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Abstract: People with severe disabilities require assistance to perform their routine activities; a
Human–Machine Interface (HMI) will allow them to activate devices that respond according to their
needs. In this work, an HMI based on electrooculography (EOG) is presented, the instrumenta-
tion is placed on portable glasses that have the task of acquiring both horizontal and vertical EOG
signals. The registration of each eye movement is identified by a class and categorized using the
one hot encoding technique to test precision and sensitivity of different machine learning classifica-
tion algorithms capable of identifying new data from the eye registration; the algorithm allows to
discriminate blinks in order not to disturb the acquisition of the eyeball position commands. The
implementation of the classifier consists of the control of a three-wheeled omnidirectional robot to
validate the response of the interface. This work proposes the classification of signals in real time
and the customization of the interface, minimizing the user’s learning curve. Preliminary results
showed that it is possible to generate trajectories to control an omnidirectional robot to implement in
the future assistance system to control position through gaze orientation.

Keywords: EOG; one hot encoding; machine learning; omnidirectional robot

1. Introduction

The EOG signal is generated by the potential difference between the retina and the
cornea of the eye by means of superficial electrodes; the horizontal (left–right) and vertical
(up–down) eye movements can be detected [1–3]. In recent years, HMI has been imple-
mented using EOG since its acquisition is less invasive compared to electroencephalog-
raphy (EEG) [4–6]. In addition, artificial intelligence algorithms have been used which
allow the classification of EOG signals for the control of wheelchairs, orthotics, assistance
robots and HMI [7–9]. In [10], for example, the horizontal EOG channel is used to generate
control commands for a lower limb orthosis, these commands are detected in a three-second
sampling window to avoid false activations of the system and the processing is done in
machine language. In [11], an Internet search engine was developed using horizontal and
vertical EOG signals, the user’s impulses are obtained by deriving the signal and using a
prediction algorithm of words, getting a response time of between 80 and 100 s. In [12], a
hybrid brain–computer interface (hBCI) is carried out, through the union of EOG and EEG.
Classification is done using the EEG signal with a Support Vector Machine (SVM) and the
EOG signal is used to eliminate noise on EEG acquisition. In [13], an interface method
is proposed to improve the letter selection on a virtual keyboard, where an EOG-guided
mouse points to interactive buttons with audio; click is controlled by blinking.
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Other systems classifying EOG signals using fuzzy logic and a database that store
waveform information from different users have been developed [14–18] in order for the
interface to compare the parameters of each user with previously established commands.
One of the most representative works is presented in [19]; Fuzzy PD control is applied
to the horizontal EOG channel that generates a wheelchair’s rotation to the right or left
and the vertical EOG indicates forward or reverse. In [20], a writing system for people
with disabilities is designed; the similarity of the trajectories generated by the movement
of the eye and the shape of the letters is determined by fuzzy Gaussian membership
functions. The training generates a database, which is the input to a multilayer neural
network determining the letter that the user wants to write using EOG signals. In addition,
the EOG has been applied in other fields such as industrial robotics; for example, in [21]
a speed control system of a FANUC LR Mate 200iB industrial robot is developed using
EOG. The signal amplitude is classified; the voltage value is previously divided into three
thresholds; the user must reach the defined amplitude, otherwise the robot will not activate.
The authors in [22] also developed a portable EOG acquisition system, which generates
position control commands for an industrial robot using a nine-state machine, concerning
which it was tested whether making the end effector followed five points; the obtained
response time was of 220 s with trained users. In [23] a review of EOG based human–
computer interface systems is presented; the work of 41 authors is explained, where the
interfaces used to move a device always generate points in coordinates X-Y, as is the case
for control of wheelchairs, Mohd et al [19]. In this paper, research did not generate a three-
dimensional workspace; unlike the one presented in [24] where the EOG signals activate a
robot with three degrees of freedom in 3D Cartesian space, the Cartesian coordinates X, Y,
Z are generated by a fuzzy classifier that is automatically calibrated using optimization
algorithms. The system response time, from the user’s eye movement until the robot
reaches the desired position, is 118 s. This is less than that reported in the works presented
in [23]; however, in this research it was found that to control a device that moves in a
Cartesian space a state machine is insufficient to describe all the points in the workspace
and does not allow track trajectories.

Some authors have as an alternative method the hybrid Brain–Computer Interfaces
(BCIs) using eye-tracking to control robot models. Reference [25] presents the motion
of an industrial robot controlled with eye movement and eye tracking via Ethernet.
Reference [26] presents a hybrid wearable interface using eye movement and mental focus
to control a quadcopter in three-dimensional space. Reference [27] developed a hybrid BCI
to manipulate a Jaco robotic arm using natural gestures and biopotentials. Reference [28]
presented a semi-autonomous hybrid brain–machine interface using human intracranial
EEG, eye tracing and computer vision to control an upper limb prosthetic robot.

In regards to the EOG work related to classifiers, Fang et al. published in their pa-
per advances about visual writing for Japanese Katakana [20]. Since Katakana is mainly
composed of straight lines, researchers developed a system to recognize 12 basic types of
hits. By recognizing these strokes, the proposed system was able to classify all Katakana
characters (48 letters). For six participants, Katakana recognition accuracy was 93.8%.
In this study, a distinguishing feature implemented was the continuous eye writing. By
ignoring small eye movements, the system could recognize the eye writing of multiple
letters continuously without discrete sessions. The average entry rate was 27.9 letters per
min. Another work related to eye movement is [29]. There, character classifiers written by
the eyes were implemented using an artificial neural network (quantification of learning
vectors) for eye writing recognition. The average accuracy in character detection was 72.1%.
In works of Fang and Tsai, eye movement is applied to writing; we use them to create com-
plex trajectories of a robot’s movements; in addition, machine learning classifiers are used
to analyze eye movement. Computational models were developed to identify antioxidants
in the laboratory and machine learning was used for this purpose. The validation method
used in this study is 10-fold cross validation, whereas in Fang and Tsai, the following
validation metrics were used: Sensitivity of 81.5%, specificity of 85.1% and accuracy of



Sensors 2021, 21, 5882 3 of 29

84.6%. In [30], the random forest classification algorithm is used to validate the efficiency
of the computational method. Genes are the subject of study in computational biology and
models of classification algorithms have been proposed to determine essential genes and
sequencing problems. The metrics used for the validation method were: Sensitivity 60.2%,
specificity 84.6%, accuracy 76.3%, area of Receiver Operating Characteristic (ROC) curves,
also called AUC with a value of 0.814 [31]. The aforementioned study demonstrated the
importance of supervised classification and the metrics used, metrics that are determinative
and recognized by researchers in machine learning, are reliable metrics to measure the
accuracy of classifiers.

