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Abstract: Pancreatic stellate cells (PSCs) are important pancreatic fibrogenic cells that interact with
pancreatic cancer cells to promote the progression of pancreatic ductal adenocarcinoma (PDAC). In
the tumor microenvironment (TME), several factors such as cytokines and nucleotides contribute to
this interplay. Our aim was to investigate whether there is an interaction between IL-6 and nucleotide
signaling, in particular, that mediated by the ATP-sensing P2X7 receptor (P2X7R). Using human cell
lines of PSCs and cancer cells, as well as primary PSCs from mice, we show that ATP is released
from both PSCs and cancer cells in response to mechanical and metabolic cues that may occur in the
TME, and thus activate the P2X7R. Functional studies using P2X7R agonists and inhibitors show that
the receptor is involved in PSC proliferation, collagen secretion and IL-6 secretion and it promotes
cancer cell migration in a human PSC-cancer cell co-culture. Moreover, conditioned media from
P2X7R-stimulated PSCs activated the JAK/STAT3 signaling pathway in cancer cells. The monoclonal
antibody inhibiting the IL-6 receptor, Tocilizumab, inhibited this signaling. In conclusion, we show
an important mechanism between PSC-cancer cell interaction involving ATP and IL-6, activating
P2X7 and IL-6 receptors, respectively, both potential therapeutic targets in PDAC.

Keywords: pancreatic cancer; PDAC; pancreatic stellate cells; IL-6; Tocilizumab; P2X7R; STAT3;
fibrosis; eATP

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal
cancers and it is increasing in incidence [1,2]. The 5-year relative survival rate is lower than
10%, depending on tumor stage at the time of diagnosis. The poor prognosis is due to the
lack of symptoms in early stages, and consequent late diagnosis, as well as the limited effect
of present therapies and metastatic spread. PDAC presents itself as a solid tumor with
a complex tumor microenvironment (TME) that contributes to immunosuppression and
poor efficiency of chemo- and radiotherapy [3]. The TME is made up of cellular and non-
cellular components, including cancer-associated fibroblasts, cancer infiltrating immune
cells, extracellular matrix, various cytokines, and nucleotides, which all can interact with
cancer cells and support tumor growth, immunosuppression, and metastasis [4,5].

Pancreatic stellate cells (PSCs) are the main fibroblast-like cell type present in the
TME. In the healthy pancreas, PSCs are quiescent and show vitamin-A containing lipid
droplets [6]. Upon transient activation, as in response to injury, inflammation and other
types of stress, PSCs are responsible for tissue repair. However, with continuous activation,
they contribute to pathogenic processes, such as carcinogenesis [7]. In PDAC, there is
a two-way crosstalk between PSCs and pancreatic cancer cells [8,9]. Firstly, cancer cells
activate PSCs by paracrine stimulation, mediated by platelet-derived growth factor (PDGF),
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fibroblast growth factor (FGF2), and transforming growth factor (TGF-β1) [10], leading
to an increase in PSC migration, proliferation and collagen release [11]. Secondly, once
activated, PSCs, in turn, release growth factors and cytokines that support cancer growth
and cancer cell migration [12]. For example, PSCs release a cytokine, Interleukin 6 (IL-6),
which has been proposed as a key factor in the PSC-PDAC interplay [13,14]. IL-6 binds to
IL-6 receptors (IL-6R) to promote signal transduction involving the Janus kinase/signal
transducers and activators of the transcription 3 (JAK-STAT3) pathway in a number of
cells [15]. Recently, it was shown that IL-6 secreted by human and murine PSCs stimulated
STAT3-dependent cancer cell survival, migration, and metastasis [13,14,16]. In addition,
serum levels of IL-6 are higher in mouse models of pancreatic cancer (KPC) and PDAC
patients [17]. However, which factors elevate IL-6 levels?

Some of the other components present in the microenvironment of several tumors are
extracellular nucleotides/-sides such as pro-inflammatory extracellular ATP (eATP) and im-
munosuppressive adenosine [4,5,18,19]. This is most likely also the case for PDAC [4,20,21],
and since a number of pancreatic cells (cancer cells, PSCs, and immune cells) express
various P2 and adenosine receptors, extensive purinergic signaling can be found within
the TME [4]. One of the relevant purinergic receptors is the P2X7 receptor (P2X7R), as it
is involved in several patho-/physiological processes, such as pancreatic cancer [22,23],
inflammation [24] and pain [25]. The P2X7R belongs to the P2X ion channel/receptor
family and is encoded by a highly polymorphic gene [26–29] with some single nucleotide
polymorphisms correlating with human diseases (chronic lymphocytic leukemia, osteo-
porosis and pain) [27,30,31]. Moreover, there are also different splice isoforms of the P2X7R,
A-J in humans and A and K in rodents, where A are regarded as the common full-length
variants [26,32]. The P2X7R is activated by eATP at relatively high concentrations (mM),
leading to the formation of a cytolytic pore [5]. However, lower concentrations of ATP (µM)
can also activate the P2X7R and have in turn shown positive effects on, e.g., cell prolifer-
ation and migration [22,23]. The underlying mechanism(s) in these seemingly opposing
effects of the P2X7R remains unsettled [24,33]. Our previous studies have implicated the
P2X7R as an important factor in the pathophysiology of PDAC. The P2X7R is expressed in
human pancreatic cancer cells and mouse PSCs and shows this dual effect in in vitro mod-
els [22,34,35]. In an orthotropic PDAC cell model, targeting of the P2X7R decreased tumor
fibrosis and tumor activity, highlighting the importance of purinergic signaling/P2X7R
interplay in the TME in vivo [23]. Most interestingly, co-culture of mouse PSCs with
human cancer cells indicated that PSCs released a yet unidentified chemoattractant in a
P2X7R-dependent manner [23].

Our hypothesis is that purinergic–cytokine signaling, in particular P2X7R–IL-6–STAT3
signaling, could be important in the interplay between PSCs and cancer cells in the TME
of PDAC models. The aim of the present study was first to show whether the P2X7R is
expressed and functional in human PSCs and compare it to the receptor in murine PSCs.
The second aim was to elucidate whether IL-6, the well-established cytokine in PDAC tumor
progression, could be our chemoattractant candidate released by PSCs and stimulating
pancreatic cancer cells. For this purpose, we used a human PSC (hPSC) line, RLT-PSC, and
primary murine PSCs (mPSCs) isolated from mice with either wild type P2X7R (P2X7R wt)
or loss-of-function P2X7R with a proline to leucine mutation in the C-terminal domain of
the receptor (P2X7R P451L). This study shows that activation of the P2X7R in PSCs leads
to IL-6 release into the TME and subsequent activation of STAT3 signaling in pancreatic
cancer cells. Potentially, inhibition of the P2X7 receptor may present a possible therapeutic
strategy to target both pancreatic cancer and stellate cells by preventing their crosstalk and
tumor progression.

