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Rats overexpressing the dopamine 
transporter display behavioral and 
neurobiological abnormalities with 
relevance to repetitive disorders
Ravit Hadar1, Henriette Edemann-Callesen1,2, Claudia Reinel1, Franziska Wieske1, 
Mareike Voget1,2, Elena Popova3, Reinhard Sohr1, Yosef Avchalumov1, Josef Priller4, 
Christoph van Riesen5, Imke Puls6, Michael Bader3,7,8,9 & Christine Winter1

The dopamine transporter (DAT) plays a pivotal role in maintaining optimal dopamine signaling. DAT-
overactivity has been linked to various neuropsychiatric disorders yet so far the direct pathological 
consequences of it has not been fully assessed. We here generated a transgenic rat model that 
via pronuclear microinjection overexpresses the DAT gene. Our results demonstrate that DAT-
overexpression induces multiple neurobiological effects that exceeded the expected alterations in 
the corticostriatal dopamine system. Furthermore, transgenic rats specifically exhibited behavioral 
and pharmaco-therapeutic profiles phenotypic of repetitive disorders. Together our findings suggest 
that the DAT rat model will constitute a valuable tool for further investigations into the pathological 
influence of DAT overexpression on neural systems relevant to neuropsychiatric disorders.

In the realm of neuroscience, preclinical studies promote our understanding of normal and pathological brain 
function as well as the development of new treatment strategies and are thus invaluable. This leads to ongoing 
innovation and generation of new model rodents. The development of new models is either done by the selection 
of existing phenomena or the rationale driven manipulation of a specific mechanism. The latter may comprise 
environmental, pharmacological or genetic manipulations. Genetic models start with addressing the etiology 
of the modeled disorder1 however they may only be considered complete upon meeting further construct, face 
and predictive validity criteria. In neuro-psychiatry etiology is mostly obscure, forcing scientists into testing the 
assumed etiology by comprehensively evaluating the consequences of the manipulation on aspects of brain and 
behavior known to be aberrant in the modeled disorder. Preclinical studies succumb to a classical differentiation 
between mice and rats, such that it is mostly mice, which provide rationale-driven genetic models whereas rats are 
devoted to behavioral and environmental manipulations, due to their superior social and behavioral repertoire. 
Clearly, the latter is the essence of psychiatric disorders, hence genetic rat models would ideally incorporate both 
aspects.

Interdisciplinary evidence suggests a pivotal role of the dopamine system and the corticostriatal circuitry2 in 
the pathology underlying repetitive disorders. Reduced tonic extracellular3, increased presynaptic4, and phar-
macologically released intrasynaptic dopamine contents5 as well as increased dopamine receptor availability6, 
suggests an overactive dopamine transporter (DAT)7,8 in repetitive disorders, including Tourette syndrome (TS). 
Still, investigations into the direct consequences of DAT overexpression is underrepresented in preclinical studies 
with only very few models that allow insights into its relation to such neuropsychiatric disorders.
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On this basis we created a transgenic rat model that via pronuclear microinjection overexpresses the DAT gene 
(Fig. 1). Neurobiological and behavioral studies were conducted on adult male hemizygous DAT-transgenic rats 
(DAT-tg) ubiquitously overexpressing DAT in the corticostriatal and associated networks.

Results
DAT and DRD1/2 receptor expression.  Western blot and qPCR were performed in order to assess the 
protein and mRNA expression levels of the dopamine transporter (DAT). qPCR was conducted to assess mRNA 
expression levels of the dopamine receptor 1 (DRD1), and dopamine receptor 2 (DRD2). Western blots showed 
that in comparison to wt rats, DAT-tg rats exhibited increased striatal protein-levels of the DAT transporter 
(striatum: T =​ −​2.171, p =​ 0.05) (Fig. 1d). qPCR showed that in comparison to wt rats DAT-tg rats exhibited 
significantly increased DAT mRNA levels in the following areas: medial prefrontal cortex (mPFC (T =​ −​2.588, 
p =​ 0.023)), orbitofrontal cortex (OFC (T =​ 9.161, p =​ 0.000)), nucleus accumbens (Nacc (T =​ −​2.755,  
p =​ 0.016)), caudate putamen (CPu (T =​ −​8.337, p =​ 0.000)), globus pallidus (GP (T =​ −​4.579, p =​ 0.000)), 

Figure 1.  Generation of DAT-tg rats. (a) Schematic representation of the 4-kb DNA fragment used for 
the generation of the DAT transgenic rats. E1/2 =​ exon 1/2, and I1 =​ intron 1 of NSE, mDAT =​ murine DAT 
sequence, SV40 =​ Simian virus 40. (b) Representative DAT PCR products from wt (−​) and DAT-tg (+​) 
rats. M =​ marker, NC =​ negative control, PC =​ positive control, transgenic band =​ 356 bp. One founder line 
was used for the study. Here one litter from this generation is shown. (c) Representative coronal sections of 
immunohistochemical stain of DAT expression for wt (left) and DAT-tg (right). (d) DAT Western blot analysis 
of striatal tissue from wt (n =​ 5) and DAT-tg rats (n =​ 10).
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hippocampus (Hipp (T-6.463, p =​ 0.001)), thalamus (Thal (T =​ −​5.410, p =​ 0.000)), and subthalamic nucleus 
(STN (T =​ −​4,589, p =​ 0.000)) (Fig. 2a). Further, DAT-tg rats exhibited increased DRD1 mRNA levels in the 
OFC (T =​ −​3.534, p =​ 0.000), Nacc (T =​ −​2.136, p =​ 0.029), CPu (T =​ −​6.217, p =​ 0.036) and Hipp (T =​ −​3.089, 
p =​ 0.009) and decreased DRD1 mRNA levels in the mPFC (T =​ 2.756, p =​ 0.016), Thal (T =​ 3.812, p =​ 0.002) and 
STN (T =​ 4.332, p =​ 0.000) (Fig. 2b). In a similar fashion, DRD2 receptors were upregulated in the OFC (T =​ −​
2.610, p =​ 0.022), NAcc (T =​ −​1.917, p =​ 0.029) and CPu (T =​ −​3.252, p =​ 0.006) whereas levels were downreg-
ulated in the mPFC (T =​ 3.246, p =​ 0.006), Thal (T =​ 2.646, p =​ 0.02) and STN (T =​ 3.414, p =​ 0.005) (Fig. 2c).