Three contributions are presented in this work: First, the designed acquisition system
allows to obtain the EOG signal, which is free from interference induced noise, by applying
a digital filter which is tuned analyzing the EOG frequency spectrum in real time, for
selecting its cutoff frequency; the second contribution is the verification of the performance
of different classifiers to choose the best algorithm for the EOG signal model and to control
a robotic system, based on the result of precision, accuracy and computational cost for the
development of the model in an embedded system; the third contribution proposed is the
discrimination of the involuntary potentials model such as blinking; this characteristic does
not affect the operation of the classifier, taking this property as a total stop of the system.
The assistance system implements modeling through a Multilayer Neural Network (MNN)
to generalize the classification of EOG signals. So, if there is an amplitude variation of the
signal due to user change or clinical problems, the algorithm must search the dataset for
an entry for the classifier and thus assign a response to the system. The system presented
in this work customizes the classification system and adapts to the individual properties
of the user.

Section 2.1 describes in detail each of the classifiers implemented to choose the best one
for identifying the eye registration of both EOG channels and introduces the basics of the
EOG signal. Section 2.3 details the design of the HMI. In Section 2.4 using machine learning
and the horizontal and vertical EOG signal, the Cartesian coordinates are generated to
position a robot using a PID control. In Section 3 a test is presented to evaluate the response
time of the proposed system and a discussion of the contributions of the developed interface
is made.

2. Materials and Methods
2.1. Classifiers
2.1.1. Multilayer Perceptron (MLP)

MLP is a neural network that aims to solve classification problems when classes cannot
be separated linearly. This neural network mainly consists of three types of layers which
are the input layer, the intermediate or hidden layers and the output layer [32]. Researchers
in machine learning consider this classifier to be a good pattern classifier. The classifier
works as follows: Neurons whose output values belong to the corresponding class are in
the output layer. Neurons in the hidden layer, as a propagation rule, use the weighted sum
of the inputs with the synaptic weights and a sigmoid transfer function is applied to this
sum. The backpropagation error uses the root mean square error as a cost function.

2.1.2. Tree-Type Classifiers

There are tree-type classifiers such as C4.5, ID3, random forest and random tree and
J48 [33,34]. These decision tree algorithms can be explained as follows: For iteration n and
taking as a criterion an already established variable, the predictor variable is searched to
decide the cut that was made as well as the exact cut point where the mistake made is
minor. This would happen when the confidence levels are higher than those established.
After the cutoff, the algorithm will execute if the predictor variables are above the defined
higher confidence level. The level of confidence is important since given too many subjects
and variables, the tree will result in a large one. To avoid this situation, the size of the tree
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is limited by assigning a minimum number of instances per node. These algorithms are the
most used in the classification of patterns.

2.1.3. Naïve Bayes (NB)

Naïve Bayes classifier is widely used in machine learning. It is based on Bayes’
theorem [35]. Bayes proposed that we learn from the world by approximations and that the
world is neither probabilistic nor uncertain, which allows us to get very close to the truth the
more evidence there is. This classifier assumes that the presence or absence of an attribute
is not probabilistically related to the presence or absence of other attributes, different from
what happens in the real world. The Naïve Bayes classifier consists of converting the data
set into a frequency table. In addition, a probability table is created for the various events
to occur. Naïve Bayes is applied to calculate the posterior probability of each class and the
prediction class is the class with the highest probability. The classifier, due to its simplicity,
allows to easily build probability-based models with very good performance.

2.1.4. The K Nearest Neighbors (K-NN)

The K-Nearest Neighbor (K-NN) classifier is a widely used algorithm in supervised
learning [36]. The concept of the classifier is intuitive. Each new attribute that is presented
to the K-NN is classified to the class of its closest neighbor. The algorithm calculates the
distance of the new attribute with respect to each of the existing attributes, the distances
are ordered from least to greatest and the class with the highest frequency and the shortest
distance is selected [37–40].

2.1.5. Logistic Classifier (Logistic)

This classifier is based on logistic regression [41]. Logistic regression, because it
does not require many computing resources, is widely used in machine learning as it
turns out to be very efficient. The most common models of logistic regression are the
classification of a binary value (yes or no; true or false) and the logistic regression model is
the multinomial (more than two possible outcomes). The Logistic classifier, to classify or
predict, assigns actual values based on the probability that the input belongs to an existing
class. Probability is calculated using a sigmoid function, where the exponential function
plays a very important role.

2.1.6. Support Vector Machines (SVM)

The concept of SVM is based on finding the hyperplane to separate the classes in
the data space [42–44]. This algorithm is born from the theory of statistical learning.
Optimization of analytical functions serves as the basis for the design and operation of
SVM algorithms.

2.1.7. Performance Measures

Within the supervised classification there are two processes or phases; one phase is
the learning phase and the other phase is the classification phase [45]. A classifier should
always have one data set for the training phase (P_train), which is also called a training
class and another data set for testing the performance of the class, which is called a test
class (P_test). Once the classifier learns, it is presented with a test class and as a result
the presented pattern sets will be assigned to the corresponding classes. Patterns will not
always be classified correctly, indicating that this is acceptable according to the no free
lunch theorem [46,47].