2. Materials and Methods
2.1. Cell Culture and Chemicals

For the purpose of this study, we used both primary mouse PSCs (mPSCs) and a
human pancreatic stellate cell line, RLT-PSC (hPSC) [36]. The mPSCs were taken from
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male mice with either wild type P2X7R (P2X7R wt) or loss-of-function P2X7R with a
proline to leucine mutation at amino acid 451 (P2X7R P451L) on BALB/c and C57BL/6
backgrounds, respectively (Taconic Biosciences, Ejby, DK). Isolation of mPSCs was carried
out as described previously [34]. All experiments were performed on euthanized animals,
which were handled in accordance with the EU directive 2010/63/EU on protection of
animals used for scientific purposes and experimental protocols and were approved by the
Danish Animal Experiments Inspectorate (license no. 2011/561–56). The human pancreatic
ductal adenocarcinoma cell line (PANC-1) was purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA, CRL-1469). Cells were grown in standard high
glucose (25 mM) Dulbecco’s modified Eagle’s medium (DMEM GlutaMAX supplement,
Thermo Fisher Scientific, Tåstrup, DK, 31966-047) supplemented with 10% fetal bovine
serum (FBS) and incubated at 37 ◦C with 5% CO2. P2X7R function was studied using
the specific allosteric inhibitor AZ10606120 (Tocris, Bristol, UK, 3332/10), the competitive
antagonist A438079 (Tocris, 2972) and the agonist 2′(3′)-O-(4-Benzoylbenzoyl) adenosine
5′-triphosphate triethylammonium salt, BzATP (Sigma, Søborg, DK, 112898-15-4).

2.2. Western Blots

Protein lysate was prepared from mouse and human PSCs for P2X7R detection. Sam-
ples were boiled at 98 ◦C for 10 min in the presence of 50 mM dithiothreitol (DTT). Proteins
for STAT3 activation analysis were obtained using lysis buffer enriched with the protease-
phosphatase inhibitor kit (Thermo Fisher Scientific) and boiled for 3 min at 95 ◦C. Samples
were prepared with 50 mM DTT and heated for 5 min at 95 ◦C. Protein samples (30–40 µg)
were loaded on a polyacrylamide gel (NuPAGE 10% Bis-Tris 10-well, Thermo Fisher Sci-
enific), and then transferred to a PVDF membrane (Invitrogen, Thermo Fisher Scienific).
Membranes were blocked in TBS-T buffer + 5% skim milk for 1 h at room temperature and
incubated overnight at 4 ◦C with primary antibody against the P2X7R (APR-004, Alomone
Labs, Jerusalem, IL, 1:500, RRID: AB_2040068), Vinculin (#V9131, Sigma, 1:1000, RRID:
RRID:AB_477629), β-Actin (Sc-47778, Santa Cruz, Tilst, DK, 1:1000, RRID: AB_626632),
pSTAT3 (#9145, Cell Signaling, Herlev, DK, 1:1000, RRID: AB_2491009) or STAT3 (#9139,
Cell Signaling, 1:1000, RRID: AB_331757). Membranes were then incubated with secondary
HRP-conjugated antibodies (1:2000, EZ-ECL-Biological Industries, Fredensborg, DK) and
visualized with Fusion FX (Vilber Lourmat, Eberhardzell, DE).

2.3. Real Time PCR

mRNA from mouse and human PSCs was isolated with RNeasy Micro Kit (QIAGEN,
Copenhagen, DK) following the manufacturer’s instructions. For RT-PCR, 1 µg total RNA
was used for one-step RT-PCR (QIAGEN) using primers for P2X7R (Table 1).

Table 1. RT-PCR primers used in this study.

Species Target Primer Sequence (5′-3′) Size (bp)

Mouse P2X7R A long Fw: GGCACCGTCAAGTGGGTC 1594
Rev: AGCGCCAGGTGGCATAGC

P2X7R short Fw: TGCTTTCTGCAGGTCGGGGGT 221
Rev: TCTGGGGTCTTGGAACTTCTTGGCC

Human P2X7R A (I) Fw: CGGTTGTGTCCCGAGTATCC 284
Rev: CCTGGCAGGATGTTTCTCGT

P2X7R A (II) Fw: TATGAGACGAACAAAGTCACTCG 95
Rev: GCAAAGCAAACGTAGGAAAAGAT

Amplification parameters as follows: one cycle at 50 ◦C for 30 min and one cycle at
95 ◦C for 15 min followed by 37 cycles at 94 ◦C for 1 min, 58 ◦C for 1 min, 72 ◦C for 1 min,
and finally, one cycle at 72 ◦C for 10 min.
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2.4. Immunofluorescence

Proteins were visualized using immunofluorescence (IF). Cells were split
(20,000 cells/mL for hPSCs and 30,000 cells/mL for mPSCs) to coverslips in a 6-well
plate and allowed to attach overnight. Next, cells were fixed with paraformaldehyde (4%
in PBS) for 15 min, washed 3 × 5 min with PBS and then treated with 0.1 M TRIS-glycine
buffer at pH 7.4 for 15 min. Permeabilization of cells was carried out by washing 3 × 5 min
with 0.3% TritonX-100 in PBS and a blocking step of 40 min with PBS + 5% BSA was carried
out before the addition of the primary antibody (see Table 2) in PBS + 1% BSA overnight
at 4 ◦C. The following day, the slides were washed 3 × 5 min with PBS + 1% BSA before
incubation for 1 h with the secondary antibody (Table 2) in PBS + 1% BSA. The slides were
then washed 1 × 5 min with PBS before incubation with DAPI (D3571, Thermo Fisher
Scientific, RRID: AB_2307445) in PBS + 1% BSA for 15 min. Lastly, the slides were washed
3 × 5 min with PBS before mounting on Menzel-Gläzer microscope slides with a small
drop of Dako fluorescent mounting medium. Fluorescence was examined with 40 × 1.3
NA or 63 × 1.2 NA objectives in Leica TCS SP5 X confocal microscope (Leica Microsystems,
Heidelberg, DE). Images were analyzed in Leica software.

