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ABSTRACT
Atypical teratoid/rhabdoid tumors (AT/RTs) are lethal central nervous sys-
tem tumors, which are primarily diagnosed in infants. Current treatments
for AT/RTs include surgery, radiotherapy, and chemotherapy; these treat-
ments have poor prognoses and challenging side effects. The pivotal genetic
event in AT/RT pathogenesis comprises the inactivation of SMARCB1
or SMARCA4. Recent epigenetic studies have demonstrated mutual and
subtype-specific epigenetic derangements that drive tumorigenesis; the
exploitation of these potential targets might improve the dismal treatment
outcomes of AT/RTs. This review aims to summarize the literature concern-
ing targeted molecular therapies for pediatric AT/RTs.
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INTRODUCTION
Atypical teratoid/rhabdoid tumors (AT/RTs) in the cen-
tral nervous system (CNS) are rare and highly aggressive
malignancies that tend to occur in infants aged ≤3 years;
such tumors are considered grade 4 in the 2021 World
Health Organization Classification of CNS tumors.1 Cur-
rent treatment strategies involve intensive multimodality
therapies that include surgery, intrathecal and systemic
chemotherapy, and radiotherapy; these strategies offer mod-
erate survival improvements but carry the risk of significant
treatment-related morbidities.2,3

The genetic landscape of AT/RTs is surprisingly simple:
few landmark discoveries have been reported since Sévenet
et al.4 initially reported mutations of the INI1 (SMARCB1)
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gene in 1999. The genetic hallmark of AT/RTs comprises
the inactivation of the SMARCB1 locus at 22q11.2. In rare
cases, SMARCB1 protein expression is intact in neoplasms
with AT/RT features; such neoplasms exhibit inactivation
of the SMARCA4 locus at 19p13.5–7 As key components of
the SWI/SNF chromatin remodeling complex, SMARCB1
and SMARCA4 have been identified in various extracranial
tumors (e.g., pediatric malignant RTs and renal medullary
carcinoma).8 SMARCB1 is the most commonly inacti-
vated SWI/SNF complex subunit in mesenchymal neo-
plasms, while the inactivation of SMARCA4 has been asso-
ciated with a greater frequency of germline mutations.9

Although the specific mechanisms by which SMARCB1
and SMARCA4 contribute to AT/RT pathogenesis remain
poorly understood, multiple investigations of targeted drugs
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have been inspired by the various pathways and epigenetic
deregulation events that result from these simple genetic
inactivations.10,11

Considering the rapid development of novel technologies
and rapid advances in epigenetics knowledge, this review
summarizes recent research concerning targeted therapy for
pediatric AT/RTs.

CURRENT CLINICAL MANAGEMENT
OF AT/RTs

Despite improvements related to the use of aggressive
and multimodal therapies during the past decade, sur-
vival rates remain poor among patients with AT/RTs.
As shown in Table 1, multimodal therapies currently
include surgery, chemotherapy (e.g., high-dose chemother-
apy [HDC] with peripheral blood stem cell rescue and
intrathecal chemotherapy [IT]), radiotherapy, and prompt
treatment strategies for specific stages of the disease. Thus
far, there is no consensus or standard protocol concerning
treatment for AT/RTs.

The survival outcomes of gross total resection (GTR) have
varied among studies. A recent study by Richards et al.12

demonstrated better survival in the complete total resection
group than in the subtotal resection group. A national ret-
rospective study by Lafay-Cousin et al.13 showed similarly
favorable results; 2-year overall survival (OS) was 60% ±

12.6% in the GTR group. However, other multimodal treat-
ment trials have indicated that GTR does not significantly
improve patient prognosis.2,3,14 Maximal-safe resection
and second-look surgery are recommended as components
of multimodal treatment in these trials. However, long-term
outcomes cannot be improved solely by increasing the rate
of GTR.

Innovations in chemotherapy dose intensity and strategy
have gradually improved survival rates among patients with
AT/RTs. Slavc et al.15 proposed an altered chemotherapy
regimen, consisting of three 9-week courses of a dose-
dense regimen including doxorubicin, cyclophosphamide,
vincristine, ifosfamide, cisplatin, and etoposide followed
by IT with methotrexate, HDC, and local radiotherapy
to treat patients with AT/RTs. This strategy delayed the
requirement for radiotherapy in all nine included patients;
the 5-year OS was 100% and the 5-year event-free sur-
vival (EFS) was 88.9% ± 10.5%. Additionally, based on
the chemotherapy regimen in Children’s Oncology Group
(COG) 99703, the recent clinical trial COG ACNS0333
added methotrexate and HDC during induction and post-
induction chemotherapy.3 This therapy improved survival
(4-year EFS 35%) compared with the historical therapies
(4-year EFS 6.4%).3 Conversely, a regimen that involved
high-dose methotrexate-based induction and myeloablative
HDC demonstrated poor outcomes: the 3-year EFS was

21% ± 9% and the 3-year OS was 26% ± 10%.16 For
patients aged <3 years, chemotherapy that includes HDC
with autologous stem cell rescue is considered the main
component of multimodal treatment.