As the data acquired is stored in a set of data or attributes, a partition of the total
data set must be performed through a validation method. The method used in this paper
is the cross-validation method. This method guarantees that the classes are distributed
proportionally in each fold. The cross-validation method consists of dividing the total data
set into k folds. k must be a positive integer and the most used values for k in the state of
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the art are k = 5 and k = 10 [48,49]. For this paper, the cross-validation method used will be
k = 10.

Figure 1 exemplifies the behavior of the 10-fold cross-validation method, a data set
divided into three classes located into 10 folds is shown schematically. The process to create
the 10-fold cross-validation consists of taking the first pattern of class 1 and placing it in the
1 fold; the same is done for the second pattern, albeit placed in the 2 folds. This process is
repeated until Pattern 10 from Classes 1–3 are placed on the 10 fold. The process of 10-fold
cross-validation consists of performing 10 iterations. In the first iteration, the classifier
learns with the first 9 folds and the last fold is used for testing. The second iteration leaves
fold 9 to test and learn with the remaining folds and this process is repeated 10 times as
shown in Figure 1b.

Figure 1. (a) The 10-fold stratified cross validation method. A data set is divided into three classes
and located into 10 folds. (b) Operation of the 10-fold stratified cross validation method. The process
consists of performing 10 iterations; in the first iteration, the classifier learns with the first 9 folds
and the last is used for testing; the second leaves fold 9 to test and learn with the remaining folds
and so forth.

According to the confusion matrix in Figure 2, it is established that the i-th letter
(1 ≤ i ≤ k) allows defining the three performance measures in the confusion matrix, which
are sensitivity, specificity and balanced accuracy [50,51], measurements used in this paper.

Figure 2. Confusion matrix for k classes.

Ni indicates the total patterns of class i. nii is the number of patterns of class i that were
classified correctly. With the above, we can define the sensitivity performance measure for
class i as follows

Sensitivityi =
nii
Ni

(1)

A second performance measure is defined for class i. To do this, we take any class j
that is different from class i. That is 1 ≤ j ≤ k and j 6= i. Nj is the total of patterns that
belong to class j and nji is the number of patterns that are classified as class j, this being an
error because they belong to class i. This misclassification can be defined as
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Ni − nii (2)

The total of patterns that are correctly classified as not belonging to class i can be
defined as

k

∑
j=1,j 6=i

(Nj − nji) (3)

It is ensured that the total of patterns that do not belong to class i is calculated
as follows

(
k

∑
j=1

Nj)− Ni =
k

∑
j=1,j 6=i

(Nj) (4)

Based on Equations (3) and (4), the performance measure specificity for class i is
defined as

Speci f icityi =
∑k

j=1,j 6=i(Nj − nji)

∑k
j=1,j 6=i(Nj)

(5)

Balanced accuracy for class i is defined as

BalancedAccurracyi =
Sensitivityi + Speci f icityi

2
(6)

ROCareai =
Sensitivityi

1− Speci f icityi
(7)

Figure 3 shows the process used for performing to select the best classifier. Data
acquired by the EOG was stored in a .csv file and consists of the x,y coordinates and the
class to which the eye movement belongs. The data is partitioned according to the 10-fold
cross validation method and the partitions are presented to the classifiers. The performance
of the classifiers are evaluated by the ROC area metric to select the most appropriate
classifier for the EOG system.

Figure 3. Selection process of the best classifier.

2.1.8. Ranking Metric Results

Characteristics of each classifier were analized by eye movement. It is divided into
positive and negative action potentials; for the first case we have the movements to the
right and up, while for the second case the movements down and to the left are recorded;
these patterns are identified by a data vector called p that has the waveform of each EOG
channel; each eye movement is assigned an integer value that describes the class to which
it belongs. The results obtained of each classifier for each eye movement are presented.

From the results of Table 1, the multilayer perceptron classifier is chosen due to it
being an average value of sensitivity, precision, specificity and balanced accuracy of all the
analyzed algorithms. It best adapts to the following requirements of the developed HMI:
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• A newly created dataset of each individual;
• The model resulting from the classifier implemented in an embedded system with

memory characteristics lower than those of a personal computer;
• To determine the most appropriate classifier, the computational cost and the time

required for each classifier were considered. Since these are higher the more accurate
the classifier is, the multilayer perceptron classifier represents a balance between
computational resources and accuracy.

Table 1. Description of performance measures (sensitivity, specificity, balanced accuracy and preci-
sion) in different classifiers.

Classifier Sensitivity Specificity Balanced Precision ROC AreaAccuracy

Random 0.986 0.982 0.984 0.986 0.999Forest
Random 0.986 0.982 0.984 0.986 0.996Tree

J48 0.977 0.973 0.975 0.977 0.996
KNN-1 0.979 0.975 0.977 0.979 0.997
KNN-2 0.966 0.960 0.963 0.966 0.997
KNN-3 0.958 0.952 0.955 0.958 0.996
Logistic 0.683 0.805 0.744 0.683 0.889

Multilayer 0.755 0.836 0.795 0.755 0.889Perception
Support

0.669 0.853 0.761 0.669 0.882Vector
Machine

Naive 0.714 0.849 0.782 0.714 0.905Bayes

The configuration of the MLP was: Adam optimizer, W synaptic weights and b
polarization values, with 3000 epochs, four hidden nodes and two layers. W synaptic
weights and b polarization values are found in the results section.

MLP classifier was implemented in Python and the code is shown in Algorithm 1.

2.2. EOG Signal

The human eye is the anatomical organ that makes the vision process possible. It is
a uniform organ located on both sides of the sagittal plane, within the bony cavity of the
orbit. The eyeball is set in motion by the oculomotor muscles that support it (Figure 4a).
The EOG measures the action potential differential between the cornea and the retina,
called eye dipole, which is generated with each eye movement. A change in the orientation
of the dipole reflects a change in the amplitude and polarity of the EOG signal, as seen in
Figure 4b, from which the movement of the eyeball can be determined [21].