Neurotransmitter contents and compensatory mechanisms.  Post mortem HPLC was conducted 
to assess neurochemical contents of different neurotransmitter system. DAT-tg rats exhibited a decrease in tissue 
dopamine contents in the OFC (T =​ −​7.504, p =​ 0.000), Nacc (T =​ −​13,726, p =​ 0.000) and CPu (T =​ −​14.611, 
p =​ 0.000), whereas an increase in dopamine was seen in the Hipp (T =​ 2.617, p =​ 0.020) and STN (T =​ 2.414, 
p =​ 0.029). With regards to metabolites and turnorver, DAT-tg rats exhibited increased DOPAC contents and 
dopamine turnover (DOPAC/dopamine) in the mPFC (DOPAC: T =​ 4.255, p =​ 0.000; turnover: T =​ 2.916, 
p =​ 0.011), OFC (T =​ 3.225, p =​ 0.006; turnover: T =​ 13.467, p =​ 0.000), Nacc (T =​ 4.391, p =​ 0.000; turnover: 
T =​ 7.542, p =​ 0.000), CPu (T =​ 9.134, p =​ 0.000; turnover: T =​ 19.314, p =​ 0.000), GP (T =​ 6.177, p =​ 0.000; turn-
over: T =​ 7.417, p =​ 0.000), Hipp (T =​ 5.884, p =​ 0.000; turnover: T =​ 1.35, p =​ 0.022), Thal (T =​ 4.009, 0.001; 
turnover: T =​ 1.505, p =​ 0.001) and STN (T =​ 4.503, p =​ 0.000; turnover: T =​ 2.962, p =​ 0.010) (Fig. 3a–c). For 
glutamate, DAT-tg rats exhibited increased contents in the CPu (T =​ 2.701, p =​ 0.016), GP (T =​ 4.934, p =​ 0.000) 
and STN (T =​ 4.113, p =​ 0.000) whereas a decrement was found in the thalamus (T =​ −​4.574, p =​ 0.000). 
With respect to GABA, DAT-tg rats exhibited decreased contents in the Nacc (T =​ −​2.665, p =​ 0.018) and GP 

Figure 2.  DAT and DRD1/2 receptor expression. (a) DAT qPCR analysis of corticostriatal and associated 
network regions in wt (n =​ 8) and DAT-tg rats (n =​ 7). (b) Dopamine receptor 1 (DRD1) and (c) Dopamine 
receptor 2 (DRD2) qPCR analysis of corticostriatal and associated network regions in wt (n =​ 8) and DAT-tg rats 
(n =​ 7). mPFC: medial prefrontal cortex, OFC: orbitofrontal cortex, Nacc: nucleus accumbens, CPu: caudate 
putamen, GP: globus pallidus, Hipp: hippocampus, Thal: dorsomedial thalamus, STN: subthalamic nucleus. All 
data are means ±​ s.e.m. Asterisk (*) indicates significant difference to wt rats with p <​ 0.05.
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(T =​ −​2.231, p =​ 0.041) and increased contents in the mPFC (T =​ 2.962, p =​ 0.009), OFC (T =​ 3.161, p =​ 0.006) 
and CPu (T =​ 3.449, p =​ 0.004) (Fig. 4).

To investigate for possible compensatory mechanisms, monoamine oxidase (MAO) activity was assessed in 
striatal tissues. DAT-tg rats here exhibited a significant increase in total MAO activity as opposed to the wt rats 
(T =​ −​2.470, p =​ 0.028) (Fig. 3d).

Oscillatory activity.  Oscillatory activity within the vmPFC, Nacc and STN was investigated via in vivo electro-
physiological recording. The assessed frequency bands included: theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), 
and gamma (30–100 Hz). Results show that in comparison to wt rats DAT-tg rats exhibited increased alpha, beta and 
gamma activity within the STN (alpha: T =​ −​8.667, p =​ 0.000; beta: T =​ −​8.972, p =​ 0.000; gamma: T =​ −​2.781, 
p =​ 0.006) as well as increased beta and gamma activity within the mPFC (beta: T =​ −​6.701, p =​ 0.000; gamma: 
T =​ −​3.389, p =​ 0.000) and Nacc (beta: T =​ −​3.723, p =​ 0.000; gamma: T =​ −​2.594, p =​ 0.01) (Fig. 5a).

Figure 3.  Neurotransmitter contents and compensatory mechanisms. Post mortem tissue (a) dopamine 
and (b) DOPAC contents as well as (c) dopamine turnover in corticostriatal and associated network regions in 
wt (n =​ 7) and DAT-tg rats (n =​ 10). mPFC: medial prefrontal cortex, OFC: orbitofrontal cortex, Nacc: nucleus 
accumbens, CPu: caudate putamen, GP: globus pallidus, Hipp: hippocampus, Thal: dorsomedial thalamus, 
STN: subthalamic nucleus. (d) Monoamine oxidase (MAO) activity of striatal tissues in wt (n =​ 8) and DAT-tg 
rats (n =​ 7). All data are means ±​ s.e.m. Asterisk (*) indicates significant difference to wt rats with p <​ 0.05.
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Immunostaining.  Immunostaining of parvalbumin expressing (PV)+​ interneurons, c-Fos expressing nuclei 
and Ki67 expressing cells was conducted to investigate for possible cellular changes reflecting altered network 
activity. Results show that DAT-tg rats exhibited a significant reduction of PV+​ cells specifically in the CPu as 
opposed to wt rats (T =​ 3.228, p =​ 0.004) (Fig. 5b). Further, DAT-tg rats exhibited a significant increase in cFos 
expressing cells specifically in the OFC as compared to wt rats (T =​ −​2.884, p =​ 0.011) (Fig. 5c). No significant 
difference was found for Ki67 expression between DAT-tg and wt rats (Fig. 5d).