The young age of patients with AT/RTs makes radiotherapy
challenging: early radiotherapy offers a better prognosis but
carries a significant risk of leukoencephalopathy or radia-
tion necrosis, while delayed radiotherapy carries a lower
risk of severe CNS complications but tends to allow disease
progression.17 Additionally, the outcomes of radiotherapy
strategies have considerably differed among studies. Some
studies have reported a tendency to relapse among patients
who receive delayed radiotherapy.18–20 Other studies
reported that the risks of delayed radiotherapy were negli-
gible among patients who received tailored regimens.3,21,22

After extensive explorations of optimal treatment strate-
gies, survival outcomes have substantially improved
among patients with AT/RTs. However, the median OS
of patients with AT/RTs is <18 months. Novel thera-
pies are required for patients with AT/RTs, particularly
among younger patients and patients with M+ stage
tumors.

MOLECULAR PATHOGENESIS
OF AT/RTs

Epigenetic dysregulation: Chromatin remodeling

The inactivation of SMARCB1 or SMARCA4 in AT/RTs
results in the loss of their protein products, which are core
subunits of the SWI/SNF complex. The SWI/SNF chro-
matin remodeling complex modifies nucleosome position,
thus regulating gene expression through ATP-dependent
physical alteration of the chromatin conformation.23

The SWI/SNF complexes contain two main units named
Brahma/SWI2-related gene 1/Brahma-associated factor
(BAF) and polybromo-associated BAF.24 SMARCB1 is
a pivotal subunit of BAF that stabilizes the SWI/SNF
complex, thus enabling SWI/SNF to bind to the typical
enhancer. Therefore, the loss of SMARCB1 results in
the presence of fewer SWI/SNF complexes, reducing
the affinity of SWI/SNF for chromatin and preventing
the maintenance of normal enhancer function.25,26 Alver
et al.27 reported that reintroduction of SMARCB1 to
SMARCB1-knockout cell lines led to widespread recruit-
ment of the SWI/SNF complex to previously unoccupied
enhancers, along with activation of these enhancers, and
resolution of promoter bivalency toward an active state.
Furthermore, Nakayama et al.28 found that SMARCB1
rescue in AT/RTs resulted in increased genome-wide
BAF complex occupancy, thereby facilitating widespread
enhancer activation. Although the specific functions of
SMARCA4 in AT/RTs remain unclear because SMARCA4
mutations are rare, Moreno et al.29 found that the

https://wileyonlinelibrary.com/journal/ped4


Pediatr Investig 2022 Jun; 6(2): 111–122 113

TABLE 1 Latest clinical trials using chemotherapy and radiotherapy for pediatric patients with atypical teratoid/rhabdoid tumors

Reference Time Age (years)
M+,
n Surgery Chemotherapy Radiotherapy Outcome Conclusion

Reddy,
20203

2008–2017 <3 (n = 54)
≥3 (n = 11)

24 GTR (n = 25)
NTR (n = 11)
Subtotal, partial,

or biopsy
(n = 29)

ACNS0333
chemotherapy
regimen (n = 65)

Focal radiation
(n = 28)

CSI (n = 6)

4-year EFS 37%
4-year OS 43%

ACNS0333
regimen
improved
survival
compared with
historical
therapies for
AT/RTs

Yamasaki,
201921

2005–2016 <3 (n = 31)
≥3 (n = 7)

23 GTR (n = 9)
Biopsy (n = 6)

Non-anthracycline-
based regimen
(n = 18)

Anthracycline-based
regimen (n = 16)

HDC (n = 19)

CSI plus local
(n = 12)

Local (n = 8)
whole brain plus

local (n = 1)

2-year OS
66.6% ± 8.3%

2-year PFS
45.9% ± 8.7%

5-year OS
44.2% ± 9.9%

5-year PFS
34.2% ± 8.9%

Multimodal
therapy
improved
outcomes
mainly in M0
patients

CSI did not
improve the
prognosis

Park,
202122

2005–2016 <3 (n = 43) 16 GTR (n = 24)
Subtotal resection

(n = 18)
Biopsy (n = 1)

KSPNO-S052/-S082
(n = 18)

KSPNO-S1101
(n = 24)

