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ABSTRACT
Passive immunotherapeutics (PITs), including convalescent plasma, serum, or hyperimmune immunoglo-
bulin, have been of clinical importance during sudden outbreaks since the early twentieth century for the 
treatment of viral diseases such as severe acute respiratory syndrome (SARS), middle east respiratory 
syndrome (MERS) and swine flu (H1N1). With the recent SARS-CoV-2 pandemic, wherein effective antivirals 
and vaccines are still lacking, an interest in convalescent plasma therapy as a lifesaving option has 
resurfaced due to its capacity for antigenic neutralization and reducing viremia. This review summarizes 
convalescent blood products (CBPs) in terms of current technologies and the shortcomings related to the 
collection, manufacture, pathogen inactivation, and banking of CBPs, with a specific focus on their 
plausible applications, benefits, and risks in the COVID-19 pandemic.
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Introduction

Viral infections caused by mutant strains of certain viruses with 
a pandemic potential, such as coronaviruses (SARS-CoV2,1 SARS- 
CoV,2 MERS-CoV3), influenzaviruses,4-6 flaviviruses (West Nile 
virus, Dengue virus, Zika virus),7 Chikungunya virus,8 and Ebola 
virus,9 spread rapidly, without sufficient time to design and 
develop antiviral drugs or vaccines specific to those mutant strains 
immediately after the outbreak. To clinically manage such cases, 
doctors rely exclusively on general supportive care with provisions 
of critical care including organ support, if necessary.10 In 
a scenario, where therapeutic drugs or vaccines are not available, 
one approach that could be used effectively by the medical frater-
nity, is that of convalescent plasma therapy (CPT) or passive 
immunotherapy (PIT), which has recently been approved by the 
FDA to treat critically ill COVID-19 (coronavirus infection disease 
2019) patients.11 CPT is a classic adaptive immunotherapy that has 
been successfully used for decades in the treatment of SARS, 
MERS, and H1N1 pandemics, with satisfactory efficacy and safety.

SARS-CoV-2 is a novel mutant strain of SARS-CoV12,13 with 
virological and clinical similarity with no specific antiviral drug 
or therapeutic vaccine available14 hence, the administration of 
CPT or hyperimmune immunoglobulin from recovered patients 
may be a promising approach for the treatment of COVID-19.15 

Patients who have recovered from COVID-19 with a high neu-
tralizing antibody titer may be a valuable source of donor con-
valescent plasma (CP). The efficacy of CPT (Figure 1) has been 
attributed to active hyperimmune immunoglobulins/antibodies 
that may directly inactivate the viral load and suppress 
viremia.16 A meta-analysis from 32 studies of SARS coronavirus 
infection and influenza A (H1N1) showed a statistically signifi-
cant reduction in the pooled odds of mortality (odds ratio, 0.25; 

95% confidence interval, 0.14–0.45; I2 = 0%) without adverse 
events in patients administered various doses of CPT compared 
to placebo or no therapy.6,17-19 Nevertheless, the potential clin-
ical benefits and risks of convalescent blood products (CBPs) in 
COVID−19 remain uncertain. For example, considering that the 
virus mutates rapidly, the antibodies generated among one set of 
infected patients may be different from those of another set of 
patients infected with a different viral strain. Therefore, there is 
a theoretical concern that antibodies obtained from a patient 
recovered from one strain of coronavirus could enhance the 
clinical risks for a patient infected with another strain of cor-
onavirus, leading to antibody-dependent enhancement (ADE) 
of infection. Therefore, to avoid ADE, the purified neutralizing 
antibodies should be collected and administered from donor(s) 
and recipient(s) respectively, within the same geographic 
locality.20 On the other hand, if a secondary infection is simul-
taneously emerging in a particular locality, CBP could be contra-
dicted. Furthermore, CP infusion carries some risks, such as 
transfusion-related acute lung injury (TRALI).21 There is also 
a higher risk of active and live antigens being present in CBP 
which may lead to worsening of clinical symptoms. A minor 
mistake at any point could worsen the clinical condition of the 
patient; therefore, CBP source, ADE, time of CP collection, 
antigenic infectivity index, and transfusion methods should be 
taken into consideration during the risk-benefit assessment. 
However, the antigenic infectivity index can be reduced using 
modern pathogen inactivation (PI) techniques.22