Structural analysis of brain volumes.  The whole brain volume and the volumes of the mPFC, Hipp, and 
CPu were assessed using structural MRI. DAT-tg rats exhibited a significant increase in Hipp volumes as com-
pared to the wt rats (T =​ −​3.326, p =​ 0.01) alongside unaltered whole brain volumes (Fig. 6a). NeuN immunos-
taining further revealed no difference between DAT-tg and wt rats (Fig. 6b).

General behavioral assessment.  Wt and DAT-tg rats were weighed across lifespan and body weights of 
DAT-tg rats were analyzed relative to body weight of age-matched wt rats. T-Test revealed DAT-tg rats to have 
significantly decreased body weights in comparison to wt rats across lifespan (T =​ 6.801, P =​ 0.000) (Fig. 7a). 
Figure 7b locomotion was analyzed as the total distance travelled on an open field over 30 min. T-Test revealed 
DAT-tg rats to travel significantly less than wt rats (T =​ 5.745, P =​ 0.001) (Fig. 7b). Figure 7a to study repetitive 
behavior upon stress-exposure, rats were exposed to unpredictable acoustic stimuli. T-test revealed DAT-tg rats 
to show a tendency towards more grooming (T =​ −​2.070, P =​ 0.063) when compared to wt rats, but no significant 
increment in the number of whole body shakes (T =​ −​1.527, P =​ 0.156) (Fig. 7c).

In the prepulse inhibition (PPI) paradigm, DAT-tg rats showed normal sensorimotor gating when compared 
to wt rats such that they expressed an unaltered suppression of the acoustic startle reflex (ASR) following acoustic 
stimuli of 69 db, 73 db, and 81db. However DAT-tg rats did show increased overall ASR reflecting hyper-arousal 
(T =​ −​2.449, P =​ 0.024) (Fig. 7d). In the elevated-plus-maze and the forced swim test, no difference were found 
between DAT-tg rats and wt rats (Fig. 7e,f). In the sucrose consumption test DAT-tg rats showed when compared 
to wt rats a tendency to increased anhedonia as expressed in a reduced consumption of sweetened condense milk 
(T =​ 1.659, P =​ 0.071) (Fig. 7g).

Repetitive behavior analysis.  Repetitive behavior was assessed following the application of amphetamine 
(0.5 mg/kg, 2.0 mg/kg, and 5.0 mg/kg body weight (BW)) and saline over three consecutive days. To diminish the 
possibility of amphetamine-sensitization, dosages were applied in a randomized fashion. The assessed behavior 
included: no locomotion, locomotion, excessive rearing and sniffing as well as oral stereotypy and head move-
ments. Administration of 0.5 mg/kg amphetamine was ineffective in both strains and administration of 5.0 mg/kg  
amphetamine induced repetitive behavior in both, wt and DAT-tg rats. Upon administration of 2.0 mg/kg 
amphetamine, DAT-tg rats exhibited a significant increase in repetitive oral movements (T =​ −​3,545, p =​ 0.003), 
which effectively emerged 80–120 min after injection, whereas wt rats exhibited hyper-locomotion throughout 
the observation period (T =​ 4,718, P =​ 0.000) (Fig. 8a).

The effect of clonidine (0.01 mg/kg BW) and fluoxetine (20 mg/kg BW) versus saline on amphetamine (2 mg/kg  
BW) -induced behavior was assessed with respect to general movement and oral stereotypy. Same animals 
were exposed to drug administrations over a period of three consecutive days, with dosages applied in a rand-
omized fashion. For the effect of clonidine on oral stereotypy, ANOVA revealed a significant effect for the factor 

Figure 4.  Glutamate and GABA contents. Neurochemical contents were examined in wt (n =​ 7) and DAT-tg 
rats (n =​ 10). Glutamate and GABA were measured in the medial prefrontal cortex (mPFC), orbitofrontal 
cortex (OFC), nucleus accumbens (Nacc), caudate putamen (CPu), globus pallidus (GP), hippocampus (Hipp), 
dorsomedial thalamus (Thal), and subthalamic nucleus (STN). All data are means ±​ s.e.m. Asterisk (*) indicates 
significant difference to wt rats with p <​ 0.05.
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Figure 5.  Oscillatory activity and immunostaining. (a) Oscillatory activity of the vmPFC, Nacc and STN 
in wt (n =​ 5) and DAT-tg rats (n =​ 7). Upper panel shows entire frequency range, lower panel shows mean 
values for the frequency bands: theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz). 
(b) Immunohistochemical cell counts of parvalbumin expressing (PV+​) cells of the medial prefrontal cortex 
(mPFC), hippocampus (Hipp), caudate putamen (CPu) and globus pallidus (GP) in wt (n =​ 12) and DAT-tg rats 
(n =​ 11). (c) c-Fos expressing cells on representative slices of the mPFC, orbitofrontal cortex (OFC), nucleus 
accumbens (Nacc), CPu, GP, Hipp, thalamus (Thal) and subthalamic nucleus (STN) in wt (n =​ 8) and DAT-tg 
rats (n =​ 8). (d) Immunohistochemical cell counts of Ki67 expressing cells in the neurogenic zones of the 
hippocampus (dentate gyrus, DG) and the subventricular zone (SVZ) in wt (n =​ 9) and DAT-tg rats (n =​ 9).
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phenotype (F =​ 6,598, p =​ 0.019) and a significant interaction (F =​ 6.887, p =​ 0.018). Subsequent post hoc anal-
ysis revealed that untreated DAT-tg rats exhibited significantly more repetitive behavior than untreated wt rats 
(p <​ 0.05) and that clonidine significantly reduced repetitive behavior in DAT-tg rats (p <​ 0.05). With regards to 
the effects of clonidine on locomotion, no significant effect was found. The effect of fluoxetine on oral stereotypy 
showed a significant effect for the factors phenotype (F =​ 27.061, p =​ 0.000) and treatment (F =​ 10.382, p =​ 0.006) 
with DAT-tg rats displaying significantly more repetitive behavior than wt rats and fluoxetine reducing it in both, 
wt and DAT-tg rats. With regards to the effect of fluoxetine on locomotion, a significant effect of treatment was 
found (F =​ 15.127, p =​ 0.001) (Fig. 8b) such that fluoxetine reduced locomotion in both, wt and DAT-tg rats.