Early adjuvant
local RT
(n = 14)

Salvage local RT
at relapse
/progression
(n = 13)

CSI at 3 years old
(n = 2)

KSPNO-S052/-
S082: 3-year
PFS 0%

KSPNO-S1101:
3-year PFS
47.4%

Early adjuvant RT
and HDC
improve
outcomes of
AT/RTs

Upadhyaya,
202173

SJYC07:
2007–
2017

SJMB03:
2003–
2013

<3 (n = 52)
≥3 (n = 22)

24 Maximal safe
surgical
resection
(n = 74)

SJYC07-IR (n = 34)
SJYC07-HR (n = 18)

SJMB03-AR
(23.4 Gy CSI)
(n = 11)

SJMB03-HR
(36–39.6 Gy
CSI) (n = 11)

SJYC07-IR:
5-year PFS
31.4% ± 9.2%;
OS 43.9% ±

9.5%
SJYC07-HR:

5-year PFS and
OS 0%

SJMB03-AR:
5-year PFS
72.7% ±

12.7%; OS
81.8% ± 11%

SJMB03-HR:
5-year PFS and
OS 18.2% ±

9.5%

Post-operative
CSI and
adjuvant
chemotherapy
improved
outcomes in
children with
non-metastatic
AT/RTs

Mousa,
202174

1996–2013 <3 (n = 30)
≥3 (n = 13)

17 GTR (n = 14)
Subtotal resection

(n = 23)
Biopsy (n = 6)

Malignant rhabdoid
tumor protocol
(n = 23)

Rhabdomyosarcoma
protocol (n = 3)

Baby brain protocol
(n = 1)

VAC protocol (n = 1)
VAIA pcrotocol

(n = 1)

CSI then focal
boost (n = 10)

Focal irradiation
(n = 7)

Palliative
irradiation
(n = 1)

Median OS time:
16.9 months

2-year OS
41.9% ± 9.6%

5-year OS
27.9% ± 9.2%

Postoperative RT
and aggressive
trimodal
therapy are
associated with
improvement in
median survival

Abbreviations: AT/RTs, atypical teratoid/rhabdoid tumors; SJYC07, St. Jude Young Children 07; SJMB03, St. Jude Medulloblastoma 03; IR, intermediate
risk; AR, average risk; HR, high risk; GTR, gross total resection; NTR, near-total resection; CSI, craniospinal irradiation; EFS, event-free survival; OS,
overall survival; PFS, progression-free survival; HDC, high dose chemotherapy; KSPNO: Korean Society for Pediatric Neuro-Oncology; VAC, vincristine,
actinomycin-D, and cyclophosphamide; VAIA, vincristine, adriamycin, ifosfamide, actinomycin-D; RT, radiotherapy.
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deletion of SMARCA4 in cerebellar granule cell pre-
cursors led to severe proliferation deficits in those cells,
along with a hypoplastic cerebellum. SMARCA4 has simi-
lar pro-proliferative functions in the chromatin remodeling
complexes of embryonic stem cells.30 The mechanisms
underlying the dramatic cell proliferation and differenti-
ation consequences related to the loss of SMARCB1 or
SMARCA4 in SWI/SNF complexes might involve histone
modifications.

Epigenetic dysregulation: Histone modification

Global alterations in covalent histone-tail modifications
(e.g., acetylation, methylation, and phosphorylation) are
frequently observed in cancer, along with aberrant expres-
sion patterns of enzymes that mediate these reactions.
SWI/SNF complexes can interact with p300 to modulate
histone H3 lysine 27 acetylation (H3K27ac), a chromatin
marker associated with active chromatin organization and
gene transcription; therefore, the loss of SMARCB1 leads
to reduced acetylation of H3K27.25 In AT/RT cell lines,
Wang et al.25 demonstrated that H3K27ac is decreased
around specific enhancers that are necessary to control
the expression patterns of genes linked to developmental
processes. Additionally, the activities of polycomb repres-
sive complex 2 (PRC2) and SWI/SNF are reportedly bal-
anced by distinct modifications of H3K27.23 PRC2 is the
only mammalian enzyme known to catalyze the methyla-
tion of H3K27; it mainly functions through the enhancer
of zeste homolog 2 (EZH2) methylase subunit.31 Among
the methylation products of PRC2, H3K27 trimethylation
(H3K27me3) tends to overlap with the absence of H3K27ac
in AT/RTs.32 Furthermore, ChIP-seq analysis revealed co-
localization of SMARCA4 and EZH2, which indicates
that reduced SMARCA4 activity will lead to increased
H3K27me3 and loss of activity among genes that depend on
EZH2.5