Table 2. Antibodies for IF.

Primary Antibody Catalog # RRID Dilution

α-SMA Ab5694 (Abcam) AB_2223021 1:400
Collagen I Ab34710 (Abcam) AB_731684 1:200

Desmin Ab32362 (Abcam) AB_731901 1:150
GFAP Ab7260 (Abcam) AB_305808 1:200

Vimentin Ab8978 (Abcam) AB_306907 1:200
P2X7 (C-terminal) Ab109246 (Abcam) AB_10858498 1:100

P2X7 (extracellular) APR-008 (Alomone) AB_2040065 1:100

Secondary antibody

Goat anti-rabbit Alexa 488 A11008 (Thermo Fisher) AB_143165 1:200
Goat anti-mouse Alexa 488 A11001 (Thermo Fisher) AB_2534069 1:200

2.5. Calcium Signals

PSCs were seeded in Wilco dishes and incubated with 5 µM Fura-2 AM (Invitrogen)
for 30 min in a physiological buffer without bicarbonate (–BIC) contained in mM: 140
NaCl, 1 MgCl2·6H2O, 1.5 CaCl2·2H2O, 0.4 KH2PO4, 1.6 K2HPO4·3H2O, 5 glucose and 10
HEPES, pH 7.4. Subsequently, cells were washed and equilibrated in a –BIC buffer and
experiments were conducted at 37 ◦C. PSCs were stimulated with BzATP and/or ATP and
for control with 1 µM ionomycin or digitonin. Fura-2-loaded cells were illuminated at
λex = 340 nm and λex = 380 nm (60 ms, 1 s intervals) using a TILL Polychrome monochro-
mator. Emission was collected at 500 nm by an image-intensifying, charge-coupled device
camera (Andor X3 897, Belfast, UK) and digitized by a FEI image processing system
(Thermo Fischer Scientific). The intracellular Ca2+ transients were depicted as the ratio of
Fura-2 fluorescence signals recorded at 340/380 nm.

2.6. Cell Proliferation

The proliferation rate of PSC types was first detected using the Cell Counting Kit-8
(CCK-8, Sigma) and later the Cell Proliferation ELISA, BrdU kit (Roche, Hørsholm, DK).
Cells (4000) were grown in a 96-well plate at 1% or 0% FBS for 24 h prior to 48 h stimu-
lation with agonist or inhibitor (given in chemicals). Cells were incubated with CCK-8
or with BrdU kit reagents (1.5 h for hPSCs and 4 h for mPSCs) according to the manufac-
turer’s instructions. Absorbance and chemiluminescence, respectively, were measured in a
FLUOstar Optima microplate reader (BMG Labtech, Ortenberg, DE, USA).
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2.7. Cytotoxicity and Cell Viability Assay

The cytotoxicity assay was performed with the In Vitro Toxicology Assay Kit, Lactate
Dehydrogenase based (Sigma) according to the manufacturer’s instructions. hPSCs (4000)
were grown in a 96-well plate for 24 h prior to 48 h stimulation with agonist or inhibitor in
0% FBS. Absorbance was measured in a FLUOstar Optima microplate reader. Cell viability
was measured using the flow cytometry and the Dead Cell Apoptosis Kit with Annexin V
(AV) Alexa Fluor 488 and Propidium Iodide (PI) (Molecular Probes, Invitrogen). hPSCs
(50,000–100,000) were plated and allowed to attach for 24 h prior to 48 h stimulation with
agonist or inhibitor in 0% FBS-media. After incubation, cells were harvested and stained for
15 min with annexin V Alexa Fluor 488 and PI. The staining was visualized on FlowSight
imaging flow cytometer (Merck-Millipore).

2.8. Collagen Detection

mPSC (BALB/c) and hPSCs (40,000) were grown in a 24-well plate for 24 h prior
to 24 h stimulation with agonist or inhibitor and 5 µM Aphidicolin (Sigma) in 0% FBS
media. Collagen was detected with the Sirius Red/Fast Green Collagen Staining kit
(Chondrex, Redmond, WA, USA). Absorbance was measured in a FLUOstar Optima
microplate reader and the extracellular collagen levels were calculated according to the
manufacturer’s instructions.

2.9. IL-6 Release

IL-6 released was measured in mPSCs and hPSCs using IL-6 ELISA Novex kit and
V-PLEX Human IL-6 Kit (MSD, Copenhagen, DK), respectively. A measure of 20,000 cells
were seeded in a 24-well plate. After 24 h, the media was discarded and the cells were
treated with agonists and/or inhibitors diluted in 0% FBS media. hPSCs were treated with
5 µM Aphidicolin to induce a cell-cycle arrest. Aliquots of the media were collected after
24 h and IL-6 was measured according to the manufacturer´s instructions.

2.10. Cell Migration and Co-Culture

PANC-1 cell migration was monitored using a Boyden-chamber assay. PANC-1
cells (8000) were plated in the upper chamber of the insert (uncoated, transparent PET
membrane, 8.0 µm pore size, Falcon, Sigma) with 5 µM Aphidicolin in 1% FBS medium.
In the lower chamber, culture medium with 1% FBS was added with agonist or inhibitor.
After 24 h, cells were fixed in cold methanol and stained with Crystal Violet. Bright field
images were taken with 10× objective in a Leica DMI6000B microscope. Cells were counted
using ImageJ (version 1.47, National Institute of Health, Bethesda, MD, USA).

For co-culture of PANC-1 and hPSCs, hPSCs (30,000) were plated in the lower com-
partment of the Boyden chamber in complete media and let to attach. After 24 h, the media
was replaced with 1% FBS media containing 5 µM Aphidicolin and either with agonist
or inhibitor. At the same time, PANC-1 cells (8000) were plated in 1% FBS media in the
upper chamber of the insert as above. After 24 h, migrated PANC-1 cells were fixed in cold
methanol for 10 min, stained with Crystal Violet, visualized and counted as above.