The effect of quinpirole (0.5 mg/kg BW) and saline on compulsive checking and grooming was assessed using 
the following groups: wt +​ saline, wt +​ quinpirole, DAT-tg +​ saline, DAT-tg +​ quinpirole. For compulsive check-
ing, a significant effect was found for phenotype (F =​ 11.464, p =​ 0.003) as well as a significant interaction across 
the factors phenotype and treatment. (F =​ 5.283, p =​ 0.032). Subsequent post hoc analysis revealed that quinpirole 
treated wt rats exhibited significantly more compulsive checking behavior as compared to untreated wt (p <​ 0.05) 
and quinpirole treated DAT-tg rats (p <​ 0.05). For grooming, a significant effect was found for both factors (phe-
notype: F =​ 22.960, p =​ 0.001; treatment: F =​ 17.091, p =​ 0.003) as well as a significant interaction (F =​ 21.278, 
p =​ 0.002) (Fig. 8b). Figure 8c following up on these effects, post hoc analysis revealed that in DAT-tg but not wt 
(p <​ 0.05) quinpirole significantly increased grooming when compared to saline conditions (p <​ 0.05).

Discussion
Our results show that overexpression of the DAT induces multiple neurobiological and behavioral deficits that 
have also been observed in repetitive disorders.

Involuntary repetitive movements have shown to worsen under stress and upon amphetamine challenge. 
Such accentuated susceptibility to amphetamine has been reported for TS and differentiates this condition from 
obsessive-compulsive disorders (OCD), a further disorder belonging to the repetitive spectrum9. In terms of 
pharmacotherapy, the alpha-adrenergic and imidazoline receptor agonist α​- clonidine serves as first line treat-
ment due to its efficacy and tolerability10,11.

In rats, a typical expression of repetitive movements is grooming12. We here report, that DAT-tg rats showed 
increased grooming upon stress exposure. Upon d-amphetamine administration, both wt and DAT-tg rats 
developed repetitive behavior13. However, DAT-tg rats developed repetitive behavior already at amphetamine 
dosages ineffective in wt rats suggesting a susceptibility to amphetamine. This low-dose amphetamine induced 
repetitive behavior manifested over time with maximal expression 80–120 min after drug administration. It 

Figure 6.  Structural analysis. (a) Volumes of the medial prefrontal cortex (mPFC), hippocampus (Hipp) and 
caudate putamen (CPu) relative to whole brain volumes as derived from MRI scans in wt (n =​ 6) and DAT-tg 
rats (n =​ 4). (b) NeuN expressing cells on representative slices of the mPFC, orbitofrontal cortex (OFC), nucleus 
accumbens (Nacc), CPu, globus pallidus (GP), Hipp, thalamus (Thal) and subthalamic nucleus (STN) in wt 
(n =​ 7) and DAT-tg rats (n =​ 5). All data are means ±​ s.e.m. Asterisk (*) indicates significant difference to wt rats 
(p <​ 0.05).
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consisted of fragmented grooming patterns of face and paws that rarely continued into a full-body grooming 
syntax, and was associated with a typical motor confinement. Interestingly, this particular behavior was also 

Figure 7.  General behavioral assessment. General assessment of hemizygote DAT transgenic (DAT-tg) rats 
in comparison to wt rats. (a) wt and DAT-tg rats were weighed across lifespan. Body weight of DAT-tg rats was 
analyzed relative to body weight of age-matched wt rats. (b) Locomotion was analyzed as the total distance 
travelled on an open field over 30 min in each n =​ 10 wt and DAT-tg rats. (c) To study repetitive behavior 
upon stress-exposure, each n =​ 7 wt and DAT-tg rats were placed within the chambers used for prepulse 
inhibition (PPI) test and exposed to unpredictable acoustic stimuli. (d) Sensorimotor gating and arousal was 
analyzed in the PPI paradigm in wt (n =​ 14) and DAT-tg rats (n =​ 7). (e) Anxious behavior was measured in 
the elevated-plus-maze in wt (n =​ 15) and DAT-tg rats (n =​ 6). (f) In the forced swim test, the amount of time 
spent on struggling, swimming and floating was analyzed in wt (n =​ 14) and DAT-tg rats (n =​ 7). (g) In the 
sucrose consumption test the amount of sweetened condense milk consumed relative to body weight (BW) was 
measured in wt rats (n =​ 16) and DAT-tg rats (n =​ 7). All data are given as mean ±​ s.e.m. Asterisks (*) indicates 
significant difference between groups with p <​ 0.05.
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Figure 8.  Repetitive behavior analysis. (a) Upper panel left: Repetitive behavior induced by d-amphetamine 
(0.5, 2.0 and 5.0 mg per kg body weight (BW)). Upper panel right: In DAT-tg rats, repetitive behavior evolves 
80–120 min after d-amphetamine (2 mg /kg BW). The wt rats display hyperlocomotion throughout the period 
(120 min). Hot colors (red) indicate presence and cold colors (blue) absence of behavior. Lower panel: dose-
dependent effects of d-amphetamine. (b) Clonidine effects (left) and fluoxetine (right) on locomotion and oral 
stereotypy following d-amphetamine (2 mg/kg BW) in wt (clonidine: n =​ 10; fluoxetine: n =​ 9) and DAT-tg rats 
(clonidine: n =​ 9; fluoxetine. n =​ 8). (c) Effects of quinpirole (QNP) on compulsive checking (left) and grooming 
behavior (right) in wt (n =​ 10) and DAT-tg rats (n =​ 10). All data are means ±​ s.e.m. Asterisk (*) indicates 
significant difference to wt rats, paragraph (§) indicates treatment effect (p <​ 0.05).
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the dominant behavior observed upon chronic intermittent application of the DRD2/DRD3 agonist quinpirole, 
which in wt rats induced compulsive checking behavior as previously reported14–16. Despite increased arousal 
and a tendency to anhedonia DAT-tg rats displayed intact sensorimotor gating, and scored normal in anxiety- 
and depression-associated paradigms. All together this suggests that behavioral abnormalities in DAT-tg rats are 
largely restricted to repetitive behavior symptomatology.