Epigenetic dysregulation: DNA methylation

The 2021 World Health Organization Classification of CNS
Tumors introduced molecular diagnostic criteria into the
definitions of AT/RTs, in response to the extensive evi-
dence that specific assortments of molecular alterations
have prognostic value and can be used to define dis-
tinct tumor types. In 2016, Torchia et al.33 analyzed pri-
mary AT/RT tissues and cell lines to characterize the
genomic and epigenomic landscapes of AT/RTs. Genome-
wide methylation profiling and RNA sequencing data in
subsequent studies have revealed the existence of three
molecular subtypes: Notch/sonic hedgehog (ATRT-SHH),
tyrosinase enzyme (ATRT-TYR), and MYC oncogene
(ATRT-MYC).33,34

Ho et al.35 reanalyzed published methylation array profiles
and provided an overview of the molecular characteristics

of each AT/RT subtype. The ATRT-SHH subtype (Group 1
in the work by Torchia et al.33) overexpresses components
of the Notch and sonic hedgehog pathways. Gene set
enrichment analyses revealed that ATRT-SHH is mainly
a neuronally differentiated subtype. DNA methylation
analyses suggested that the ATRT-SHH subtype could
be further stratified according to a mainly supratento-
rial location (ATRT-SHH-1) or a mainly infratentorial
(ATRT-SHH-2) location; tumors in both locations express
marker genes from the Notch and SHH pathways. The
ATRT-TYR subtype overexpressed tyrosinase, which is
essential for neural tube development.36,37 Gene set enrich-
ment analysis confirmed that the melanosomal pathway
and tyrosine metabolism are enriched in the ATRT-TYR
subtype. DNA methylation analyses demonstrated that
cribriform neuroectodermal tumors exhibited features
similar to ATRT-TYR, suggesting a possible common
origin for these two distinct diseases.38 The ATRT-MYC
subtype exhibits excessive activation of the MYC pathway.
The median age is significantly higher among patients
with ATRT-MYC than among patients with the other
subtypes of AT/RTs. Besides, most adult AT/RTs found
to belong to the ATRT-MYC subgroup and further clin-
ical and molecular heterogeneity in ATRT-MYC may be
revealed.39,40 Using both in vitro and in vivo data, Alimova
et al.41 showed that the c-MYC oncogene is a critical
regulator of malignant behavior in SMARCB1-deficient
AT/RTs. A recent study demonstrated that ATRT-MYC
is susceptible to glutamine metabolic inhibition with
6-diazo-5-oxo-norleucine (DON) therapy; this approach
inhibits glutamine-dependent synthesis of glutathione and
synergizes with carboplatin to extend survival in ortho-
topic mouse models with ATRT-MYC.42 The ATRT-SHH
subtype reportedly exhibits minimal overlap of enriched
gene sets with ATRT-TYR and ATRT-MYC subtypes,
whereas there is some overlap between ATRT-TYR and
ATRT-MYC (particularly among immune response genes).
Additional DNA methylation profile and transcriptomics
analysis have indicated that AT/RTs with SMARCA4 inac-
tivation form a subtype that is distinct from the above three
subtypes.6

Other signaling pathways

Nuclear export signaling

As a critical mechanism in both tumor and normal tis-
sues, macromolecule transport between the cytoplasm and
nucleus offers a novel perspective for AT/RT treatment.
The nuclear export of proteins that involves interactions
of nuclear export signals with XPO1 is well-known and
widely used in targeted therapy research.43 XPO1 medi-
ates cell proliferation through the mislocalization of tumor
suppressors and stabilization of nuclear and chromosomal
structures in tumor cells. Investigations of XPO1 inhibitors
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have focused on a wide range of cancers, from glioblastoma
to pediatric solid tumors.44,45

Pathak et al.46 found an unusual cytoplasmic distribution
of C-terminally truncated SMARCB1 in AT/RTs. Subse-
quently, they generated green fluorescent protein fusions
of SMARCB1 truncating mutation along with a p.L266A
mutation, which has been shown to disrupt the interac-
tion of SMARCB1 nuclear export signals with XPO1.
While SMARCB1 with the truncating mutation was local-
ized to the cytoplasm, the double mutant version of
SMARCB1 remained in the nucleus; this result indicated
that nuclear export signals are required for the cytoplasmic
localization of SMARCB1.46,47 Furthermore, morphologi-
cal observations and senescence-associated β-galactosidase
assays showed that cells with nuclear SMARCB1 were
able to become senescent, while cells with cytoplasmic
SMARCB1 were not.46 Thus, selective nuclear export sig-
nal inhibitors may be useful as targeted therapy for AT/RTs
through their ability to prevent cytoplasmic localization of
SMARCB1.