Six silver/silver chloride (Ag/AgCl) electrodes are used for obtaining two channels
recording horizontal and vertical eye movements. Two pairs are positioned close to the
eyes, one on the earlobe and the other on the forehead, as shown in Figure 5a. EOG signals
have amplitudes of 5 µV to 20 µV per degree of displacement, with a bandwidth of 0 to
50 Hz [13]. Eye movements useful for generating commands are saccadic movements, rapid
movements of the eyes between two fixation points, which can be performed voluntarily
or in response to visual stimulation. They reach a maximum displacement of ±45°, which
corresponds to the ends of the eye position [21].
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Algorithm 1: MLP algorithm implemented for the EOG.

1 P← Input_vector
2 T ← Output_vector
3

4 scaler ← StandardScaler(). f it(P)
5 P← scaler.trans f orm(P)
6

7 one_hot_labels = to_categorical(T, num_classes← 5)
8 P_train, P_test, T_train, T_test← train_test_split(P, one_hot_labels, test_size←

0.20, random_state← 42)
9

10 epochs← 3000
11 hiddenNodes← 4
12

13 model ← Sequential()
14 model.add(Dense(hiddenNodes, activation← relu, inputdim← 3))
15 model.add(Dense(5, activation←′ so f tmax′))
16

17 model.summary()
18

19 loss← categoricalcrossentropy
20 optimizer ← t f .keras.optimizers.Adam()
21

22 model.compile(loss← loss, optimizer ← optimizer, metrics← [′accuracy′])
23 history← model. f it(P_train, T_train, epochs← epochs, verbose←

1, validations plit← 0.1)
24 test_loss, test_acc← model.evaluate(P_test, T_test, verbose← 1)
25

26 weights(model.layers, 3)
27 scaling(scaler, 3)
28 layers(model.layers)

Figure 4. (a) Muscles involved in the orientation of the eyeball. Six muscles (per eye) are responsible
for generating all movements of the eyes in their bony orbits: Lateral rectus, medial rectus, superior
rectus, inferior rectus, superior oblique and inferior oblique. (b) Model of the ocular dipole of the
EOG registry. Measurement of action potential differential between cornea and retina.

2.3. Design of the HMI EOG

An HMI using EOG must be ergonomic and non-invasive [2]. For this reason, a system
was developed using glasses as an optical instrument, which allows the correct placement
of the electrodes on the face and embedding of the cards designed for the signal acquisition,
as indicated in Figure 5b. Furthermore, users are willing to use them without fear.
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Figure 5. (a) Correct placement of the electrodes near the eyes, in the ear lobe and on the forehead. Six
electrodes are used for horizontal and vertical movement signals. (b) Glasses designed to acquire the
EOG signal, the system allows the correct placement of the electrodes on the face for signal acquisition.

The proposed EOG-based HMI architecture is presented in Figure 6, in this section
the signal processing modules are described.

Figure 6. HMI structure. It includes: EOG signal acquisition, signal processing, pattern recognition,
multiclass classification, relationship between robot control variables and detected classes, PID
control and ominidirectional robot movement.

2.3.1. Analog Signal Processing

To ensure proper acquisition of the EOG signal, this module must meet the follow-
ing characteristics:

• Use operational amplifiers with a high Circuit Mode Ratio Rejection (CMRR);
• Use a reference terminal connected to the forehead to decrease inductive noise and

DC component;
• The electrodes must be fixed to the skin. The best location is in the periphery of the

eye, in places with a greater bone proportion.

Consider the floating ground system for the elimination of muscle noise by means of
an electrode connected to the earlobe. A portable EOG acquisition card was designed for
analog processing that includes modules of amplification, isolation and filtering, which
are described in this section. In addition, the designed board includes a noise-reducing
ground layer and hospital-grade cables for connection to decrease inductive interference,
see Figure 7.
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Figure 7. Portable EOG acquisition card. It was designed for analog processing including amplifica-
tion, isolation and filtering modules.

Amplification and DC elimination module. A preamplification stage was designed
to obtain the differential signal and amplify it with a gain of 100, as the acquired EOG
signal was in microvolts. An amplification system with a gain of 50 is connected to
reach the voltage level necessary to sample the signal. It is implemented using an AD620
Instrumentation Amplifier (Analog Devices, Norwood, MA, USA) with a CMRR greater
than 100 dB. To remove the DC level an Integrator circuit is used for feedback concerning
the EOG signal at the reference terminal of the AD620, see Figure 8. It acts as a high pass
filter preventing instrumentation amplifiers are saturated.

Figure 8. Amplification module and DC elimination module. It is implemented using an AD620
Instrumentation Amplifier with a CMRR greater than 100 dB, to remove the DC level an Integrator
circuit is used for feedback concerning the EOG signal at the reference terminal of the AD62.

The muscle signal is considered as noise and it does not allow to obtain a good
interpretation of the EOG signal. To eliminate it, the output of the common-mode circuit
of the AD602 amplifier is connected to the earlobe through an electrode so as to return
noise of the muscle signal at the input of the amplifier, thus the AD620 subtracting the
noise signal of the EOG signal affected by noise. Additionally, the electrode placed on
the the user’s forehead is connected to the isolated ground of the circuit. Through these
connections the D.C. component, generated by involuntary movements and poor electrode
connection, is eliminated.

Isolation module. For the user’s safety, a physical capacitive electrical isolation was
implemented between the user and the measurement system, using the IC ISO122 (Texas
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Instruments, Dallas, TX, USA) that generates a modulation–demodulation process using
electrolytic capacitors of 1 µF, see Figure 9.