Testing pharmacotherapy, we found that clonidine specifically reduced repetitive behavior in DAT-tg rats 
whereas the serotonin reuptake inhibitor (SSRI) fluoxetine did not selectively affect repetitive behavior in DAT-tg 
rats. As expected, fluoxetine decreased locomotion in both phenotypes17. Clonidine is known to alleviate tics in 
TS whereas SSRI agents have been shown to ameliorate repetitive symptoms in OCD but not in TS.

The potential utility of DAT-tg rats in the context of repetitive disorder research is further supported by the 
neurobiological investigations of this study. TS has previously been associated with increased and decreased 
dopamine receptor availability6,9,18,19 and dopamine contents5,18,20–22. We found that ubiquitously induced DAT 
overexpression induced a region specific pattern of up- and downregulation. DAT-tg rats showed relative over-
expression of DRD1 +​ DRD2 in the OFC, CPu and Nacc. This was further paralleled by increased striatal MAO 
enzymatic activity, previously linked to TS23. Increased MAO activity leads to increased dopamine turnover, 
resulting in decreased in dopamine levels. In contrast, DRD1 +​ DRD2 expressions were downregulated in the 
mPFC, Thal and STN and dopamine contents were reduced in the Thal and STN, which suggests a reciprocal 
regulation of dopamine receptor expression and tissue dopamine contents24.

In TS patients, an altered balance between GABAergic cells and glutamatergic projections is associated with 
abnormal corticostriatal circuit activity2. This imbalance is thought to result from reduced numbers of GABAergic 
parvalbumin expressing (PV+​) interneurons. In accordance with that DAT-tg displayed region-specific incre-
ments and decrements in GABAergic and glutamatergic contents in the corticostriatal circuit. Further, we found a 
reduction of PV+​ interneurons in DAT-tg rats as compared to wt rats. In line with clinical data25,26, this reduction 
was restricted to the CPu. Striatal PV+​ interneurons coordinate striatal activity by increasing medium spiny neu-
rons’ (MSN) firing threshold in response to cortical inputs25,27. Loss of PV+​ interneurons found in TS patients is 
suggested to lead to MSN hyperactivity25,26. Both MSN and PV+​ cells express dopamine receptors and depending 
on the membrane-potential are susceptible to dopaminergic activation27,28. The excessive depolarized state of 
MSNs facilitates the effect of dopamine on MSNs, which further reinforces their hyperactivity. As such, abnor-
malities in the striatal PV+​ interneuron and dopamine systems may together induce an excessive activation of 
the cortico-striato-thalamic circuit leading to repetitive behavior28,29.

Further linkages of DAT-tg to repetitive disorders were gained by studies into neuronal cellular and population 
activity. DAT-tg rats exhibited upregulation of c-Fos in the OFC. Increased OFC activity is observed in patients 
with repetitive disorders29,30. DAT-tg rats further displayed increased beta and gamma oscillations in the mPFC, 
Nacc and STN and increased alpha oscillation in the STN. Beta activity in the STN is associated with movement 
abnormalities and inversely regulated by mesostriatal dopamine31. Alpha and gamma activity has been associated 
with spontaneous tic exertion and TS32. In general, alterations in LFP oscillatory activity are proposed as bio-
markers of dopamine dysfunction31 and neuro-psychiatric disorders33.

Ectopic DAT overexpression has previously been linked to neurotoxic events including oxidative stress 
and neuronal loss34–36. To explore whether DAT overexpression induced neuropathological changes in the 
DAT-tg rat, we measured the volume of the mPFC, the striatum and the hippocampus as these areas in the 
DAT-tg rat displayed both ectopic DAT expression and dopaminergic input but showed differential effects 
of DAT-overexpression on DA contents. MRI data displayed no atrophy in either the mPFC or the CPu but 
increased Hipp volumes in DAT-tg as compared to control rats. Increased Hipp volumes have been suggested 
to constitute a compensatory response in TS37. Further immunostaining of the neuron-specific marker (NeuN) 
revealed no difference between the phenotypes, which stresses the notion that ubiquitous overexpression of DAT 
does not induce neurotoxicity in the DAT-tg rat.

Our findings support the hypothesis that the DAT may constitute one important key component in repetitive 
pathophysiology and that DAT overexpression might be of relevance for further comprehension of neurobiologi-
cal mechanisms underlying neuropsychiatric disorders.

Experimental Procedures
Rats.  Rats were housed in a temperature- and humidity-controlled vivarium with a 12-h light dark cycle 
(lights on 06:00 a.m.) with food and water available ad libitum. The study was carried out in accordance with the 
European Communities Council Directive of 22th September 2010 (2010/63/EU) and after approval by the local 
ethic committees (Senate of Berlin and Regierungspräsidium Dresden). All efforts were made to reduce animal 
suffering and number of animals used.