Human endogenous retrovirus K

HML-2 is a subtype of human endogenous retrovirus K, a
repetitive element dispersed throughout the human genome
that encodes several intact viral proteins with roles in stem
cell maintenance and tumorigenesis.48 After SMARCB1
knockdown in neural stem cells, Doucet-O’Hare et al.49

found changes in HML-2 env expression in both intra-
cellular and extracellular fractions in AT/RT cell lines;
such changes were also present in most AT/RT patient
tissues. They also found that SMARCB1 binds a loca-
tion adjacent to the HML-2 promoter; the restoration of
SMARCB1 expression in AT/RT cell lines led to cor-
responding downregulation of HML-2 expression. Fur-
thermore, targeted downregulation of HML-2 transcrip-
tion by CRISPR-dCas9-binding repressor proteins led to
cellular dispersion, reduced proliferation, and cell death.
Finally, HML-2 knockdown led to significant downregu-
lation of Ras expression, suggesting that HML-2 regu-
lates MAPK/ERK signaling in AT/RT cells.49 These find-
ings have established a clear connection between AT/RT
pathogenesis and the regulation of endogenous retrovi-
ral elements; HML-2 offers another promising therapeutic
target.

MOLECULAR TARGETED THERAPIES
OF AT/RTS

For many decades, there was minimal progress regard-
ing targeted therapies for AT/RTs; however, clinical trials
involving AT/RT patients have shown significant advances
in the past 5 years.

Mechanisms of targeted therapies

Chromatin remodeling and histone modification

As mentioned in a previous section, SWI/SNF-mediated
histone modifications are critical in AT/RT pathogenesis.50

Specifically, the acetylation statuses of downstream his-
tones are controlled by histone acetyltransferases and his-
tone deacetylases (HDACs). Histone acetylation presents
effective targets for AT/RTs. Kerl et al.51 reported that the
HDAC inhibitor suberoylanilide hydroxamic acid (SAHA
or vorinostat) functioned in a synergistic manner with
fenretinide, tamoxifen, and doxorubicin; these effects
were confirmed in proliferation assays, apoptosis detection
assays, cell cycle analysis, and RNA expression analysis.
Further assessments of SAHA in xenograft models revealed
that it was an efficient radiosensitizer. Two phase 1 tri-
als using HDAC inhibitor to treat patients with refractory
tumors has been completed (Table 2, NCT00217412 and
NCt01076530). Other HDAC inhibitors (e.g., panobinos-
tat [LBH589] and resminostat) also have shown favorable
pharmacokinetic and pharmacodynamic properties, which
might be suitable for treatments in younger children.52,53

For example, Muscat et al.54 observed terminal differen-
tiation and reduction of the self-renewal ability of malig-
nant RT cells during low-dose panobinostat treatment; this
finding was the foundation for a phase 2 trial that is cur-
rently recruiting both malignant RT and AT/RT patients
(Table 3, NCT04897880). The antagonistic association
between SWI/SNF and the PRC2 has an important role
in AT/RT pathogenesis, through the regulation of down-
stream EZH2 and H3K27.23 Gene enrichment score analy-
sis showed that a set of H3K27 and EZH2 target genes orig-
inated from embryonic stem cells were negatively enriched
in RTs, compared with normal brain tissue.55 During in
vitro analysis, Unland et al.56 employed an antagonist for
EZH2, 3-deazaneplanocin A (DZNep), alone and in com-
bination with other anticancer drugs (e.g., doxorubicin)
or epigenetically active compounds such as the methyla-
tion inhibitor 5-AZA-2’-deoxycytidine (5-Aza-CdR) or the
HDAC inhibitor SAHA. Proliferation assays in RT cell
lines demonstrated that DZNep functioned in a synergistic
manner with etoposide, 5-Aza-CdR, and SAHA in terms of
antiproliferative function. In a xenograft model, treatment
of EZH2-mutant xenografts with tazemetostat (EPZ-6438)
caused dose-dependent inhibition of tumor growth, includ-
ing complete and sustained tumor regression with a corre-
sponding reduction in H3K27me3 levels in both tumors and
normal tissues.57 An EZH2 inhibitor was beneficial in the
treatment of RT xenograft models. This inspired the follow-
ing clinical experiments using EZH2 inhibitors. In a phase
1 trial that involved refractory non-Hodgkin lymphoma
and advanced solid tumor patients, a complete response
was achieved in the first RT patient enrolled.58 A Phase 2
trial is also ongoing (NCT03213665). One clinical trial of
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TABLE 2 Closed clinical trials of targeted therapy involving patients with atypical teratoid/rhabdoid tumors