Figure 9. Isolation module using the IC ISO122 that generates a modulation–demodulation process
using electrolytic capacitors of 1 µF.

Analog filters. To remove frequency components that are outside the bandwidth of the
EOG signal, 0.5 Hz to 50 Hz, a second order band-pass filter was designed in a Butterworth
configuration, with a unity gain of 40 dB per decade, using TL084 high impedance op
amps, precision resistors and tantalum capacitors, Figure 10.

Figure 10. Second order filters in Butterworth configuration at 40 dB/decade. It helps to remove
frequency components that are outside the bandwidth of the EOG signal, 0.5 Hz to 50 Hz.

2.3.2. Digital Signal Processing

The output of the acquisition stage of each EOG channel was connected to the differ-
ential voltage input of a DAQ6009 acquisition card that communicates with a PC through a
USB port at a data transfer rate of 500 Hz sufficient for EOG signal sampling rate. When the
EOG signal is acquired, induced noise appears as interference of unknown frequency, see
Figure 11. The objective of this stage is to design a digital notch filter, to eliminate unknown
noise frequencies, using Fast Fourier Transform (FFT). The EOG signal is sampled by
implementing a convolution with a Dirac delta pulse train as a function of time, where x[n]
is a signal represented in the Fourier exponential series, with ak as the energy amplitude of
the signal.

x[n] = ∑
k=N

akej eπ
N kn = a0ej eπ

N 0n + a1ej eπ
N 1n + ... + a0ej eπ

N (N−1)n (8)
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Frequency spectrum analysis is performed by applying the Fourier transform to the
discrete signal x[n], resulting in a delta function train in frequency X(ejw), whose amplitude
is determined by the coefficients ak. Using Equation (9), the discrete signal is transformed to
the Fourier exponential form; the frequency spectrum determines the energy components
of the EOG signal.

X[ejw] =
∞

∑
k=−∞

ak2πδ(w− 2π

N
k) (9)

Figure 11. EOG signal with induced noise. Acquisition of EOG signal with induced noise as
interference of unknown frequency.

In Figure 12, the frequency component that provides the most energy is the 60 Hz
signal; this data accurately provides the frequency of the unknown induced noise and
the cut-off frequency for the design of a digital notch filter; the transfer function is the
Equation (10):

H(z) =
Y(z)
X(z)

=
(z− ejΩ)(z− e−jΩ)

(z− riejΩ)(z− rie−jΩ)
, (10)

where Ω is the digital angular frequency, which is related to the analog angular frequency w,

Ω = Tw (11)

with T as the sampling period, r is the value within the unit radius circle in the z plane,
where the desired complex-conjugate poles must be located for the design of the filter,
whose relation to the filter bandwidth (BW) is Equation (12),

r ≈ 1− BW
fs

π (12)
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Figure 12. Frequency Spectrum of the EOG signal from FFT; according to this the cut-off frequency
for the design of the digital filter is 60 Hz.

To calculate the filter transfer function, a pair of complex-conjugated zeros are placed in
the unit radius circle in the z plane, corresponding to the 60 Hz frequency. The coordinates
in the complex plane where these zeros will be located, are calculated from the digital
frequency, Equation (11), using the sampling rate of the acquisition, 500 Hz and the cutoff
frequency for the 60 Hz filter.

Ω = Tw = ±360◦(
60

500
) = ±43 =

43
180

π (13)

To design the band reject filter, a pair of conjugated complex poles are placed at an
angle given by Ω with a radius r, calculated from Equation (12) with design specifications
BW = 50 Hz and fs = 500 Hz. Figure 13a shows the location in the complex plane z of the
poles and zeros used for the filter design; Figure 13b shows the frequency response of the
designed filter.

r ≈ 1− BW
fs

π = 1− 50
500

π = 0.686 (14)

Figure 13. (a) Map of poles and zeros of the digital filter. The location in the colplex plane z of poles
and zeros for the filter design. (b) Notch digital filter phase diagram. Frequency response of the
designed filter.

The corresponding transfer function for the notch filter is presented in

H(z) =
Y(z)
X(z)

=
(z− ej 43π

180 )(z− e−j 43π
180 )

(z− 0.686iej 43π
180 )(z− 0.686ie−j 43π

180 )

H(z) =
z2 − 1.4627z + 1

z2 − 1.00342z + 0.470596

(15)
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By performing a digital convolution between the EOG signal and the filter transfer
Equation (15), a signal is obtained without the induced noise. With the inverse transform
Z, the discrete signal changes to a continuous signal, the result is presented in Figure 14,
where the EOG signal free of induced noise is observed.

2.4. Classification of the EOG Signal by Multilayer Perceptron

In this section, the implementation of an intelligent system for the classification of
the movement of the eyeball acquired through EOG is presented. The first stage consists
of data normalization since the EOG thresholds have different scales and intervals; the
implementation of this technique is described in Equation (16). Where p2 represents the
dataset of the EOG signal through a vector with two channels, this will be the input of the
neural network; the mean of the data is subtracted with a standard deviation equal to 1 to
minimize the learning difficulty of the neural network.

p2 =
p− pmean
√

pvar =
p− pmean

pstd (16)

Figure 14. Filtered EOG signal. EOG signal free of induced noise.

To perform the identification of patterns in the EOG signal through two channels,
they are divided into negative action potentials (left/down), positive action potentials
(right/up) and inactivity potentials (blinking and involuntary movements when looking
straight ahead). Each of these classes of the EOG signal is labeled by an integer. This
type of encoding is appropriate if there is an order relationship between the categories;
this type of data is known as ordinal. Figure 15 shows the waveform of each of the
EOG channels and the eye movement it represents; also, the detection of blinking in both
EOG channels (horizontal/vertical) is added to the training dataset in order to prevent
involuntary movements being recognized as control commands.
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Figure 15. Graphical representation of the dataset. Horizontal and vertical EOG waveforms and the
eye movement they represent; class 1: Blink and look ahead; class 2: Right; class 3: Left; class 4: Up;
class 5: Down.