With respect to the COVID-19 pandemic, the present arti-
cle is dedicated to evaluating the benefits and risks of different 
CBPs to achieve artificially acquired passive immunity. These 
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CBPs include convalescent whole blood (CWB), CP/convales-
cent serum (CS), pooled human immunoglobulin (Ig), high 
titer human Ig, monoclonal antibodies (mAbs), and polyclonal 
antibodies (pAbs) for intravenous (IV) or intramuscular (IM) 
administration. This review will also summarize CBPs in terms 
of current technologies and the shortcomings related to the 
collection, manufacture, pathogen inactivation, and banking of 
CBPs with a specific focus on plausible applications in the 
COVID-19 pandemic.

Convalescent blood products (CBPs)

In the absence of a specific treatment, CBPs emerge as life-
saving options for the treatment of several infectious diseases 
such as SARS, MERS, and the ongoing pandemic of SARS- 
CoV−2. CBPs can be used with or without other drugs and 
preventive measures. However, considering the health issues of 
implementing CBP therapy, the WHO has outlined the steps 
necessary to safely collect CWB or CP from recovered patients. 
These steps include CP donor recruitment strategies (identifi-
cation and selection of recovered patients as potential blood 
donors; donor blood grouping, and screening for plausible 
transmissible infections, and pathogen inactivation, if any); 
CP pooling, banking, and transportation (blood collection, 
labeling, storage, and data collection by blood transfusion 
services, transportation of CP to the centers where transfusions 
are to be given); CP recipient recruitment strategies (selection, 
informed consent, blood grouping, and compatibility testing of 
patients for clinical transfusion); and clinical data collection 
and analysis (monitoring treatment response, viral load/clear-
ance after CPT, effectiveness of CPT) at the transfusion 
center.23

Convalescent whole blood (CWB)/plasma (CP)/serum (CS)

Early studies conducted during the pandemics of 1918 to 
1920 suggested that PIT using CWB may be effective.6,24 

However, as various clinical risk factors have been taken 

into consideration,25 the use of CWB is currently limited 
for the treatment of infectious diseases. Presently, while 
SARS-CoV−2 infection is increasing rapidly worldwide, 
Shen et al. recently reported, in an uncontrolled study, 
that five critically ill patients were successfully treated 
using CPT. All patients were receiving manual ventilation 
along with antiviral and steroid therapy, but body tempera-
ture normalized 3 days after the administration of CP. The 
sequential organ failure assessment score decreased and 
PaO2/FiO2 (ratio of the partial pressure of arterial oxygen 
to the percentage of inspired oxygen) increased in the 12 
days following CP transfusion. The viral load was negative 
after 12 days and SARS-CoV−2 specific neutralizing anti-
body titers increased to 80−320 on the seventh day.26 

Similarly, another study reported an increase in antibodies 
in all patients 5 days after medical treatment with an 81% 
rise in IgM and 100% in IgG. Although narrative analysis of 
various reports shows consistent evidence of reduction in 
mortality after early CP transfusion, control groups and 
quality data are lacking; thus, a well-designed and con-
trolled clinical trial must be conducted.27

Neutralizing antibodies [pooled/high titer human 
immunoglobulin (Ig)]

Neutralizing antibodies (nAbs), or intravenous immunoglo-
bulins (IVIgs), consist of high titer IgG, isolated and pooled 
from plasma collected from the blood of recovered patients.28 

IVIgs are sterile and contain more than 95% unmodified IgG 
with two functional fragments; the F(ab)2 fragment for anti-
gen recognition, and the crystallizable fragment (Fc) for the 
activation of innate immune responses by interacting with 
Fcγ receptors on B-cells.29 IVIgs are already used to treat 
patients with viral, bacterial, or fungal infections, along with 
various autoimmune and chronic inflammatory diseases in 
clinical and laboratory experimental models.30-35,36 IVIgs do 
not stimulate the patient’s own immune system to produce 
more Igs, instead they provide only temporary protection 