Title and trial ID Status Phase
Target drug
involved

Molecular
mechanism Starting date

SCH 66336 in treating children with recurrent or
progressive brain tumors (NCT00015899)75

Completed Phase 1 Lonafarnib Farnesyltransferase
inhibitor

Jan 1, 2002

Radiolabeled monoclonal antibody therapy in
treating patients with refractory, recurrent, or
advanced CNS or leptomeningeal cancer
(NCT00089245)

Active, not
recruiting

Phase 1 131I-omburtamab Anti-GD2 July 1, 2004

Lenalidomide in treating young patients with
recurrent, progressive, or refractory CNS tumors
(NCT00100880)76

Completed Phase 1 Lenalidomide Immune modulation Nov 1, 2004

Vorinostat with or without isotretinoin in treating
young patients with recurrent or refractory solid
tumors, lymphoma, or leukemia (NCT00217412)

Completed Phase 1 Vorinostat Histone deacetylase
inhibitor

Aug 1, 2005

Talabostat combined with temozolomide or
carboplatin in treating young patients with
relapsed or refractory brain tumors or other solid
tumors (NCT00303940)77

Completed Phase 1 Talabostat
mesylate

Dipeptidyl peptidase
inhibitor

Dec 1, 2005

AZD2171 in treating young patients with recurrent,
progressive, or refractory primary CNS tumors
(NCT00326664)78

Completed Phase 1 Cediranib maleate VEGF receptor
tyrosine
kinases inhibitor

Mar 1, 2006

MK0752 in treating young patients with recurrent or
refractory CNS cancer (NCT00572182)79

Terminated Phase 1 MK-0752 γ-Secretase inhibitor Jul 1, 2008

Dasatinib, ifosfamide, carboplatin, and etoposide in
treating young patients with metastatic or
recurrent malignant solid tumors (NCT00788125)

Active, not
recruiting

Phase 1/2 Dasatinib Growth factor
receptors inhibitor

Sep 3, 2008

Veliparib (ABT-888) and temozolomide in treating
young patients with recurrent or refractory CNS
tumors (NCT00946335)80

Completed Phase 1 Veliparib Poly(ADP-ribose)
polymerase
inhibitor

Jul 1, 2009

Vorinostat and temozolomide in treating young
patients with relapsed or refractory primary brain
tumors or spinal cord tumors (NCT01076530)81

Completed Phase 1 Vorinostat Histone deacetylase
inhibitor

Feb 1, 2010

Gamma-Secretase inhibitor RO4929097 in treating
young patients with relapsed or refractory solid
tumors, CNS tumors, lymphoma, or T-Cell
leukemia (NCT01088763)

Terminated Phase 1 RO4929097 γ-Secretase inhibitor Mar 1, 2010

Aflac ST0901 CHOANOME-Sirolimus in solid
tumors (NCT01331135)82

Completed Phase 1 Sirolimus mTOR inhibitor Apr 1, 2011

p28 in treating younger patients with recurrent or
progressive central nervous system tumors
(NCT01975116)

Completed Phase 1 Azurin-derived
cell-penetrating
peptide p28

Peptide inhibitor of
p53 ubiquitination

Nov 3, 2013

Simvastatin with topotecan and cyclophosphamide
in relapsed and/or refractory pediatric solid and
CNS tumors (AflacST1402) (NCT02390843)

Completed Phase 1 Simvastatin Hydroxy-
methylglutaryl
coenzyme A
reductase inhibitor

Mar 18, 2015

A Phase 1 study of the EZH2 inhibitor tazemetostat
in pediatric subjects with relapsed or refractory
INI1-negative tumors or synovial sarcoma
(NCT02601937)

Completed Phase 1 Tazemetostat EZH2 inhibitor Nov 11, 2015

Ribociclib and everolimus in treating children with
recurrent or refractory malignant brain tumors
(NCT03387020)83

Completed Phase 1 Ribociclib
Everolimus

CDK4/6 inhibitor
mTOR inhibitor

Jan 13, 2018

Abbreviations: CDK, cyclin dependent kinase; CNS, central nervous system; EZH2, enhancer of zeste homolog 2; mTOR, mechanistic tar-
get of rapamycin kinase; VEGF, vascular endothelial growth factor.
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TABLE 3 Current open targeted therapy clinical trials involving patients with atypical teratoid/rhabdoid tumors

Title and trial ID Phase
Target drug
involved Molecular mechanism Starting date

Phase 2 study of alisertib therapy for rhabdoid tumors
(NCT02114229)

Phase 2 Alisertib Aurora A kinase inhibitor May 14, 2014

Sirolimus in combination with metronomic
chemotherapy in children with recurrent and/or
refractory solid and CNS tumors (NCT02574728)