2.11. Conditioned Media

hPSCs (1000000) were seeded in complete media in small culture flasks. After 24 h,
the medium was replaced with 1% FBS medium supplemented with 5 µM Aphidicolin
and agonist or inhibitor. After 24 h, the conditioned media were collected. PANC-1 cells
(500000) were plated in a 6-well plate in complete media and allowed to attach. After
24 h, the PANC-1 medium was replaced with the conditioned media from the hPSCs
and incubated at 37 ◦C for 30 min. Proteins were extracted and phosphorylated STAT3
(pSTAT3), total STAT and β-actin were quantified with Western blot.
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2.12. IL-6R Neutralization with Tocilizumab

The conditioned media collected from hPSCs, as described above, was incubated 1 h at
37 ◦C with/without 10 ng/mL Tocilizumab (Roche). PANC-1 cells were seeded, and after
24 h, treated with 700 µL of 1% FBS medium ± 10 ng/mL Tocilizumab and incubated for
1 h at 37 ◦C. Conditioned media were added and cells were incubated for 30 min. Protein
extraction was followed by Western blot and pSTAT3/STAT3 quantification.

2.13. ATP Release Assay

ATP release was monitored using the ATP kit SL (BioThema, Handen, SE, USA, 11–
501). hPSCs (5000) or PANC-1 cells (10,000) were plated in a white 96-well plate with clear
plastic bottoms and allowed to attach for 24 h in complete media. After attachment, the
cells were washed twice with a physiological –BIC buffer (see above). Cells were allowed
to rest in 65 µL of –BIC at 37 ◦C, then 25 µL of D-luciferin/luciferase enzyme mix was
added very carefully to each well and luminescence was measured with FLUOstar Optima
luminometer (BMG Labtech, Ortenberg, DE, USA). After reaching a stable baseline for at
least 120 s, cells were stimulated mechanically or with a compound and ATP release was
monitored for about 10 min. Compounds (glucose, mannitol) were pipetted gently to avoid
mechanical disturbances. The addition of a –BIC buffer to the well served as a “mechanical
disturbance” control and the value was subtracted from the “stimulated” effect. Mechanical
stimulation was performed by injecting 50 µL of –BIC using the FLUOstar’s injection pump
(260 µL/s). For each experiment, an ATP standard curve was made using dilution of an
ATP stock (BioThema) in –BIC in the range of 0.65 nM to 6.5 µM. The number of cells were
determined using CCK-8 assay in parallel wells. To convert the relative luminescence units
(RLU) to concentrations of ATP, a power regression curve was fitted to the ATP standard
curve and then adjusted to the number of cells in the well. A change in ATP release (∆ATP)
was calculated as ATP (M/106 cells/mL) by subtracting the baseline from the peak value
after stimulation. For each value, the average of replicates was used.

2.14. Statistical Analysis

Non-normalized data were tested with one-way ANOVA with subsequent Bonferroni
correction. Normalized data were analyzed with one-sample t-tests, followed by correction
for multiple comparisons with the Holm–Bonferroni method, when more than two different
conditions were tested relative to the control. Comparisons between single treatments and
combinations were analyzed with two-tailed unpaired t-test.

3. Results
3.1. Human and Murine PSCs Express the P2X7 Receptor

The first objective was to find whether our model of hPSCs, RLT-PSCs, express the
P2X7R. The P2X7R expression was determined on mRNA and protein levels using RT-PCR
and Western blot analysis, respectively (Figure 1a,b). RT-PCR results show band sizes for
mPSC and hPSC consistent with the primers used (Table 1), while the Western blot analysis
highlights a marked band at 70 kDa, which corresponds to the full length P2X7R (isoform
A). The P2X7R was also detected with immunofluorescence both in hPSCs and mPSCs
(Figure 1c). We also tested for expression of other PSCs markers. Using immunofluores-
cence, we showed that both human and mouse PSCs express the PSC markers desmin,
vimentin, GFAP, and α-SMA (Figure 1c). The short-term activation of the receptor was
determined in Ca2+ imaging experiments. For this purpose, we used an ATP analogue,
BzATP, which activates the P2X7R and is about 10 times more potent than ATP in human
and mice [25]. Intracellular Ca2+ signals, monitored with Fura-2, were evoked with 10 and
100 µM BzATP in mPSCs, as well as in hPSCs (Figure 1d). In mPSCs, the average change in
the Fura-2 response with BzATP was about twice as high in cells derived from the P2X7R wt

compared to P2X7R P451L mice.
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Figure 1. Expression of P2X7R, PSC markers and calcium signals in mPSCs and hPSCs. (a) RT-PCR results with different
pairs of primers for the P2X7R (Table 1). (b) Representative blots of P2X7R (70 kDa) isoform A and the loading control
β-actin. (c) Immunofluorescence detection of P2X7R and the PSC markers desmin, vimentin, GFAP and α-SMA. Image of
mPSCs stained for desmin also shows less activated/quiescent cells with autofluorescent lipid droplets (arrow). Scale bar
is 50 µm in all images. (d) Fura-2 ratio in PSCs after consecutive stimulation with 10 µM BzATP and 100 µM BzATP. The
graph shows 5 representative cells out of 10–20 cells recorded per experiment, 6 experiments.

3.2. P2X7R Affects Cell Proliferation and Death in PSCs

As activated PSCs have an elevated proliferation rate that contribute to tissue repair
and under some circumstances to pathogenic processes, we next tested the effect of the
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P2X7R agonist, BzATP, and the P2X7R inhibitors, the allosteric inhibitor AZ10606120 and
the competitive antagonist A438079, on cell proliferation (Figure 2, and Supplementary
Materials Figure S1). Since the P2X7R can stimulate basal cell proliferation in HEK293
cells transfected with P2X7R [37], mPSCs [34] and PDAC cells [22] in low serum or serum
free medium, we used serum concentrations of 1% and 0% (Figure 2 and Supplementary
Materials Figure S1, respectively). When hPSCs were treated with AZ10606120 in basal
conditions, there was a significant reduction in cell proliferation (CCK-8 and BrdU assay)
in comparison to the control (Figure 2a, Supplementary Materials Figure S1a,b), which
indicates that the P2X7R was already activated, similar to our studies on the several
pancreatic cancer cell lines [22]. The antagonist A438079 alone did not inhibit proliferation
in basal conditions. Treatment with micromolar (10–100 µM) concentrations of BzATP
also had no significant effect on cell proliferation, presumably because these cells were
already activated in the given culture conditions. However, we observed a significant
reduction in cell proliferation with 1000 µM treatment of BzATP, which could be related to
the P2X7R pore formation and/or cell death [34,38]. Pre-treatment with A438079 alleviated
the inhibitory effect of high-dose BzATP in hPSCs in 0% FBS (Supplementary Materials
Figure S1c).