Figure 1. Schematic representation of convalescent plasma therapy.
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before being metabolized by the body. Therefore, repeated 
doses are required at regular intervals over the course of 
treatment until the viral load (in the case of SARS-CoV-2) 
becomes negative.37 Recently, Cao et al. reported the early 
recovery of three severely ill COVID-19 patients using high- 
dose IVIg.38 We recently identified that SARS-CoV-2 has 
high sequence identity with the spike glycoprotein (S protein) 
structures of SARS-CoV39; therefore, CS containing nAbs 
from SARS patients should cross-neutralize SARS-CoV-2 
infection by reducing S protein-mediated SARS-CoV-2 
entry40 [Figure 2]. Similarly, nAbs targeting the SARS-CoV 
receptor-binding domain (RBD) could be used for prophy-
laxis and treatment of SARS-CoV-2 infection.41 However, no 
cross-neutralization of SARS-CoV-2 is observed for this 
target.

Monoclonal antibodies (mAbs) and polyclonal antibodies 
(pAbs)

Currently, naturally obtained mAbs specific to SARS-CoV-2 are 
not available. Work is in progress for the production of prophy-
lactic or therapeutic mAbs to prevent or treat COVID-19. 
However, a recombinantly expressed human mAb 47D11 has 
recently been reported which can neutralize both SARS-CoV-2 
and SARS-CoV.42 Though the human neutralizing mAb against 
SARS-CoV RBD, CR3022, has been identified as having high 
affinity for an RBD epitope but its ability to cross-neutralize 

SARS-CoV-2 has not been reported. Moreover, pAbs against 
SARS-CoV RBD have been shown to cross-neutralize SARS- 
CoV-2 infection in HEK293T cells. The human nAbs against 
SARS-CoV-2 RBD, SARS-CoV RBD, and MERS-CoV RBD are 
shown in Table 1.41,42 This research has opened avenues for the 
potential development of SARS.-CoV-RBD and SARS-CoV-2 
RBD-based vaccines for the treatment of COVID-19 using cross- 
neutralization mAbs and pAbs.42,43

Pathogen inactivation (PI) technologies

Pooled plasma from recovered coronavirus patients may be sub-
jected to various methods of PI, to ensure high safety margins. 
Often, three to seven of the following techniques are used in 
combination: cryo-precipitation, nano-filtration (15–20 nm), pas-
teurization, solvent/detergent treatment (0.3% tri-n-butyl phos-
phate and 1% polysorbate 80 at 37°C), heat treatment, cold 
ethanolic fractionation, PEG precipitation, ion-exchange chroma-
tography, and low pH incubation [Figure 3]. Once inactivated, the 
samples are validated and examined for viral infectivity using the 
tissue culture infectious dose assay, plaque-forming unit assay, or 
RT-PCR.44-47

Lessons from the past (SARS and MERS)

Genome sequencing suggests that SARS-CoV-2 is 82% iden-
tical to SARS-CoV and about 50% to MERS-CoV, with a bat 

Figure 2. Schematic representation of neutralizing antibodies (nAbs) inhibiting viral membrane fusion and preventing replication.
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origin.48 The clinical presentation and pathology of COVID- 
19 also greatly resemble the characteristics of SARS and 
MERS. Therefore, it is essential to learn from our previous 
experiences with SARS and MERS when treating patients 
infected with SARS-CoV-2. The primary receptor of MERS- 
CoV is dipeptidylpeptidase 4 (DPP4)49 whereas SARS-CoV 
invades the host cells via the binding of S-protein to ACE-2. 
SARS-CoV-2 has been reported to bind to ACE-2 to gain 
entry to the host cells in a similar fashion to SARS-CoV,50 as 
the amino acid sequence of SARS-CoV-2 S-protein is ~76% 
identical to that of SARS-CoV.51 However, a recent study 
reported that the RBD-ACE2 binding of SARS-CoV-2 is 
temperature-sensitive and it is expected that the infectious-
ness of SARS-CoV-2 would decrease with a rise in 
temperature.52 Nothing prudent can be taken from this 
report, but considering the low number of patients in 
a densely populated tropical country such as India (in com-
parison to rest of the world), it does appear as though SARS- 
CoV-2 may be losing its infectivity. An early lockdown in 
India is a major part of this containment, but another factor 
which cannot be overlooked is the innate immunity through 
universal BCG vaccination.53 Therefore, it is proposed that 
vulnerable population could be immunized with BCG vac-
cines to attain heterologous nonspecific protection against 
SARS-CoV-2.