Figure 16 shows the labeling of each class for the two EOG channels and Algorithm 2
shows the pseudocode for the implementation of the neural network in Python; in Figure 17
there is an association between the precision of the neural network with new data (train
loss) and the value of the loss function (val loss) after 3000 epochs; both graphs have a
tendency to zero as the training progresses, presenting a correct operation of the optimizer.
The training was carried out by assigning to each sample the value of a constant stored in
the vector (T]); this vector is the desired result for each class of the same size as the input
vector (p); through this labeling, supervised training of the MLP is enabled.

Figure 16. Graphical representation of the dataset (input vector p2). Input vector p2 represents the
class 1: Blink and look ahead; class 2: Right; class 3: Left; class 4: Up and class 5: Down, and output
vector T2 labeling stored by one-hot encoding of each class.
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Figure 17. Graph of the trend of the neural network accuracy with new data (train loss) and the trend
of the loss function (val loss). Relation of the precision of the neural network after 3000 epochs.

Values obtained from the synaptic weights W and the polarization vectors b of the
two neurons, after 3000 epochs:

W1 = [4][2] =


−0.325 0.128
0.372 0.299
0.077 0.470
−0.084 −0.792



W2 = [5][4] =


−0.567 −0.149 −0.361 −1.479
0.226 0.164 −0.345 0.027
0.034 0.352 −0.510 0.113
−0.041 −0.056 0.143 0.139
−0.267 −1.245 0.346 0.325


b1 =

[
−0.057 −0.094 0.064 0.138

]
b2 =

[
0.679 −0.051 0.100 −0.482 −0.355

]
2.4.1. Omnidirectional Robot

The system to be controlled is an omnidirectional three-wheeled robot that can rotate
on its own axis, rotate on the vertical axis and slide in all directions. The three degrees
of freedom that the robot has are defined by the variables µy which represents the linear
speed that moves the robot in the right and left directions, the variable µx represents
the linear speed that moves the robot in up and down directions, while the variable w
represents the angular velocity of the robot, as indicated in Figure 18. The kinematic model
must consider the characteristics of the omnidirectional robot, with a Swedish three-wheel
structure and a space of 120° between them, considering the contribution of each of the
wheels to the robot’s speeds µy and µx, that is, the radius of each wheel times the angular
velocity (R1q̇1, R2q̇2, R3q̇3), results in the individual linear velocity. The vector sum of each
of these speeds is the robot’s center speed.
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Algorithm 2: Neural network pseudocode.

Input: P2 (stored data vector)
1 /*** output vector T2 where the labeling value is stored by one-hot encoding of

each of the classes ***/
2 T2 ← [{0, 0, 0, 0, 1}, {0, 0, 0, 2, 0}, {0, 0, 3, 0, 0}, {0, 4, 0, 0, 0}, {5, 0, 0, 0, 0}]
3

4 Divide p2 into a test set (Ptest) and a training set (Ptrain)
5

6 /*** Random initialization ***/
7 W ← 2× (random− 0.5)× scale
8

9 HiddenNodes← 4
10

11 for epochs← 1 to 3000 do
12 for p← 1 to length(p2) do
13 a[1]← max(0, n) ReLu activation function
14 a[2]← en5 / ∑5

1 en5 Softmax activation function
15

16 /*** Loss function ‘categorical cross entropy’ ***/
17 L(y, ŷ)← 1

N ∑M
j=1 ∑N

i=1(yijlog(ŷij))

18

19 /*** Optimizer Adam ***/
20 W ←W − αm√

v+ε

Figure 18. Graphical representation of the omnidirectional three-wheeled robot to obtain its forward
kinematics. The robot can rotate on its own axis, rotate on the vertical axis and slide in all directions.

Two coordinate systems are defined (Figure 18), the fixed coordinate system {RA} and
the coordinate system at the point of interest {RB} in the robot; the xB axis is perpendicular
to wheel 1; between the xA and xB axes the robot orientation angle ϕ is defined; the
orientation of wheels 2 and 3 are measured with respect to the xB axis; the planes of each
of the wheels are determined by the axes e1, e2 and e3.

In the model of Figure 18 the angular speed ϕ̇A calculated in the coordinate space
{RA} is equal to wB in the Cartesian space {RB}; L represents the distance between the
center of the robot and the wheel axis. The angular velocity of each wheel is expressed
by the variables q̇1, q̇2 and q̇3; the speed of wheel 1 in the function of the robot speed is
determined in Equation (17).

Rq̇1 = ∑ µe1 = −µx sin ϕ + µy cos ϕ + LwB (17)

The speed of wheel 2 in the function of the robot speed is determined in Equation (18).
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Rq̇2 = ∑ µe2 = −µx cos(
π

6
+ ϕ)− µy sin(

π

6
+ ϕ) + LwB (18)

The speed of wheel 3 in the function of the robot speed is determined in Equation (19).

Rq̇3 = ∑ µe3 = µx cos(ϕ− π

6
) + µy sin(ϕ− π

6
) + LwB (19)

Equations (17)–(19) give the inverse kinematics and the Jacobian matrix J
(Equation (20)) to convert the linear velocity (expressed in the fixed coordinate system
{RA} and the angular velocity of the robot) to the angular velocities required in each wheel
to track a trajectory.q̇1

q̇2
q̇3

 =
1
R

 − sin ϕ cos ϕ L
− cos(π

6 + ϕ) sin(π
6 + ϕ) L

cos(ϕ− π
6 ) sin(ϕ− π

6 ) L

µx
µy
wB

 (20)

The Jacobian matrix J is inverted to obtain the forward kinematics model. The inverse
Jacobian matrix J−1 gets the robot’s speed in terms of the fixed coordinate space {RA}
and the angular velocity of the robot as a function of the angular velocities of each wheel,
expressed in Equation (21).µx

µy
wB

 =
R
3

−2 sin ϕ sin ϕ−
√

3 cos ϕ sin ϕ +
√

3 cos ϕ

2 cos ϕ −
√

3 sin ϕ− cos ϕ
√

3 sin ϕ− cos ϕ
1
L

1
L

1
L

q̇1
q̇2
q̇3

 (21)

To model the angular velocity q̇i of the motors, a first order system with delay is
implemented because the motor takes time to respond; this model is represented in the
frequency domain and in the time domain (Equation (22)).