Phase 2 Sirolimus mTOR inhibitor Jun 1, 2015

Tazemetostat in treating patients with relapsed or
refractory advanced solid tumors, non-Hodgkin
lymphoma, or histiocytic disorders with EZH2,
SMARCB1, or SMARCA4 gene mutations
(A Pediatric MATCH Treatment Trial)
(NCT03213665)

Phase 2 Tazemetostat EZH2 inhibitor Jul 11, 2017

SJDAWN: St. Jude Children’s Research Hospital Phase
1 study evaluating molecularly-driven doublet
therapies for children and young adults with recurrent
brain tumors (NCT03434262)

Phase 1 Ribociclib
Sonidegib
Trametinib

CDK4/6 inhibitor
Hedgehog signaling inhibitor
MEK inhibitor

Mar 5, 2018

A study of panobinostat in pediatric patients with solid
tumors including MRT/ATRT (NCT04897880)

Phase 2 Panobinostat Histone deacetylase inhibitor Jan 9, 2019

Dose escalation study of CLR 131 in children,
adolescents, and young adults with relapsed or
refractory malignant tumors including but not limited
to neuroblastoma, rhabdomyosarcoma, Ewings
sarcoma, and osteosarcoma (NCT03478462)

Phase 1 CLR 131 Protein kinase B inhibitor Apr 30, 2019

Study of nivolumab and ipilimumab in children and
young adults with INI1-negative cancers
(NCT04416568)

Phase 2 Nivolumab
Ipilimumab

Anti-PD-1
Anti-CTLA-4

Aug 14, 2020

Tiragolumab and atezolizumab for the treatment of
relapsed or refractory SMARCB1 or SMARCA4
deficient tumors (NCT05286801)

Phase 2 Atezolizumab
Tiragolumab

Anti-PD-L1
Anti-TIGIT

Jun 16, 2022

Abbreviations: ATRT, atypical teratoid rhabdoid tumor; CDK, cyclin dependent kinase; CNS, central nervous system; EZH2, enhancer of zeste homolog 2;
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tazemetostat in children with AT/RTs and other INI1-
negative tumors has been completed, although no results
are yet available (NCT02601937).

Proteasome inhibitors

Proteasome inhibitors are capable of either directly induc-
ing cancer cell death or sensitizing cancer cells to apop-
tosis. After high-throughput drug screening with 164 anti-
cancer agents, Nakano et al.59 found that the proteasome
inhibitor bortezomib strongly inhibited AT/RT cell prolif-
eration. Similarly, Thakur et al.60 tested the cytotoxic effect
of another proteasome inhibitor, carfilzomib, using a panel
of pediatric solid tumor cell lines that included AT/RTs.
Morin et al. 61 showed that marizomib strongly inhibited
AT/RT cell growth both in vitro and in vivo; it has direct
translational potential for patients with AT/RTs. Because
the findings have been derived from sequencing analyses,
the cytotoxic mechanisms that underlie the effects of pro-
teasome inhibitors in AT/RT cells remain unclear.

Cell cycle regulation and associated signaling pathways

Cyclin D1 is a well-known cell cycle regulator that is
reportedly overexpressed in AT/RT cell lines.62,63 Although
this overexpression was confirmed before the initial recruit-
ment of AT/RT in a clinical trial of the CDK4/6 inhibitor
ribociclib (NCT03387020), the link between cyclin D1
expression and SMARCB1 loss was revealed very recently.
Xue et al.64 demonstrated that cyclin D1 deficiency in
AT/RTs is caused by SMARCB1 loss partly through the
upregulation of MIR17HG, which produces mature miR-
NAs that target cyclin D1; they also found that this cyclin
D1 deficiency in AT/RT cell lines results in considerable
sensitivity to the CDK4/6 inhibitor palbociclib.

As mentioned in a previous section, tyrosine kinases are
overexpressed in both AT/RT cell lines and primary tumor
tissues; of these, the cell cycle-associated serine/threonine
kinase aurora A is highly expressed.65 Similar to HDAC
inhibitors, aurora A inhibitors enhance radiosensitivity. The
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aurora kinase inhibitor MLN8237 (alisertib) is currently in
phase 1/2 clinical trials for various pediatric tumors; it has
shown remarkable results. In one trial, four patients with
relapsed or refractory AT/RTs were enrolled; all displayed
disease stabilization with or without tumor regression.66

Another clinical trial that combines alisertib with conven-
tional therapy in newly diagnosed patients with RTs is in
the recruitment stage (Table 3, NCT02114229).