We also evaluated the role of P2X7R in mPSCs obtained from two different mouse
strains: P2X7R wt and P2X7R P451L, with wild type P2X7R or P2X7R with a loss-of-function
proline to leucine mutation in the C-terminal, respectively (Figure 2c,d for 1% FBS, Supple-
mentary Materials Figure S1d,e for 0% FBS). Notably, the number of PSCs isolated from
the pancreas of P2X7R P451L mice was about 30% higher than those from P2X7R wt mice
(Figure 2b), indicating that mutation in the receptor increases the PSC number. In agreement
with data on hPSC, mPSC proliferation was also significantly reduced with AZ10606120
(Figure 2c,d). This effect was observed in both mice strains. Cell proliferation was in-
creased with BzATP (100 µM) in both cell types. However, at a higher BzATP concentration
(1000 µM), cell proliferation decreased below the basal level. The inhibitor, AZ10606120,
was able to suppress the proliferative effect of 100 µM BzATP but could not overcome the
inhibitory effect of 1000 µM BzATP (Figure 2c–d, Supplementary Materials Figure S1d,e).
The inhibitor, A438079, prevented the proliferative effect of 100 µM BzATP in mPSCs from
P2X7R wt mice (Figure 2c, Supplementary Materials Figure S1e), but it was unable to inhibit
proliferation in mPSCs from P2X7R P451L mice. At 1000 µM BzATP, this inhibitor had no
further effects.

As BrdU incorporation was negatively affected by the P2X7R inhibitor AZ10606120
and BzATP (1000 µM), we wanted to uncover whether this was due to an actual decrease in
the proliferation rate or due to cell death; therefore, two different assays were performed on
hPSCs: lactate dehydrogenase (LDH) assay and Annexin V/PI stain (Figure 3a,b; Supplemen-
tary Materials Figure S2) in order to estimate cellular cytotoxicity and apoptotic/necrotic
cell death, respectively. LDH release was slightly but significantly increased after treatment
with 1000 µM BzATP (Figure 3a), indicating some cytotoxicity. Flow cytometry analysis
showed that this treatment increased a number of cells in early/late apoptosis or necrosis
(Figure 3b, Supplementary Materials Figure S2). Therefore, treatment of cells with a mil-
limolar concentration of BzATP caused cell death and alongside decreased cell proliferation
in hPSCs, as previously shown in mPSCs [34]. Treatment with AZ10606120 caused a sig-
nificant shift from live to late-apoptotic/necrotic cell state as detected with Annexin V/PI
stain, while the cytotoxic LDH assay only indicated a small (but not significant) increased
effect of the treatment (Figure 3b, Supplementary Materials Figure S2). Perhaps arrest in
cell proliferation caused cell stress and thus apoptosis/necrosis rather than cytotoxicity.
The apoptotic control AT-101 also gave a significant increase in cell death detected in both
assays (Figure 3b, Supplementary Material Figure S2).
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Figure 2. Role of P2X7R in cell proliferation in (a) hPSCs and mPSCs from (c) P2X7R wt and (d) P2X7R P451L mice. Cells
were treated with different concentrations of the agonist BzATP (0, 10, 100, 1000 µM) with/without 10 µM inhibitor
AZ10606120 (AZ) or A438079 (A43) in 1% FBS. Data are normalized to the control value (CTR). We performed one-sample
t-test followed by Bonferroni correction and significance compared to the control is indicated as follows: * p < 0.05, ** p < 0.01,
**** p < 0.0001. Comparisons between agonist and agonist + inhibitor have been evaluated with t-test and significance is
indicated by # p < 0.05, ### p < 0.001. (b) Number of PSCs isolated from the pancreas of either P2X7R wt or P2X7R P451L mice,
p = 0.0059.

3.3. P2X7R Activation Increases Collagen Release in PSCs

As activated PSCs are known to be the main producers of collagen in areas of fibro-
sis [7], we wanted to study the role of the P2X7R in this process in hPSCs and mPSCs.
Earlier, we showed that the inhibition of the P2X7R with AZ10606120 in an orthotropic
PDAC model reduced collagen deposition, presumably through mPSCs [23]. Collagen
release was, therefore, quantified both in hPSC and P2X7R wt mPSC (Figure 3c,d). Stimula-
tion with BzATP (10–1000 µM) significantly increased the collagen release in both hPSC
and mPSC, which was comparable to the positive control stimulant TGF-β1. Collagen I
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was also detected by immunofluorescence (Figure 3c,d inserts). Hence, P2X7R stimulation
increased collagen secretion both in hPSC and mPSC.

Figure 3. Effect of P2X7R on cell survival and collagen release. (a,b) Effects of 10 µM AZ10606120 (AZ) and different
concentrations of BzATP on (a) LDH release (b) and live/dead cell population (flow cytometry analysis) on hPSCs. (c,d)
Collagen release and representative images of collagen staining are shown for hPSCs and mPSCs (P2X7R wt). Scale bar is
50 µm. Data are normalized to the control values (CTR). AT101 10 µM and TGF-β1 5 ng/µl were used as positive controls.
Statistical analysis was as above and significance is indicated by (a) * p < 0.05, ** p < 0.01; (c) * p < 0.05; (d) ** p < 0.01.
We analyzed the flow cytometry data with one-way ANOVA followed by Bonferroni correction and compared to the
control and significant difference for live (*), early apoptosis (#), late apoptosis/necrosis (¤) is indicated by the following:
** ¤¤ p < 0.01; *** p < 0.001; **** #### ¤¤¤¤ p < 0.0001.

3.4. P2X7R Activation Increases IL-6 Release in PSCs

PSCs release various cytokines, including IL-6, but it is not always clear what are
the main eliciting factors. We therefore hypothesize that the P2X7R could be important
for IL-6 release. We measured the amount of IL-6 released from hPSC and mPSC after
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P2X7R activation/inhibition (Figure 4). In hPSC, IL-6 release was significantly reduced
with AZ10606120 treatment (Figure 4a), indicating that already in the basal conditions the
P2R7R was activated, similar to what was seen in the cell proliferation (Figure 2a). BzATP
stimulation also showed a similar biphasic trend on IL-6 release as on cell proliferation.
Mouse PSCs, isolated from either P2X7R wt or P2X7R P451L mice, showed a significant
and robust IL-6 release after stimulation with 100 µM BzATP and some already with 10
µM BzATP (Figure 4b,c). In PSCs from both mice strains, the addition of AZ10606120
inhibited the stimulatory effect of 100 µM BzATP. However, AZ10606120 made the effect of
10 µM BzATP stimulatory. The millimolar concentration of BzATP was very effective in
decreasing IL-6 release in both mouse models and, interestingly again, the pore inhibitor
A438079 rescued this inhibitory effect and increased the IL-6 secretion. The anomalous
rescue of inhibitors seemed to be similar in both mPSCs from P2X7R wt and P2X7R P451L

mice. Together, these data show that the P2X7R is involved in IL-6 release from PSCs in
both humans and mice.