Preparation of the construct.  The pcDNA3-murine dopamine transporter38 (mDAT) cDNA-vector was kindly 
provided by Heinz Bönisch (Institute of Pharmacology and Toxicology, University of Bonn, Germany) (Fig. 1a). 
It contains the full coding region of the mDAT cDNA and has been cloned by PCR with a sense primer derived 
from the partial mDAT gene sequence and an antisense primer deduced from the rat DAT cDNA. In this con-
struct the CMV promoter was replaced by the rat NSE promoter isolated from the pNSE-Ex4 vector comprising 
2.6 kb of 5′​-untranslated sequence plus exon 1, intron 1, and 6 bp of exon 2 but not the ATG start codon of NSE. 
Sequencing was performed by the University of Calgary DNA Sequencing Laboratory to confirm the sequence of 
the construct. The construct consisting of NSE promoter, mDAT coding sequence, and bovine growth hormone 
polyadenylation sequence was excised from the pcDNA3 vector with NruI/NaeI, purified by agarose gel electro-
phoresis and gel extraction using the QIAquick gel extraction kit and used for microinjection. The NSE promoter 
was chosen for the expression of DAT to avoid probable unpredictable effects due to increment in monoamine in 
dopaminergic nerve endings.
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Generation of transgenic rats was conducted as reported previously39. Briefly, immature female 
Sprague-Dawley (SD) Hanover rats (28 to 35-day-old from Janvier Labs, France) were induced to superovulate 
by intraperitoneal (i.p.) injection of PMSG (15 IU, Intervet) and hCG (30 IU Sigma). Thereafter, rats were mated 
with fertile males and 24 h later sacrificed to collect fertilized eggs. The DNA construct was microinjected into the 
pronucleus of zygotes40,41. Eggs were cultured for two hours and the surviving DNA-injected zygotes were trans-
ferred into the oviducts of pseudopregnant SD recipients at the day the vaginal plug was detected. Integration of 
the transgene was determined by transgene-specific PCRs with genomic DNA isolated from tail biopsies of the 
offspring after weaning (Fig. 1b). Neurobiological and behavioral studies were conducted on adult male hem-
izygous DAT-transgenic rats (DAT-tg) ubiquitously overexpressing DAT in the corticostriatal and the associated 
networks. Wildtype (wt) rats served as controls. Immunohistochemical staining of DAT expression was carried 
out for wt and DAT-tg rats (Fig. 1c).

Tissue processing.  For Western blotting (WB), quantitative real time PCR (qPCR), and post mortem HPLC, 
and MAO activity assay, rats were decapitated and micropunches were taken bilaterally from 0.5–1 mm thick 
brain slices from the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), thalamus (Thal), hippocam-
pus (Hipp), nucleus accumbens (Nacc), caudate putamen (CPu), globus pallidus (GP) and subthalamic nucleus 
(STN) as described previously42. The total RNA and protein was extracted using the NucleoSpin RNA/Protein-Kit 
(Machery-Nagel, Düven, Germany). For immunostaining, rats were transcardially perfused, brains postfixed in 
4% paraformaldehyde and cryosectioned in 40-μ​m serial coronal frozen sections.

Western blotting.  Protein concentrations were determined using a Nanodrop Spectrophotometer (peqlab) 
(UV 280 nm). Samples (pooled Nacc and CPu specimen only) were loaded alongside Precision Plus Protein 
Kaleidoskope Standards (Bio-Rad), subjected to discontinuous electrophoresis on 10% SDS-polyacrylamide 
gels and then transferred onto PVDF membranes (Roth) by electroblotting. Membranes were first incubated in 
SuperBlock T20 (TBS) Blocking Buffer (Lifetechnologies) at room temperature for 1 hour, and then incubated 
at 4 °C overnight with the primary antibodies: anti-DAT (1:200 dilution, Santa Cruz, sc-14002). A ß-actin anti-
body (1:800 dilution, Cell Signaling. 4967S) was used for internal control. Membranes were washed and incu-
bated with horseradish peroxidase-conjugated secondary antibodies (1:5000 dilution, Amersham, ECL Rabbit 
IgG, HRP-linked whole antidbody: GE Healthcare Life Science NA934) at room temperature for one hour. For 
repeated analysis, membranes were stripped with Restore™​ Plus Western Blot Stripping Buffer (Thermoscientifc). 
Detection of immunoreactive bands was conducted using the Western lighting plus enhanced chemilumines-
cence (ECL) reagent (PerkinElmer) on a cooled charge-coupled device camera (FLI Proline PL09000, PA, USA). 
Images were processed using the Image J software.

qPCR.  RNA concentrations were determined using a Nanodrop Spectrophotometer (peqlab). cDNA was syn-
thesized using the High Capacity RNA-to-cDNA Kit (Lifetechnologies). TaqMan qPCR was performed with 
StepOne Real-Time PCR System (Lifetechnologies) using TaqMan fast advanced master mix (Lifetechnologies). 
The following TaqMan Gene Expression assays (Lifetechnologies) were used: DAT (Rn00562224_m1), DRD1 
(Rn 03062203_s1), and DRD2 (Rn01418275_m1). CT values were normalized to the house keeping gene GFAP 
(Rn00566603_m1, Lifetechnologies), fold change was calculated using the ∆​∆​CT method.

Monoamine oxidase activity assay.  For assessing monoamine oxidase (MAO) activity, CPu punches were 
homogenized by ultrasonication in 70 ul assay buffer of a fluorometric assay kit (biovision K795–100). MAO 
activity was assessed according to the user manual.

Post mortem HPLC.  Post mortem HPLC was conducted as described previously42. Dopamine and its metab-
olite DOPAC were separated on a column (ProntoSil 120-3-C18-SH; Bischoff Analysentechnik und -geräte 
GmbH, Germany) and electrochemically detected (Chromsystems Instruments & Chemicals GmbH, Germany). 
Glutamate and GABA were precolumn-derivatized with o-phthalaldehyde-2-mercaptoethanol, separated on a 
column (ProntoSil C18 ace-EPS) and detected by their fluorescence at 450 nm after excitation at 330 nm.