Similar to SARS and MERS,54 elderly people with co- 
morbidities (mainly hypertension, cardio-cerebrovascular dis-
eases, and diabetes) and males are in general, more clinically 
susceptible to SARS-CoV-2,55 possibly due to the role of 

X-chromosomes in innate immunity.56 However, fewer 
patients with SARS-CoV-2 develop diarrhea in comparison to 
SARS and MERS.57 During the SARS and MERS outbreaks, 
99% of the patients developed high fever,54 whereas in SARS- 
CoV-2 infection only ~44% of patients develop high fever 
initially, with the majority being partially symptomatic or 
asymptomatic58 and inadvertently facilitating a silent spread 
of the infection. Hospitalized COVID-19 patients also develop 
pharyngeal pain, dyspnea, dizziness, abdominal pain, and 
anorexia.59

In pathological studies, it has been demonstrated that 
a substantial reduction in lymphocytes occurs, leading to lym-
phopenia, proinflammatory cytokine storm, and higher levels 
of interleukins and TNFα compared with healthy individuals.57 

Under radiological (CT scan) studies, similar to SARS and 
MERS, COVID-19 patients developed ground-glass opacities 
with or without vascular enlargement, interlobular septal 
thickening, and air bronchograms, which adds complexity to 
the control of the disease.60

For treatment of SARS-CoV infection, chloroquine (an 
antimalarial drug used in autoimmune diseases) demon-
strated remarkable inhibition of the spread of SARS both at 
entry and during the initial stages of infection.61 Similarly, 
various observational studies (n = 80), and non-randomized 
(n = 42) and randomized (n = 62) clinical trials of hydroxy-
chloroquine on COVID-19 patients were carried out along 
with the standard treatment (oxygen therapy, antivirals and 
immunoglobulins, with or without corticosteroids). However, 
it is still not clear whether this drug should be recommended 
or considered clinically ineffective and stopped.62 Further, 
since SARS-CoV-2 is associated with an over-activated 
immune system with severe cytokines storm, similar to 
SARS and MERS.63 An observational study of corticosteroid 
treatment in SARS and MERS suggested that steroidal com-
plications resulted in increased mortality, secondary infec-
tions, and high viral load. Therefore, corticosteroid 
treatment is not recommended for COVID-19.64 Finally, 
CPT has been shown to be very effective for the treatment 
of SARS and MERS, with reduction in hospital stay and 
mortality rate upon early administration after onset of 
symptoms.18 In fact, three infected health-care workers with 
severely progressed SARS survived only due to CP transfu-
sion, with their viral load dropping to zero within a day of 
transfusion.65 Similarly, CP containing MERS-CoV-specific 
antibodies from recovered patients have been suggested as 
a potential therapy. In murine models, even camel antibodies 

Table 1. Human nAbs against SARS-CoV-2, SARS-CoV, and MERS-CoV.

Human nAb Neutralizing pathogen Mechanism

Recombinant Human 47D11 mAb SARS-CoV-2 and SARS-CoV Recognizes conserved epitope on spike RBD independent of receptor binding 
inhibition.

S109.8; S227.14 
S230.15; mAbs

Human SARS-CoV with S mutants Inhibits the binding of SARS-CoV RBD to ACE2 receptor

CR3022; CR3014 
scFv; mAb

Live SARS-CoV, HKU-39849 and 
CR3014.

Recognizes epitopes on SARS-CoV RBD residues 318–510 with high affinity.

80 R; scFv; mAb Live SARS-CoV infection Recognizes epitopes on SARS-CoV S1 and blocks RBD-ACE2 binding.
S230.15; m396; mAbs SARS-CoV strains Recognizes epitopes on SARS-CoV S1 protein and interferes with RBD–ACE2 

receptor interaction.
MERS-27; m336 

Fab; MCA1; mAbs;
Strains of pseudo type MERS-CoV. Recognizes epitopes on MERS-CoV RBD and blocks RBD-DPP4 receptor binding