3.5. Activation of P2X7R in PSCs Stimulates Migration of Cancer Cells

Next, we tested the hypothesis that activation of the P2X7R in PSCs could induce
cancer cell migration. Hence, we performed a co-culture migration assay in a Boyden
chamber, where human pancreatic cancer cells, PANC-1 (upper chamber), were cultured in
the presence of hPSCs (lower chamber) treated with P2X7R agonist or inhibitor (Figure 5a).
Aphidicolin was added in both chambers to stop proliferation that could interfere with
the assay and serum was also kept low (1%) in both chambers to avoid its direct role as a
chemoattractant. The number of migrated PANC-1 cells was significantly increased when
hPSCs were treated with BzATP (100 µM) (Figure 5a). Treatment with AZ10606120 did
not affect PANC-1 migration, though some inhibitory effect on IL-6 release was observed
(Figure 4a). To test that the drugs did not directly affect PANC-1 migration, we set up
a similar assay without PSCs and observed that PANC-1 cells did not show significant
migration (Supplementary Materials Figure S3). These data indicate that P2X7R activation
in PSCs leads to the release of chemoattractants, possibly IL-6, into the media, which can
affect the function of nearby cancer cells.

3.6. IL-6R Neutralization with Tocilizumab Prevents Activation of the STAT3 Pathway in
Pancreatic Cancer Cells Induced by Conditioned Media from hPSCs

Next, we tested the hypothesis that chemoattractants released from the PSCs stimulate
cancer cells by activating the STAT3 pathway. First, we collected the conditioned media
from hPSCs treated with agonist/inhibitor of the P2X7R and used this to stimulate PANC-1
cancer cells for 30 min (Figure 5b). The PANC-1 proteins were extracted and the active
form p-STAT3 and total STAT3 were quantified with Western blot analysis (Figure 5c–e).
The pSTAT3 levels were significantly increased in PANC-1 exposed to the conditioned
media from the hPSCs treated with BzATP (100 µM), whereas it was not affected with the
receptor inhibitor (Figure 5c). The pSTAT3 increase occurred early at 30 min incubation.
Thus, hPSCs secrete factors that stimulate STAT3 activation in pancreatic cancer cells.

To test our hypothesis that IL-6 is responsible for the activation of the STAT3 pathway
in pancreatic cancer cells, we performed experiments where we neutralized the IL-6 recep-
tors (IL-6Rs) using the IL-6R neutralizing monoclonal antibody Tocilizumab (Figure 5b).
IL-6Rs can be found in two different forms: one integrated in the cell membrane and one
soluble. Therefore, we designed two protocols. First, we added conditioned media from
BzATP-stimulated hPSCs to PANC-1 cells, which were pretreated directly with Tocilizumab
(10 ng/mL) (Figure 5b,d). This procedure would only affect the membrane form of IL-6Rs
directly, and there seemed to be some reduction in STAT3 activation, though no significance
reached (Figure 5d). Second, we added Tocilizumab to the PANC-1 cells as well as to the
conditioned media to neutralize the soluble IL-6Rs (Figure 5b,d). This resulted in a signifi-
cant reduction of pSTAT3 levels. Finally, since PANC-1 cells also express the P2X7R [22]
and with the likelihood that some BzATP remained in the conditioned media, we wanted
to confirm that the STAT3 activation happened through the P2X7R activation in the PSCs,
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and not by direct activation of the P2X7R in the PANC-1 cells. Therefore, PANC-1 cells
were pretreated for 30 min with the P2X7R inhibitor AZ10606120 (Figure 5e). Pretreated
cells did not show any significant reduction in pSTAT3, indicating that STAT3 activation
requires IL-6 stimulation rather than P2X7R activation in pancreatic cancer cells.

Figure 4. P2X7R -dependent IL-6 release. IL-6 release in (a) hPSCs and mPSCs from (b) P2X7R wt and (c) P2X7R P451L

mice after treatment with different concentrations of the agonist BzATP (0, 10, 100, 1000 µM) alone and in combination
with 10 µM inhibitor AZ10606120 (AZ) and A438079 (A43). Data were normalized to control values (CTR). One-sample
t-test followed by Bonferroni correction was performed and significance compared to the control is indicated as follows
* p < 0.05, ** p < 0.01, **** p < 0.0001.; comparisons between agonist and agonist + inhibitor have been evaluated with t-test
and significance is indicated by # p < 0.05, ## p < 0.01. (b) n is reported in the graph except for AZ10606120 10 µM + BzATP
100 µM, where n = 2. For hPSCs BzATP 100 µM, uncorrected p is 0.045; P2X7R wt BzATP 1000 µM, uncorrected p is 0.057.



Cells 2021, 10, 1928 13 of 20Cells 2021, 10, 1928 13 of 20 
 

 

 
Figure 5. Effect of hPSCs and conditioned media on PANC-1. (a) Schematic diagram of Boyden chamber experimental setup 
showing PANC-1 cells in the upper chamber and hPSCs in the lower chamber. The histogram shows the number of migrated 
PANC-1 cells after co-incubation with hPSCs treated with either AZ10606120, AZ, (10 μM) or BzATP (100 μM) normalized to 
either a DMSO or –BIC control, in which the drugs were dissolved, respectively. * p < 0.05. (b) Schematic diagram of the 
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performed to exclude a potential impact of P2X7R activation on STAT3 activation in PANC1 (e). β-actin was used as a loading 
control. Significant P values are shown in the graph and ns indicates non-significance. 