G(s) =
Ke−Hs

τs
+ 1

pv(t) =
{

0 0 ≤ t < H
K(1− e−(t−H)/τ)Cv(t) t ≥ H

(22)

where K is the gain of the open-loop process, τ is the open-loop time constant and H
is the delay.

To determine the model parameters, the variables pv and cv are defined as the process
variable (motor response) and the control variable (step function), respectively; the response
of the open-loop system is obtained through an input process that will be the unit step
function; at the output we will have the radians over the second at which it rotates;
Figure 19 shows the response of a Chihai CHR-GM25 double quadrature motor from
140 RPM at 12 V within 10 s. Subsequently, Particle Swarm Optimization (PSO) [52] is
implemented, which obtains the approximation of the process variable(pvestimated), resulting
in each of the model parameters with a value of K = 1.8795, τ = 0.1523 and H = 0.0967.
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Figure 19. Chihai CHR-GM25 double quadrature motor from 140 RPM at 12 V within 10 s response.
(a) Response of the motor to a step function (process variable vp). (b) Approximation of vp by PSO.

The control implemented is a PID with lambda tuning since it ensures robustness,
stability and non-oscillatory response; in [53], the advantage of this method over some
other tuning methods is explained (Ziegler and Nichols and Haalman); in Equation (23) the
standard PID control formula is indicated to tune the controller using the lambda method;
the value of λ = 3τ and the values of the gains Kp (proportional gain), Ti (integral time)
and Td (derivative time) of the PID controller are determined by substituting the values of
the model parameters.

U(s) = Kp(1 +
1

Tis
+ Tds)E(s)

Kp =
τ

K(H + λ)
= 0.1463,

ti = τ = 0.1523,

Td =
H
2

= 0.048

(23)

The response of the controller is tested with a step function and the follow-up of the
trajectory as a cosine function. Figure 20 indicates the correct follow-up of the trajectory for
a desired angular velocity established as sp (set point).

Figure 20. The response of the controller is tested with a step function and the follow-up of the
trajectory as a cosine function. (a) Response of the PID control with a step function. (b) Response of
the PID control to track a trajectory represented by the cosine function.

2.4.2. State Machine

Table 2 indicates the digital representation of each of these states and the position
relationship it represents. The PID control algorithm is implemented in each of the motors
to reach the reference values determined by the variables µx, µy and wB; by means of the
inverse kinematics expressed in Equation (21), the the speeds q̇1, q̇2 and q̇3 are obtained.
These values are described in Table 3 for each state of the machine. Nine states are
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implemented for the control of a Mealy type machine as shown in Figure 21. Through an
established acquisition period, the corresponding class is detected according to the output
of the neural network; the result is stored in a data vector and the new result is compared
with the previous one; when there is a change in the transition, the combined and sequential
movements are activated for the rotational and diagonal trajectories. In digital circuits and
machine learning, one-hot is a group of bits among which the allowed combinations of
values are only those with a single high bit (1) and all others low (0), one-hot encoding is
implemented to relate each state of the machine and each class resulting from multiclass
classification.

Table 2. Categorization by integers (one-hot encoding).

# Class One Hot Encoding/State Machine

Ocular S3 S2 S4 S1 S0
Movement (Left) (Down) (Right) (Up) (Stop)

3 (Left) 1 0 0 0 0
5 (Down) 0 1 0 0 0
2 (Right) 0 0 1 0 0

4 (Up) 0 0 0 1 0
1 (Stop) 0 0 0 0 1

Figure 21. Mealy-type state machine for motion control of an omnidirectional robot; nine states are
implemented for the control of a Mealy type machine. S0 to S4 for EOG class from 1 to 5 and S5 to S8
for combined and sequential linear movements.
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Table 3. Description of each of the movements in the state machine.

State Class Desired Value Desired
EOG (µx, µy, wB) Movement

S3 3 (−0.15 m/s, 0 m/s, 0 rad/s) Left
S2 5 (0 m/s, −0.15 m/s, 0 rad/s) Down
S4 2 (0.15 m/s, 0 m/s, 0 rad/s) Right
S1 4 (0 m/s, 0.15 m/s, 0 rad/s) Up
S0 1 (0 m/s, 0 m/s, 0 rad/s) Stop

Combined and sequential linear movements

S5 3, 4 (−0.15 m/s, 0.15 m/s, 0 rad/s) Upper-Left
Diagonal

S6 2, 4 (0.15 m/s, 0.15 m/s, 0 rad/s) Upper-Right
Diagonal

S7 3, 5 (−0.15 m/s, −0.15 m/s, 0 rad/s) Lower-Left
Diagonal

S8 2, 5 (0.15 m/s, −0.15 m/s, 0 rad/s) Lower-Right
Diagonal

Combined and sequential rotational movements

4, 2, 5, 3 (0 m/s, 0 m/s, 0.8 rad/s) Counterclockwise
rotation

3, 5, 2, 4 (0 m/s, 0 m/s, −0.8 rad/s) Clockwise
rotation

3. Results and Discussion

To evaluate the operation of the HMI, tests were developed in digital evaluation
systems and simulations. First, the response of the EOG acquisition system to interference
was evaluated experimentally. Later, by means of the graphic interface, simulation tests
were performed to evaluate the performance of the classifier.