Figure 3. Schematic representation of pathogen inactivation technologies.
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were observed to be successful for prophylactic and therapeu-
tic use in MERS.66 Therefore, controlled clinical trials are 
highly recommended for the study of CP in COVID-19 treat-
ment. The FDA has recently issued guidelines on the admin-
istration and study of investigational CP from recovered 
COVID-19 patients during this health emergency.67

Risks and concerns related to convalescent plasma 
therapy

As mentioned earlier, CPT or PIT has two major risk factors; 
known risk factors and theoretical risk factors. Known risk 
factors include the presence of the pathogen against which 
the plasma is targeted. For example, the presence of SARS- 
CoV-2 in the plasma of a recovered patient may enhance the 
clinical symptoms of the recipient rather than act as treatment. 
The transfusion may also result in an inadvertent infection 
with another pathogen that was present unknown to the 
donor. Similarly, another known risk factor is anaphylactic 
immunological reactions to serum constituents, causing 
serum sickness. However, with modern blood screening, bank-
ing, and PI techniques, the known risks of infection and trans-
fusion reactions may be minimized to negligible levels.

Further, TRALI has been the leading cause of transfusion- 
related mortality. When CP with antibodies is transfused into 
a patient with the cognate antigen, neutrophils within the pul-
monary microvasculature agglutinate, releasing reactive oxygen 
species and inflammatory mediators that injure the pulmonary 
endothelium. TRALI is characterized by acute hypoxemia and 
non-cardiogenic pulmonary edema within 6 hours of transfu-
sion. Some of the risk factors identified in recipients for TRALI 
are; smoking, alcohol abuse, age, pre-transfusion shock, liver 
transplant or end-stage liver disease, hematologic malignancy, 
sepsis, cardio-pulmonary bypass, and massive transfusion.68 

Therefore, TRALI should be considered in the risk-benefit 
assessment before the administration of CPT.

The theoretical risks involve the phenomenon of ADE, which 
occurs during transfusion therapy in viral diseases due to the 
natural occurrence of mutant strains. Therefore, the antibodies 
in the CP of one patient may not be compatible with a patient 
infected with a different viral variant, leading to enhancement of 
disease. For coronaviruses, several mechanisms of ADE have been 
described.69 The available data on the use of CP in patients with 
SARS and MERS,18 and reports of its use in COVID-19 patients,70 

suggest that the use of CP is safe. However, owing to the phylo-
genetic variants of the virus, precautionary measures are impor-
tant. Therefore, CP preparation and administration to COVID-19 
patients should be carried out in the same geographical locality to 
avoid ADE. There is another theoretical risk of reduced humoral 
immunity and subsequent re-infection among exposed indivi-
duals undergoing prophylactic CPT to avoid COVID-19.71 

Nevertheless, in view of the high mortality rate and risk to elderly 
people with comorbidities, CPT should be considered based on 
individual variability and risk-benefit assessment.

CP donor inclusion and exclusion criteria

To define the inclusion and exclusion criteria for CP donors 
during COVID-19, it is important to learn from previous 

experiences with SARS and an accumulated knowledge of the 
present SARS-COV-2 outbreak. In SARS and MERS, viral 
RNA was detected in respiratory specimens for as long as 4 
and 3 weeks, respectively, after the onset of disease. Similarly, 
SARS-CoV-2 RNA has been observed for up to 20 days after 
recovery in survivors.72 SARS viral RNA was also detected in 
the stool and urine samples of three convalescent patients for 
longer than 4 weeks.73 Similarly, positive RNA signals were 
detected in the nasopharyngeal swab and stool of SARS-CoV-2 
patients.74 As these reports suggest that SARS viral RNA may 
remain viable in the excretions of convalescent patients, it is 
vital to perform SARS-CoV-2 RNA screening of both fecal and 
respiratory specimens of CP donors. Donors should also 
undergo apheresis therapy.