Figure 5. Effect of hPSCs and conditioned media on PANC-1. (a) Schematic diagram of Boyden chamber experimental
setup showing PANC-1 cells in the upper chamber and hPSCs in the lower chamber. The histogram shows the number of
migrated PANC-1 cells after co-incubation with hPSCs treated with either AZ10606120, AZ, (10 µM) or BzATP (100 µM)
normalized to either a DMSO or –BIC control, in which the drugs were dissolved, respectively. * p < 0.05. (b) Schematic
diagram of the experimental setup for (c,e), where conditioned media was harvested from hPSCs and added to PANC-1
cells. The hPSCs were treated with +/− P2X7R agonist (BzATP, 100 µM) or antagonist (AZ, 10 µM) (blue), the conditioned
media was treated with +/− 10 ng/mL Tocilizumab (Toci) (pink), and PANC-1 cells were treated with either +/− 10 ng/mL
Toci and +/− 10 µM AZ (purple). (c,e) Representative Western blots and quantification of STAT3 activation in PANC-1
cells after stimulation with conditioned media from hPSCs. STAT3 activation is reported as pSTAT3/total-STAT3 (c). The
same experiment has been repeated inhibiting IL-6 receptors on PAN-C1 cells or on PANC-1 cells and CM (d). PANC1
pre-treatment with AZ10606120 (10 µM) has been performed to exclude a potential impact of P2X7R activation on STAT3
activation in PANC1 (e). β-actin was used as a loading control. Significant P values are shown in the graph and ns
indicates non-significance.
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3.7. hPSCs and PANC-1 Cells Release ATP

The last question we sought to answer was the origin of the extracellular ATP that
stimulates the P2X7R. In the TME, several conditions could lead to ATP release from both
PSCs and cancer cells. Most cell types release ATP in response to mechanical stress (shear
stress, cell volume changes, etc.), and one might expect that mechanical stress would
be present in a pancreatic tumor, where significant pressures have been detected [39].
Therefore, we stimulated human and murine PSCs and PANC-1 cells with mechanical
stimulation, induced by injection of a physiological buffer, and recorded ATP release in
real time (Figure 6a–c). Our data show that all cell types tested responded with a fast ATP
release. In addition, we tested PANC-1 cells after an osmotic stimulation with mannitol
(25 mM), and metabolic stimulation with an increase in the glucose concentration from 5
to 25 mM (Figure 6d). Both types of stimuli also induced significant ATP release. These
data show that both pancreatic cancer cells and PSCs release ATP into their environment,
providing an agonist pool for the activation of the P2X7R.

Figure 6. ATP release in PSCs and PANC-1. (a,b) Time course of ATP release in PSCs and PANC-1 cells after mechanical
stimulation by injection pump showing the basal and stimulated ATP release (see methods). (c) The ATP release in response
to the mechanical stimulus in the three types of PSCs. ATP quantification is expressed as ∆ATP (M/106 cells/ml, log axis)
from basal to stimulated condition. (d) Effect of increasing substrate glucose from 5 to 25 mM (Glu 25 mM) or cell volume
effects due to mannitol (Mann 25 mM) (manual addition) or mechanical stimulation (Mech) (pump injection). (c,d) Data
were log transformed and maximal ATP release compared to the basal ATP, as depicted in (a,b), was tested in paired t-test
analysis for each condition and significance is indicated as * p < 0.05, *** p < 0.001, **** p < 0.0001, ns non-significant.
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4. Discussion

In the present study, we show that both human and mouse PSCs express the P2X7R
and that this receptor evokes calcium signaling and stimulates collagen secretion. More
importantly, the activation of the P2X7R shows a dual role in cell proliferation and death,
and also elicits secretions of the cytokine IL-6. In turn, IL-6 released from PSCs stimulates
STAT3 activation in pancreatic cancer cells, indicating that the P2X7R is an important factor
in the PSC-cancer cell crosstalk.

We employed RLT-PSC as a suitable model for hPSCs in our study because these cells
express several PSCs markers, such as desmin, vimentin, GFAP and α-SMA, as well as the
P2X7R, which is functionally similar to the receptor in mPSC. Our data show that P2X7R
activation promotes cell proliferation in both hPSCs and mPSCs. In the hPSCs, the receptor
seems to have a high basal activity that stimulates cell proliferation, as this could be
inhibited with the inhibitor AZ10606120, and low concentrations (10–100 µM) of the BzATP
agonist showed negligible effects. Similar observations have been made on pancreatic
cancer cell lines, beta-cell line, glial cells, and HEK293 expressing the P2X7R [22,37,40,41].
High basal activity of the receptor could be attributed to the high metabolic activity and
significant release of ATP with metabolic substrates available in the media (Figure 6). It
is reported that trophic effects in human cells are due to the P2X7B splice variant and/or
the P2X7A-P2X7B heterotrimer [42]. In primary mPSCs, which proliferate slower in basal
condition, the addition of low concentrations (10–100 µM) of the agonist BzATP had
clear pro-proliferative effects. In mPSCs, both splice variant A and K are expressed and
support proliferation [34], and variant K is activated by lower agonist concentrations and
not affected by the P415L mutation [43]. In both cell types (hPSCs and mPSCs), high
concentrations of BzATP (1000 µM) led to a lower cell proliferation and an increased
cell death rate (Figures 2 and 3), usually ascribed to the pore-formation [22,38,44]. The
P2X7R P451L mutation affects ion channel/pore formation [45–47], and we observed lower
calcium influx, though we did not observe marked differences in the downstream effects
on BzATP-induced proliferation or IL-6 release (see below) in isolated mPSCs. Several
explanations can be offered. Perhaps the remaining ion channel/receptor function in the
P4521 mutant is sufficient to drive signaling to cell proliferation and cytokine release in
mPSCs. Alternatively, it is possible that the K variant is more important in the proliferation
of mPSCs. Furthermore, we cannot exclude that BzATP can at least partially activate other
receptors, such as P2X4, though their effect on proliferation can be quite different to that
found in our cells [48,49].

Nevertheless, we also used two different P2X7R inhibitors and some interesting obser-
vations emerged. Treatment with the P2X7R negative allosteric modulator AZ10606120
inhibited proliferation in all PSC types in basal state and with 10–1000 µM BzATP. The
second competitive inhibitor, A438079, did not decrease the basal proliferation rate in all
PSCs studied here. The inhibitor seemed to rescue, at least partially, from the high BzATP
effect in hPSC. Interestingly, in our earlier studies, the inhibitor blocked the pore function
and increased proliferation of mPSCs and PDAC cells, though cells were stimulated with
1–5 mM ATP rather than 1 mM BzATP [22,34]. The difference could be due to higher
affinity of BzATP versus ATP, different agonist/antagonist competition and/or effects on
other P2 receptors. Interestingly, A438079 decreased the pro-proliferative effect of 100 µM
BzATP in mPSCs from P2X7Rwt mice; in contrast, in PSCs from P2X7R P451L mice it did
not. It seems that the reduced channel/pore function in the P415L mutants can increase
the number of mPSCs; in fact, we noticed a higher number of PSCs isolated from pancreas
of P2X7R P451L mice compared to P2X7R wt mice. In contrast, the number of PSCs isolated
from the Pfizer P2X7R knockout mice was lower than in the wild-type mice (both on the
C57BL/6J background) [34].