Immunostaining.  Free-floating sections were stained with antibodies against Ki67 (1:500, Novocastra, 
NCL-Ki67p), NeuN (1:5000, Millipore MAB377), DAT (1:50, Millipore AP1569P), Parvalbumin (PV+​, 1:500, 
Antikörper-online, ABIN1742405), c-Fos (1:100, Santa Cruz, sc-52) and detected with goat-anti-rabbit bioti-
nylated secondary antibodies (1:1000, Vector Laboratories, BA1000). For PV+​ immunostaining, one-in-twelve 
series from the rostral-caudal extent of the mPFC, Hipp, CPu and GP and for Ki67 immunostaining one-in-twelve 
series from the Hipp and the subventricular zone (SVC) were analyzed. For c-Fos and NeuN immunostaining, 
the number of positive nuclei that fell within a 0.5 ×​ 0.5 mm area (x 2,5 objective) in the mPFC, OFC, Thal, Hipp, 
Nacc, CPu, GP and STN was counted from one-in-twelve series sections from the rostral-caudal extent of the 
respective regions43. A representative picture of the DAT transporter was obtained.

MRI.  MRI was performed using a 7 Tesla rodent scanner (Pharmascan 70/16, Bruker BioSpin,Ettlingen, 
Germany) and a 1H-RF quadratur-volume resonator with an inner diameter of 20 mm on ex vivo brains. Data 
acquisition and image processing were carried out with the Bruker software Paravision 5. All brains had been 
perfused and snap frozen in methylbutan. 24 hours prior to the scan, all brains were placed in phosphate-buffered 
saline (PBS) and stored at 4 °C, to allow for the defrosting of the brains. On the day of MRI acquisition, rat brains 
were placed in a 15 ml Falcon tube containing PBS–with the anterior-posterior axis of the brain co lining with the 
long axis of the tube. For imaging the whole brain a T2-weighted 2D turbo spin-echo sequence was used (imaging 
parameters TR/TE =​ 5980.3/36 ms, rare factor 8, 4 averages, 50 axial slices with a slice thickness of 0.5 mm, field 
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of view of (FOV) 20.59 ×​ 20.59 mm, matrix size 256 ×​ 256). Brain structure volume was estimated as the mean 
magnitude of regions of interest (ROI) using ImageJ software.

Electrophysiology.  Local field potentials (LFPs) were recorded under urethane anesthesia (1.2 g/kg i.p., 
Sigma Aldrich, Germany) as descried previously44. Monopolar recording electrodes (polyimide insulated stain-
less steel, 0.125 mm, Plastics One, USA) were implanted ipsilaterally into the left mPFC, Nacc shell, and STN 
at the following coordinates with respect to bregma: mPFC: AP =​ 3.5, ML =​ 0.6, DV =​ −​3.4, Nacc: AP =​ 1.2, 
ML =​ 1.8, DV =​ −​8.1, STN: AP =​ −​3.6, ML =​ 2.5, DV =​ −​7.645. Recordings were referenced against 1.2 mm 
steel screws affixed to the skull in close proximity to each recording electrode. Signals were bandpass filtered 
(0.05 Hz–300 Hz), amplified, sampled at 1 kHz and digitized using a programmable neuronal data acquisition 
system (Omniplex, Plexon, Texas, USA). Recordings were conducted over a period of five hours. Offline data 
from the mPFC were inspected visually to identify and analyze epochs (40–50 s) of robust activated synchroni-
zation states (AS) reflecting signals of awake behaving rats46. The same time segments identified to show robust 
AS in the mPFC were also used for analysis of LFPs from the Nacc shell. Power spectral densities of the LFP data 
segments were calculated by employing the Fast Fourier Transform function (Spike 2 Version 6 data analysis soft-
ware; Hanning Window (1024 ms), 0.9766 Hz resolution). Frequency spectrum was divided into four EEG bands: 
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–100 Hz). Power spectra were normalized to total 
power between 103–147 Hz and 153–197 Hz. Power was averaged across the specific frequency bands and further 
expressed in arbitrary units (a. u.). Correct electrode tip placements were histologically verified.

Behavioral analysis and drug treatment.  Amphetamine-Induced stereotypy.  Testing took place in indi-
vidual testing boxes (50 ×​ 50 ×​ 50) composed of 4 identical Plexiglas walls. Boxes were visually isolated from 
each other by an opaque screen. Experiments were performed over three consecutive days, during which animals 
were subjected to the three different dosages of d-amphetamine (i.p 0.5 mg/kg, 2.0 mg/kg or 5.0 mg/kg, dissolved 
in 0.9% saline at a volume of 1.0 ml/kg, Sigma Aldrich, Germany) in a cross over design. On testing days and 
prior to injection animals were habituated to the testing boxes for 20 min. Following injection, animals were 
immediately placed back into the testing boxes and behavior was recorded for 120 min. For analysis, the 120 min 
test was divided into 5-min segments and the most prominent behavior was scored for each segment. Behavioral 
scoring was based on an adapted version of the scoring protocol employed by Carter et al.47 dividing behavioral 
expression into (i) limited exploratory activity with discontinuous sniffing/grooming/rearing (no locomotion), 
(ii) constant exploratory activity with discontinuous sniffing/grooming/rearing (locomotion), (iii) continuous 
rearing (rearing), (iv) continuous sniffing (sniffing), (v) continuous biting, gnawing or licking (oral stereotypy), 
(vi) continuous head swaying/head bobbing (head movements).

Amphetamine and clonidine/fluoxetine treatment.  Testing took place in testing boxes as described above. 
Experiments were performed over two testing days 72 h apart, during which animals were randomly assigned to 
treatment (clonidine/fluoxetine) or control (saline) conditions in a cross over design. On both testing days, all 
animals were initially habituated to testing boxes for 20 min after which they were injected with amphetamine 
(2.0 mg/kg, dissolved in 0.9% saline at a volume of 1.0 ml/kg, Sigma Aldrich, Germany), placed back into the 
testing boxes and video recorded. 50 min after amphetamine injection, animals were injected with clonidine (i.p 
0.01 mg/kg, dissolved in 0.9% saline at a volume of 10 ml/kg, Sigma-Aldrich, Germany), fluoxetine (20 mg/kg, 
dissolved in 0.9% saline at a volume of 1.0 ml/kg, Hexal, Germany) or saline after which they were placed back 
into the testing boxes. Behavior was analyzed for the period of most prominent expression of oral stereotypy in 
drug-free conditions, i.e. 80–120 min post amphetamine application. For analysis, the 40 min test period was 
divided into 5-min segments and the most prominent behavior was scored for each segment as described above.