In a recent investigation of 173 COVID-19 patients, it was 
observed that the seroconversion rate for Ab, IgM, and IgG 
production reached 100.0%, 94.3%, and 79.8%, respectively, 
within 15 days of the onset of symptoms.75 With no data 
available on the presence or longevity of SARS-CoV-2 IgG 
and nAbs in convalescent patients, previous reports from 
SARS need to be reviewed. CP from SARS patients containing 
IgG and nAbs showed neutralizing activity at a peak of 96% 
after 3 months, which declined to 48% after 36 months.76 To 
find a suitable CP donor, various factors such as viral infectiv-
ity, gender, antibody titer value, and nAb longevity need to be 
considered and evaluated. Notably, a total of 1135 clinical trials 
studying CP and various anti-SARS-CoV-2 polyclonal hyper-
immune immunoglobulins for the treatment of COVID-19 
patients are listed in WHO’s International Clinical Trial 
Registry Platform.77

Recently, the FDA has issued guidelines to health-care provi-
ders for the collection of COVID-19 CP. As per the guidelines, the 
plasma must only be collected from documented positive cases, 
whose symptoms have been completely resolved for at least 
14 days prior to donation with negative test results for COVID- 
19, or who have been symptom-free for 28 days prior to donation. 
Further, the inclusion criteria allow both male donors and female 
donors who are not pregnant, or who have had a recent pregnancy 
but tested negative for HLA antibodies. A SARS-CoV-2 nAb titer 
of at least 1:160 is recommended. However, a titer of 1:80 may also 
be accepted if an alternative is not available.78

CP recipient eligibility

The FDA has also issued eligibility criteria for patients to be 
considered for CPT during the COVID-19 pandemic. These life- 
threatening parameters include dyspnea with respiratory fre-
quency ≥30/min, blood oxygen saturation ≤93%, PaO2/FiO2 
< 300, lung infiltrates >50% within 24 to 48 hours, respiratory 
failure, septic shock, and multiple organ dysfunction67,78.

CP pooling and banking

As mentioned, the nAbs titer values and strength of CP tend to 
vary based on the severity of disease, gender, comorbidities, time 
of collection, viral load, pathogenicity, and various other 
unknown parameters of the donor. Further, serological studies 
of every donor may not be economically feasible. Therefore, 
pooling batches of CP is recommended. The CP pools are then 
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subjected to serological studies for nAb titer and used accordingly 
for eligible patients, depending upon their viral load, infectivity, 
and disease stage. Lower titer values (≥160) may be used for 
patients who are asymptomatic or with mild to moderate 
disease,79 whereas high titer (≥640) doses may be used for severely 
affected patients with high viral load and life-threatening 
conditions.26,38 Pooled CP may be stored below −20°C and must 
be labeled with the date of collection, as an expiry date of 1 
year from the collection date is outlined in the FDA guidelines.78

Measurement of anti-SARS-CoV-2 antibodies

During CP collection, potential donors or the pooled plasma 
undergo serological tests for the presence and strength of anti- 
SARS-CoV-2 antibodies. Various quantitative immunoassays 
can be used for the assessment of SARS, MERS, and SARS-CoV 
-2-infected patients, such as chemiluminescence immunoassay 
(CLIA), enzyme-linked immunosorbent assay (ELISA), radio-
immunoassay (RIA), indirect immunofluorescence test (IIFT), 
MAb epitope mapping, lateral flow immunoassay (LFIA), and 
quantitative fluorescence immunoassay.80-83

Clinical data analysis of CPT

Recently, a pilot study of CPT on 10 severely ill COVID-19 
patients was reported, where a single transfusion of 200 mL CP 
(nAb titer ≥ 1:640) was administered to patients along with 
supportive care and antiviral drugs. This resulted in an unde-
tectable viral load within 3 days of CP transfusion and main-
tenance of nAb titer at 1:640, along with improved clinical 
(relief of dyspnea, and normalization of oxygen saturation) 
and laboratory parameters (increase in lymphocyte count and 
decrease in C-reactive protein), without any adverse effects. 
After 7 days, radiological examination also showed absorption 
of lung lesions to varying degrees. However, the optimal dose 
of CP and detailed clinical benefits were not ascertained in the 
study.84 In another study, six critically ill COVID-19 patients 
with respiratory failure tested negative for SARS-CoV-2 RNA 
after 3 days of receiving CP transfusion but eventually five 
patients died.85 Therefore, it was concluded in the study that 
CPT may reduce viral load and buy some time86 to save lives if 
treatment is initiated much before the critical stage arrives. 
However, in a separate study, six confirmed COVID-19 
patients who received CP transfusion early recovered with no 
adverse effect during the treatment. Transfusion of CP led to 
a resolution of ground-glass opacities and increase in anti- 
SARS-CoV-2 antibody titer in patients. This study indicates 
that convalescent plasma therapy is promising and specific for 
COVID-19.87

