p = 0.79). However, SM

reduction of CTLA4+/PD1+ markers on CD4+ T cells was greater in magnitude in PBMC

samples from individuals that were ART-naïve (median difference of -24.2%; IQR [-31.8–

21.0%]) versus those that were receiving ART (-0.1% [IQR -6.4% to 0.4%], Wilcoxon test,

p = 0.037) (S3C and S3D Fig).

Fig 2. SM suppresses inflammation in resting and cytokine- and TCR-activated MAIT cells. Expression of IFN-γ (A) and granzyme

B (B) by CD8+ Va7.2+ CD161hi sorted MAIT cells cultured for 24 hours at rest, 100ng/ml IL-12, 15, and 18, or a combination of IL-12, 15,

18 and anti-CD3/CD28 beads, in the presence or absence of SM (80 μM). Data shown are from three different donors, and data are

displayed as mean +/- SEM.

doi:10.1371/journal.pone.0171139.g002
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Table 4. SM Suppresses T Cell Activation and Exhaustion Markers.

Marker CD4 T cells CD8 T cells

SM Effect* p-value** SM Effect* p-value**

CD38+/HLA-DR+ -0.7% (-1.1% to -0.4%) 0.001 -0.6% (-1.7% to -0.3%) 0.0003

CD25+/CD127lo -0.7% (-1.6% to 1.6%) 0.71 0.0% (-0.0% to 1.0%) 0.046

Ki67+ 0.01% (-0.03% to 0.04%) 0.92 -0.01% (-0.04% to 0.00%) 0.085

CTLA4+/ PD1+ -0.9% (-21.9% to 0.5%) 0.037 0.4% (-0.5% to 0.8%) 0.32

*SM Effect represents the median differences in percentages of marker expression (i.e., SM minus DMSO treatments). The bracketed values show the

interquartile range.

** Wilcoxon signed rank test for a difference of paired data.

doi:10.1371/journal.pone.0171139.t004

Fig 3. SM suppresses the expression of activation and exhaustion markers on CD4+ and CD8+ T cells from HIV+ subjects.

Expression of activation markers, CD38 and HLA-DR on CD4+ (A) and CD8+ (B) T cells, and exhaustion markers, CTLA4 and PD1, on

CD4+ (C) and CD8+ (D) T cells from PBMC cultures treated for 72 hours with SM (80 μM; empty symbols) or DMSO (vehicle control; solid

symbols). Data are from 25 different PBMC samples. P values are derived from Wilcoxon signed rank tests.

doi:10.1371/journal.pone.0171139.g003
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After 72 hours in culture, SM did not significantly alter the expression of the activation

marker Ki67 in CD4+ and CD8+ T cells (Table 4; S4A and S4B Fig). In addition, SM treatment

did not have any significant effect on CD4+ regulatory T cell markers (i.e., Tregs; defined as

CD25+/CD127lo CD4+ T cells; p-value = 0.71), while SM treatment marginally reduced the

expression of CD25+/CD127lo on CD8+ T cells (p-value = 0.046) (Table 4; S4C and S4D Fig).

To determine if SM treatment results in the inhibition of T cell pro-inflammatory function,

a subset of chronically infected, HIV+ PBMC culture supernatants were harvested after 72

hours of culture in SM or DMSO and processed for Luminex analyses. As shown in S5 Fig,

SM treatment suppressed IL-18 and IL-6 expression in cultures, whereas the effect of SM on

IL-8 expression was variable.

The chemokine receptor CCR7 and the tyrosine phosphatase CD45RA are used to desig-

nate T cells as naïve (CD45RA+/CCR7+), terminal effector (CD45RA+/CCR7-), central mem-

ory (CD45RA-/CCR7+), and effector memory (CD45RA-/CCR7-) cells [51, 52]. While not

statistically significant due to the low number of samples (N = 4), SM treatment showed a

trend for increasing the percentage of naïve CD4+ T cells (defined as CD4+ cells expressing

CD45RA+/CCR7+ markers) in comparison to DMSO treatment (Fig 4). SM treatment also

showed a trend towards reducing the percentage of CD4 T cells in the terminal effector and

effector memory cell subsets.