Subtype-specific targeted therapy

Although exclusively subtype-specific drugs are not yet
available, subtype susceptibilities to targeted therapy have
been demonstrated. For example, platelet-derived growth
factor receptor B was identified as a target in Group 2
cell lines (i.e., BT12, BT16, CHLA266, and CHLA06) in
the work by Torchia et al.33; these cell lines all exhib-
ited greater sensitivity to the platelet-derived growth factor
receptor B inhibitors nilotinib and dasatinib than did Group
1 (ATRT-SHH) cell lines.33 Transcriptome analyses have
revealed other potential drug targets in AT/RTs that have
not yet been tested in clinical trials. For example, fibrob-
last growth factor receptor 2 is specifically upregulated
in ATRT-TYR, and AT/RTs are susceptible to treatment
with fibroblast growth factor receptor inhibition, along
with platelet-derived growth factor receptor inhibition.67,68

Notably, Torchia et al.33 reported that cell lines derived
from ATRT-SHH tumors were highly sensitive to EZH2
inhibitors. In contrast to the findings in other embryonal
tumors (e.g., medulloblastoma), aberrant expression pat-
terns of SHH pathway members have not been found
in ATRT-SHH. All changes in SHH pathway marker
genes in ATRT-SHH are presumably directly or indirectly
caused by the loss of SMARCB1.69 Targeted drugs for
SHH pathway inhibitors have diverse therapeutic indica-
tions and have demonstrated efficacy for medulloblastoma-
SHH; such drugs should be investigated in the treatment
of AT/RTs.70 Tran et al.71 reported that, compared with
ATRT-SHH cell lines, ATRT-MYC cell lines were more
sensitive to the proteasome inhibitor bortezomib. They also
found that survival was prolonged in ATRT-MYC patient-
derived xenograft mice that received bortezomib, suggest-
ing that bortezomib may function as targeted therapy for
ATRT-MYC. However, SMARCA4 has been shown to
antagonize MYC activity.72 Taken together, the results of
laboratory studies highlight the potential applications of tar-
geted therapies in each molecular subtype.

DISCUSSION

Advances in conventional chemotherapies and stratified
treatment protocols have improved the 5-year OS of
AT/RTs from 20% to nearly 50%. Nevertheless, most
patients with AT/RTs are <3 years of age and have lim-
ited treatment options, as well as substantial toxic effects

from current regimens. Thus, more effective and less harm-
ful targeted therapies are needed.

Recent studies have shown the potential for treatment by
controlling epigenetic dysregulation in AT/RTs. Clinical
trials are ongoing for molecular targeted drugs that are
designed to function either through the reactivation of
enhancers that depend on SWI/SNF complexes or the inhi-
bition of non-SWI/SNF-complex-dependent enhancers; a
small amount of AT/RT patients are enrolled in such tri-
als. The good news is that despite the enrollment of AT/RT
patients in these trials being scarce, the targeted drugs
involved have been designed increasingly specifically for
tumorigenesis of AT/RTs over years. Comparing the earlier
trials (Table 2) and the ongoing trials (Table 3), it is clear
that molecular targets in clinical trials have shifted from
usual carcinogenic pathways to AT/RTs-specific patho-
genetic derangements.

However, most clinical trials of targeted drugs mentioned in
this review are based on a larger sample database of patients
with RTs or other embryonal CNS tumors; this status high-
lights the rarity and vulnerability of patients with AT/RTs.
Firstly, because of the aggressive malignancy of AT/RTs,
patients are barely able to complete the treatment process.
Thus, it is difficult to distinguish treatment effects from
the vulnerability of advanced patients. Second, because of
the rarity of the disease, clinical trials usually lack control.
This is another stumbling block to determine the treatment
effect. Finally, the toxicity of targeted treatment, though
milder than conventional therapies, may exaggerate in these
children.

Novel diagnostic criteria indicate the presence of at least
three molecular subtypes of AT/RTs: ATRT-TYR, ATRT-
SHH, and ATRT-MYC—each has specific or overlap-
ping targeting pathways. The ATRT-SMARCA4 subtype,
for which there is no consensus, has great potential for
advances in targeted therapeutic research. Notably, AT/RT
stratification facilitates targeted drug selection, although it
limits patient enrollment in clinical trials, thus prolonging
an already time-consuming process. Gene therapy models
and national or multicenter AT/RT registries may enable the
management of these difficult situations.

Studies of the epigenetic dysregulation mechanism in
AT/RT pathogenesis have substantially contributed to tar-
geted therapies over the past decade. Based on the ongoing
clinical trials, targeted drugs can provide insights regard-
ing novel multimodal treatment protocols for intractable
malignancies.
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