Similarly, CPT was conducted on 31 critically ill laboratory- 
confirmed COVID-19 adult patients ≥18 years of age. Patients 
on CPT had a lower 14 days (0 versus 35%; p = .033) and 
28 days (0 versus 35%; p = .033) all-cause mortality compared 
to patients not on CPT. However, all-cause mortality was only 
marginally lower in the CPT group compared to the non-CPT 
group (9.1% versus 45%; p = .055; power = 66%). Clinical 
parameters also improved with the CPT showing that the use 
of CPT in severe COVID-19 patients has been associated with 
improved outcomes.88 More recently, 20,000 hospitalized 

patients with COVID-19 were transfused with CP, under US 
FDA expanded access program for COVID-19, to evaluate the 
safety issues of CPT in critically ill patients. Interestingly, the 
incidence of serious adverse events was low which included 
transfusion reactions (<1%), thromboembolic or thrombotic 
events (<1%), and cardiac events (~3%) and were judged to be 
unrelated to the plasma transfusion per se. This data provide 
robust evidence that CPT is safe in hospitalized patients with 
COVID-19 and support the notion that earlier administration 
of plasma within the clinical course of COVID-19 is more 
likely to reduce mortality.89 Similarly, many reports claimed 
that CPT has the potential to provide immediate and promis-
ing treatment options in early-stage COVID-19 patients.90-92

Conclusions

Amid COVID-19 viral pandemic, where treatment is limited to 
supportive and critical care as specific drugs and therapeutic 
vaccines are not currently available, the current evidence sug-
gests that CPT may reduce mortality and result in positive 
treatment outcomes if commenced early after the onset of 
symptoms. However, this is based purely on the available 
data which has come from uncontrolled low-quality studies. 
Therefore, the present review supports the use of CP in criti-
cally ill patients infected with SARS-CoV-2 as part of a well- 
designed, randomized, controlled clinical trial.

Future perspectives

The understanding of COVID-19 and SARS-CoV-2 is at an 
early stage. Much research is still needed in various areas such 
as viral transmission,93 disease progression, differential clinical 
diagnosis,94 laboratory diagnosis,95 antigenic96 pathogenicity,97 

epitopes, immunogenic kinetics,98 drugs, immunotherapeutic 
products,99 prevention, and control strategies,100,101 cell-based 
therapy,102 phytotherapy,103 and clinical trials of plasma trans-
fusion. Recently, the potential targets of the immune response 
to SARS-CoV-2 were predicted by comparison to SARS-CoV. 
Five antigens that trigger B-cell responses contain epitopes 
recognized by nAbs in SARS CP. Similarly, predicted antigens 
of membrane proteins have been shown to elicit marked IgM 
and IgG responses and reactivity against SARS in mice, mon-
keys, and humans.104 In spite of these similarities, antigenic 
analysis performed by our group proved various antigenic dif-
ferences exist between the two coronavirus strains, including 
novel glycosylation sites and cytotoxic T-lymphocyte epitopes 
in SARS-CoV-2.39 In a separate study, cross recognition and 
reactivity of SARS-CoV mAbs with SARS-CoV-2 was not 
observed.105 These reports suggest that further studies are 
required to identify candidate targets for immune responses to 
SARS-CoV-2. Therefore, epitope mapping needs to be initiated 
to understand mutational events, epitope escape, and respective 
immunotherapeutics during viral transmittance within the 
population. Secondly, there have been many cases of re- 
infection106 with SARS-CoV-2 after recovery from COVID-19. 
Therefore, a cocktail antibody approach, where a combination 
of several nAbs targeting different epitopes on SARS-CoV-2, 
may be evaluated. This approach may decrease the probability 
of the virus escaping neutralization. Thirdly, randomized 
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controlled clinical trials with a standardized minimum data set 
are needed to fully understand nAb production kinetics, their 
mode of action, the optimal dosage of CP, and effectiveness of 
repeated CP transfusion for COVID-19 patients with SARS- 
CoV-2 infection, despite our current recommendation for its 
early use in critical patients.
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