Quinpirole induced repetitive behavior.  Rats treated chronically with the dopamine D2/D3 receptor agonist 
quinpirole (QNP) develop compulsive-like behaviors that resemble compulsive checking behavior of OCD 
patients15. Rats were injected subcutaneously twice weekly for a total of 10 injections with either saline or QNP 
hydrochloride (0.5 mg/kg body weight, 0.5 mg/ml 0.9% NaCl, Sigma®​ Aldrich, Germany). Fifteen minutes after 
each injection, animals were placed in an open field that consisted of a glass table (140 ×​ 140 and 20 cm high) 
subdivided into 25 rectangles (locales) and equipped with 4 plexiglas boxes at fixed locations. The 10th session, 
when QNP treated rats are known to display compulsive checking behavior was videotaped and analyzed using 
tracking software (VideoMot 2 system, TSE, Bad Homburg, Germany). The following measures were assessed: 
(i) total distance traveled, (ii) total time of activity/inactivity, (iii) frequency of stops at each open field locale, 
(iv) mean duration of return time to a given locale, (v) mean stop duration at a given locale, (vi) total duration 
of stops at a given locale. The locale with the highest total duration of stops was individually defined as the home 
base and compulsive checking behavior was analyzed with reference to the HB. Compulsive checking is present 
if the rat meets the following three criteria: it returns to HB excessively often, excessively rapidly, and visits less 
places before returning to the HB. As repeated administration of QNP increases locomotion and since checking 
behavior requires locomotion, arithmetic was applied allowing the assessment of checking behavior relatively 
independent from locomotion. Specifically, for each rat individually, the expected rate of return to a locale was 
calculated by dividing the total number of visits in a session by the number of locales visited. Next, the ratio 
of observed to expected HB visits was calculated by dividing the number of visits to the HB with the expected 
rate of return to a locale. Additionally, the total time spent on grooming/oral stereotypy on the 10th test day was 
calculated.
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Startle stress response.  Animals were exposed to unpredictable acoustic stimulus to investigate the effect of 
stressor-exposure on repetitive behaviour. Animals were placed in the chambers used for prepulse inhibition 
(PPI) test. The plastic enclosure used to restrain the rats during PPI testing was removed. The door was left open 
and a piece of clear Plexiglas was placed in front of the opening of the chamber to prevent the rats from escaping. 
Rats were acclimated to the box for 10 min, then a PPI protocol was initiated and run for 10 min, thereafter rats 
were left undisturbed for further 10 min12. The process was recorded and scored on playbacks. The total time 
spent on grooming as well as the number of whole body shakes during the 20 min after PPI protocol initiation 
was analyzed.

Prepulse inhibition of an acoustic startle response.  Acoustic startle response (ASR) and PPI of the ASR was 
assessed using a standard startle chamber (SR-lab, San Diego Instruments). An adapted version of the general 
SR-LAB startle response user manual was applied. Animals were exposed to a 5 min acclimatization phase of 
white noise at 65 dB, followed by 5 initial startle stimuli (120 dB, each presented for 40 ms). The test session was 
pseudorandomized and composed of 40 startle stimuli presented either alone (120 dB for 40 msc), or proceeded 
by a pre-pulse of either 69, 73 or 81 dB for 20 ms, 100 ms before the startle. Each pulse or pre-pulse trial was 
separated by inter-trial intervals of a randomized duration ranging from 15–30 seconds, during which white 
background noise was presented (65 dB), leading to a total testing time of approximately 40 min. The animals’ 
startle reaction to the stimuli alone and to the pre-pulse trials was measured for 100 ms following the stimu-
lus and amplitude as well as percentage decrease in startle response with pre-pulses (pre-pulse inhibition) was 
estimated41.

Elevated plus maze.  Animals were placed in the center of an elevated plus maze (EPM, 42 ×​ 42 cm, arm width: 
23 cm), composed of two closed and two open arms. The animals were allowed to freely explore the maze for 
5 min, while behavior was recorded via a web camera. The total time spent on open arms (OA, with both front- 
and hind paws placed on the arm) was determined48.

Forced swim test.  Animals were conditioned to water-filled glass cylinders (depth of 30 cm, 25 °C) for 15 min 
24 h prior to testing. The cylinders were visually isolated from each other by an opaque screen. On testing day, 
animals were placed in the cylinders for 5 min and behavior was recorded via a web camera. For behavioral anal-
yses, the 5 min test was divided into 5-second segments and the most predominant behavior was determined per 
segment (struggling, swimming and floating behaviour)48.

Sucrose consumption test.  48 h prior to testing, animals were habituated to the individual testing cages and 
bottles (containing water). 24 h thereafter, animals were habituated to the sweetend condensed milk (Nestlé, 
Milchmädchen gezuckerte Kondensmilch, (1:3)) for 30 min in their home cage and subsequently food restricted 
until time of testing (15 g per animal). On the day of testing, animals were placed in the individual cages with free 
access to the sweetend condensed milk for 15 min. Bottles were weighed before and after testing. The amount of 
sweetend condensed milk consumed normalized to individual body weight was calculated48.

Blinding.  Throughout the experiments best possible blinding was conducted. For video tracking during 
behavioral testing, animals were number-coded such that the experimenter was blinded to phenotype and treat-
ment condition during later video analysis. The same system was applied to neurobiological analysis.

Statistical analysis.  Data are shown as means ±​ s.e.m. We used Student’s t test to calculate significant dif-
ferences between wt and DAT-tg rats. We used two-way ANOVA with the factors phenotype (wt, DAT+/) and 
treatment (saline, QNP) for behavioral analysis of QNP induced repetitive behavior, and two-way ANOVA with 
repeated measure with the factors phenotype (wt, DAT-tg) and treatment (saline, clonidine/fluoxetine) for drug 
experiments followed by Holm-Sidak post hoc test if applicable. Significance was set at P <​ 0.05.
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