In conjunction with our earlier study on PSC from P2X7R knockout mice [34], our re-
sults indicate that the P2X7R is important in the regulation of cell viability and proliferation;
therefore, the number of PSCs in the pancreas. PSCs are important fibrogenic cells and in a
previous study on an orthotopic pancreas cancer model we have noted that AZ10606120
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treatment markedly reduced tumor fibrosis and collagen deposition [23]. In the present
study, we confirm that the P2X7R stimulates collagen I secretion in vitro (Figure 3c,d).
The PSCs have many similar features to hepatic stellate cells and the P2X7R may be an
important target in combating pancreatic fibrosis and injury, similar to what has been seen
with hepatic stellate cells in the liver [50,51].

The P2X7R has shown itself as a multi-faceted receptor, and the most important
finding in our study is that the stimulation of this receptor also induces IL-6 secretion
in both hPSCs and mPSCs. The effects of BzATP concentrations on IL-6 release parallel
those on cell proliferation (Figures 2 and 4), though there were some disparities between
the effects of inhibitors in cell proliferation and IL-6 release. Interestingly, IL-6 secretion
was enhanced when the effect of an inhibitory high dose of BzATP (1000 µM) was curbed
with A438079. Additionally, it seems that in this condition mPSCs from P2X7R P451L

mice secreted more IL-6 than cells from P2X7Rwt mice, but significant difference was not
reached on the available data. Classical cytokines released by the P2X7R stimulation are
inflammasome/NLRP3-associated IL-1β and IL-18 [24]. However, it has been reported
that P2X7R stimulation causes NLRP3-independent IL-6 release in fibroblasts, neurons,
astrocytes, microglia, and retinal cells [52–56], e.g., via mechanical stress, ROS signaling
and exocytosis. However, IL-1β can upregulate transcription and release of IL-6, and
thus, potentiate inflammation [57,58]. The P2X7R also stimulates proliferative and survival
signaling involving ERK1/2 signaling [59] and PI3/Akt and NFκB [60]. These signaling
pathways and multiple cytokines are important in the activation of PSCs and PDAC
development and progression [61,62], but detailed mechanisms operating between P2X7R
activation and IL-6 release in PSCs remain to be explored.

Previous studies have shown that “basal” IL-6 released from PSCs plays a leading
role in activating the JAK/STAT3 pathway in pancreatic cancer cells [7,13,14,16]. Since
extracellular ATP might be high in the TME of PDAC [4], our question was whether
the P2X7R activation may impact or initiate this pathway. A co-culture of hPSCs and
PANC-1 cells showed that the P2X7R stimulation of hPSCs leads to the secretion of a
chemoattractant that promoted PANC-1 migration (Figure 5a). This is in agreement with
the previous study on mPSC [23]. In the present study, we show that the chemoattractant
and activator of cancer cells is IL-6 (Figure 5). First, conditioned media stimulated STAT3
activation in cancer cells. Second, the monoclonal antibody Tocilizumab, already used
in clinic to inhibit IL-6R, prevented STAT3 activation in cancer cells. Notably, IL-6Rs are
present in two different forms: in the cell membrane and as soluble molecules. In the first
case, IL-6 binds to the membrane receptor and the activation of the pathway is mediated by
the membrane-bound β-receptor glycoprotein 130 (gp130); in the second case, IL-6 binds
the soluble receptor, and the complex migrates to the membrane, where gp130 is uniformly
expressed, activating the pathway [63]. In fact, in our setup, STAT3 activation resulted in
a modulated response depending on whether the membrane IL-6R (on PANC-1) or both
the membrane and the soluble (conditioned media) forms of IL-6R were inhibited with
Tocilizumab (Figure 5).

Preventing STAT3 activation could be an important therapeutic approach as STAT3 is
one of the most known transcriptional factors associated with tumor progression. In PDAC,
STAT3 activation promotes cell proliferation, migration, and invasion, as well as tumor
stemness [64,65]. A recent study shows that increasing levels of pSTAT3 are present both
in the TME and cancer cells, and they have different roles in tumor progression [66]. While
STAT3 activation in the TME is important in the first stages of tumor development, STAT3
activation in cancer cells is more associated with the metastatic process. Furthermore, a
highly activated STAT3 pathway is associated with chemoresistance and overall poorer
prognosis in PDAC and gastric cancer patients [65–67].

So far, we discussed the evidence that P2X7R stimulation of PSCs causes the release of
IL-6, which stimulates STAT3 signaling in pancreatic cancer cells. However, where does
the extracellular ATP come from? There are many sources of eATP that could be relevant
in the physiology and pathophysiology of the pancreas. Acini and ducts release ATP with
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agonists, mechanically, via pH, bile acids, etc. [20,68,69]. In the present study, we show an
ATP release from mechanically perturbed PSCs and cancer cells, which is quite realistic
as PDAC is a solid tumor showing high interstitial pressure [39,70,71]. Cancer cells have
higher substrate supply/metabolism [72,73], and, as we show, they have increased ATP
release with increased glucose in the media (Figure 6). Thus, our data indicate that in the
TME of PDAC we might expect higher concentrations of eATP, as shown recently [4,21].
Accurate quantification of eATP concentrations in TME will require novel dynamic methods
circumventing high ectonucleotidase activities.

In conclusion, in a TME rich in eATP, P2X7R activation in PSCs promotes IL-6 release
that through STAT3 activation in cancer cells would promote tumor progression. This
novel signaling pathway in between fibrogenic PSCs and cancer cells in the TME of PDAC
could present a possible therapeutic approach to prevent fibrosis and STAT3 activation
through P2X7R inhibition as well as IL-6R neutralization by Tocilizumab.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10081928/s1, Figure S1: Role of P2X7R on cell proliferation in 0% FBS, Figure S2: Cell
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