Discussion

In this study, we show that SM significantly reduces expression of various markers of T cell

activation and exhaustion (e.g., CD38, HLA-DR, CTLA4, and PD1) as well as pro-inflamma-

tory cytokines (e.g., IL-6 and IL-18) in PBMCs from chronically-infected HIV-positive sub-

jects. SM treatment also showed a trend towards maintaining naïve CD4+ T cell populations

in cultured PBMC from chronically infected, HIV+ subjects. For monocytes and MAIT cells

in the HIV-negative setting, SM treatment showed trends toward reducing pro-inflammatory

cytokines in resting/non-stimulated, and cytokine-, PAMP-, and TCR-activated cultures.

Fig 4. SM affects the differentiation states of CD4+ T cell populations in HIV+ PBMC cultures. After 72

hours of treatment with SM (80 μM; empty symbols) or DMSO (vehicle control; solid symbols), PBMC were

analyzed by flow cytometry for CD4+ T cell differentiation markers, defined as follows: A, Naïve (CD45RA

+/CCR7+), B, Terminal Effector (CD45RA+/CCR7-), C, Effector Memory (CD45RA-/CCR7-), and D, Central

Memory (CD45RA-/CCR7+).

doi:10.1371/journal.pone.0171139.g004
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While interesting, these effects of SM on monocytes, MAIT cells, and T cell memory subsets

need to be bolstered in future studies by studying larger numbers of samples. Nevertheless, the

data indicate that the inflammatory status of primary human immune cells, in both resting

and stimulus-activated conditions, is suppressed by SM.

Similar to activation and exhaustion markers, SM suppression of PAMP-induced inflam-

mation in monocytes may be important during CIA. For example, monocyte activation has

been associated with systemic inflammation, atherosclerosis, and the development of prema-

ture cardiovascular disease [53], all of which occur at a higher rate in the HIV-infected com-

munity [54, 55].

The effects of SM treatment may not only be applicable to monocytes and T cells in the con-

text of HIV infection, as SM treatment may also be effective for the suppression of MAIT acti-

vation involved in resetting pathologic inflammation. Multiple studies have shown that CD8

+ MAITs contribute to the primary, innate-like response against bacterial and fungal infec-

tions and can be activated by inflammatory stimuli [36, 56]. The suppression of CD8+ MAIT

cell activation, as shown here by SM treatment, is not limited to that caused by acute bacterial

infections, but may also be important during chronic viral infections, such as HIV: circulating

MAIT cells are severely reduced in chronically-infected HIV+ patients, and fail to completely

restore to pre-infection frequencies with ART [57]. Moreover, these MAIT cells showed a

functionally exhausted phenotype. Our data suggest that by treating MAIT cells with SM and

reducing their inflammatory response, it may be possible to reduce the MAIT-associated

exhausted phenotype, preserving their function in both the blood and at epithelial sites, such

as in the context of chronic viral infections.

The reduction of the T cell activation markers CD38 and HLA-DR by SM was correlated

with a low CD4:CD8 ratio (i.e., < 1) and in PBMC from subjects not on ART. In the setting of

chronic HIV infection, clinical parameters such as CD4:CD8 ratio have been used to identify

HIV+ individuals on ART who are at greater risk of immune dysfunction, leading to AIDS,

non-AIDS events, and mortality [58]. Thus, natural products like SM may be effective in

reducing CIA that is associated with AIDS, non-AIDS events, and mortality. In addition to the

traditional activation markers CD38+/HLA-DR+, the reduction of exhaustion markers

CTLA4 and PD1 by SM may also be clinically relevant in the context of HIV-associated CIA.

For example, blocking PD-1 receptor function during simian immunodeficiency virus in vivo
was shown to improve virus-specific CD8+ T cell responses, reduce plasma viremia, as well as

increase animal survival [59]. In fact, by inhibiting multiple immune exhaustion pathways

(e.g., PD-1 and CTLA4) simultaneously, T cell function can further be improved [60], suggest-

ing potential additive or synergistic therapies for recovery of immune function. In the context

of chronic HIV infection, the ability of SM to reduce CTLA4 and PD1 expression is particu-

larly interesting, since cells with high-level expression of exhaustion markers may preferen-

tially harbor latent, HIV proviral DNA [61].

The ability of SM to quell various types of inflammation is similar to the immunomodula-

tory effects of metabolic modulators like rapamycin, which can suppress cellular activation,

stimulus-induced inflammation, and alter immune cell fate (i.e. differentiation). Rapamycin’s

principle mechanism of action is via inhibition of mammalian target of rapamycin (mTOR)

through its association with FKBP12 [62, 63]. We have recently shown that SM also inhibits

mTOR by at least two pathways, involving activation of adenosine monophosphate kinase

(AMPK) and induction of DNA Damage Inducible Transcript 4 (DDIT4), a novel inhibitor of

mTOR [31]. Moreover, SM activates AMPK signaling, which feeds forward to suppress NF-κB

signaling [31]. Thus, SM appears to modulate multiple metabolic pathways that converge on

suppressing inflammation in diverse immune cell types, independent of the inflammatory

insult or stimulus.
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Supporting information

S1 Fig. Example of gating tree used for flow cytometry data. A representative example of a

PBMC sample, cultured with DMSO (vehicle control) for 72 hours, stained with the immune

exhaustion panel. Gating is as follows: top row, Time, Singlet, AViD Live/Dead. Second row,

Lymphocyte, CD3+, CD4+ and CD8+ Cells. Third and forth rows, CD4+ and CD8+ cells,

respectively, gated for CD25hi/CD127lo, CD38+/HLA-DR+, Ki67hi, and CTLA4+/PD1+.

(PDF)

S2 Fig. Relationship of SM Suppression of CD38+/HLA-DR+ in CD4+ and CD8+ T cells

with ART status and CD4:CD8 ratio. Panels A and B, correlations of SM suppression of acti-

vation markers CD38 and HLA-DR on CD4+ T cells with ART status. Panel A is the actual

data while panel B plots the difference. Panels C and D, correlations of SM suppression of acti-

vation markers CD38 and HLA-DR on CD8+ T cells with ART status. Panel C is the actual

data while panel D plots the difference. Panels E and F, association of SM suppression of CD38

and HLA-DR on CD8+ T cells with CD4:CD8 ratio.

(PDF)

S3 Fig. Suppression of CTLA4/PD1 on CD4+ T cells is associated with CD4:CD8 ratio and

ART status. Panels A and B, difference in CTLA/PD1 expression was strongly associated with

CD4:8 ratio for CD4+ T cells. Panels C and D, SM reduction of CTLA/PD1 on CD4+ T cells

was greater in samples from ART-naïve individuals.

(PDF)

S4 Fig. SM does not alter the expression of activation (Ki67) and T regulatory cell (Treg)

markers on PBMC from HIV-infected individuals. PBMC were thawed and cultured for 72

hours in either SM (80 μM; empty symbols) or DMSO (vehicle control; solid symbols) fol-

lowed by staining with the exhaustion panel (listed in Table 3). Samples were assessed for the

activation marker Ki67 on CD4+ (A) and CD8+ (B) T cells, and Treg markers, defined as

expression of CD25+/CD127lo on CD4+ (C) and CD8+ (D) T cells.

(PDF)

S5 Fig. SM suppresses pro-inflammatory cytokines in HIV+ PBMC cultures. PBMC were

thawed and treated with SM (80 μM) or DMSO (vehicle control), cultured for 72 hours, with

supernatants lysed by the addition of a final 1% Triton-X concentration, and then processed

for Luminex analysis. Data shown are from seven different PBMC samples.

(PDF)
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