3.1. EOG Acquisition System Evaluation

The environment affects the quality of the EOG signal, so a notch filter that can be
calibrated in real time was designed; the cutoff frequency can be modifies according to
the frequency of the detected noise, resulting in an EOG signal free of interference. Tests
were performed in different work environments and 97.3% efficiency of the filtering system
was obtained. To evaluate the performance of the HMI system against disturbances, such
as a user blink, an impulse function was experimentally added to the input of the EOG
acquisition system by means of the circuit of Figure 22a. The impulse function was modeled
as a button that connects a Zener diode, which acts as a voltage source at the input of the
op amp that has an adder configuration.
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Figure 22. Experimental impulse function added to the input of the EOG acquisition system to
evaluate the performance of the HMI system against disturbances. (a) System to test interference
elimination. (b) Signal obtained with perturbation.

The signal obtained is seen in Figure 22b; the disturbance does not affect the classifier
because the experimental tests determined that, even with this induced noise, the neu-
ronal network model is capable of classifying the movement according to the class that
corresponds to it.

Virtual Test

The graphical interface was used as a virtual test platform. In Figure 23a–d, the
different movements that the virtual robot does when controlled by the rotation of the
user’s eyeball are presented; this is a prior test conducted before connecting the HMI to
the physical robot and thus evaluating whether the user can control the robot virtually by
making it scroll around the workspace.
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Figure 23. Virtual robot movements when controlled by the rotation of the eyeball. (a) Eye movement
looking up and tracking the robot’s trajectory forward. (b) Eye movement looking down and tracking
the robot’s trajectory backwards. (c) Eye movement looking to the right and tracking the robot’s
trajectory to the right. (d) Eye movement looking to the left and tracking the robot’s trajectory
to the left.

Figure 24 indicates the monitoring of the desired values indicated in the state machine
for each control variable µx, µy representing the linear velocity in meters per second and
wB representing the angular velocity in radians per second.
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Figure 24. Desired values indicated in the state machine and the PID control responses for each
variable µx, µy and wB.

3.2. Performance Test

Three game and training boards are programmed; the ability of the user to arrive from
a starting point and an end point colored in yellow is evaluated; each black square on the
game board corresponds to a penalty, which means there are points in the workspace where
the user must not place the mobile robot; the only valid points to move the robot are the
white squares. The test consists of recording the number of penalties and the time it takes
for the user to place the robot on the assigned points, marking the generated trajectory in
red. In Figure 25a,b, Boards 1 and 2 are shown; only linear movements are recorded. In
Figure 25c, Test Board 3 is presented; linear and sequential movements are recorded, which
are combinations of the eyeball to move the robot diagonally or rotationally.

The interface has the property of detecting involuntary movements such as blinking
and looking forward; in Figure 25 there is also a trajectory marked in blue that indicates
the first test carried out; the tests on different boards indicate that 30 repetitions is enough
to reach zero penalties.

In Figure 26, the trend graph of Table 4 is presented, which records the response time
of each of the repetitions performed. It is observed that after 30 repetitions the time is
decreased by 71.1% to perform the task on Test board 3; on Test Board 2 the time is reduced
by 76.9% when executing the task and finally on Test Board 1 there is a response time
reduction of 75.4%. The experiment ends after 30 repetitions since there were 0 penalties
decreasing after each repetition. This result can be seen in Figure 27, which indicates the
downward trend in the number of penalties recorded in Table 5. Therefore, a conclusion can
be obtained where, regardless of the test board, the user has a mastery after 30 repetitions
with an average of 74.5% reduction of learning time.
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Figure 25. Trajectory for training boards programmed; a blue line indicates the first test carried out
and a red line is the trajectory after 30 repetitions to reach zero penalties.(a) Test Board 1 with linear
movements of the eyeball and the omnidirectional robot. (b) Test Board 2 with linear movements of
the eyeball and the omnidirectional robot. (c) Test Board 3 with linear and combinational movements
of the eyeball and diagonal trajectories of the omnidirectional robot.

Figure 26. Number of tests performed and the response time recorded.
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Table 4. Summary of response time in seconds on each test board.

Test Test Test Test
Number Board 1 Board 2 Board 3

1 343.50 430.30 532.90
5 245.12 365.10 499.12
10 189.80 306.00 400.20
15 150.32 246.60 340.90
20 108.87 188.50 278.40
25 88.65 147.1 200.23
30 84.32 99.32 154.23

Figure 27. Number of tests performed and the number of penalties recorded.

Table 5. Summary of the number of penalties.

Test Test Test Test
Number Board 1 Board 2 Board 3

1 15 10 18
5 11 7 14
10 9 5 11
15 7 2 8
20 5 1 6
25 3 1 3
30 0 0 0

In the previous results, regardless of the game board, the percentage level in the
reduction of the test time is maintained at 74.5% by having zero penalties; if this percentage
is converted to a decimal value, it is 0.745, an approximate value to the sensitivity and
precision of the MLP classifier which is 0.755; this means that there is a direct relationship
between the classifier measurements and the time in the reduction of the HMI response.
The reductions in the response time of the classifier when registering new data in the
experiment measures the sensitivity and precision of the MLP with new data are similar to
the precision and sensitivity that the classifier has with data already stored, from which it
can be deduced that the model obtained from the classifier programmed in an embedded
system to control a robotic device does not lose effectiveness.

The results are explained by the good performance of the EOG signal classifier. The
faster the response of the HMI system, the better the acceptance of the user, fulfilling the
objective that people really feel a domain and control over a mobile robot that in the future
will be able to adapt to assistance systems.

It is important to evaluate user satisfaction with the HMI system and its influence on
human–robot interaction. The advantage of this system is that it adapts to the individual
properties of the user, allowing optimal performance in signal classification. This provides
a considerable decrease in the response time of the HMI system compared to other works
presented in literature. There are several studies that have shown that users lose interest
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with assistive devices that have a long response time, this being one of the key factors
why they are rejected, making it so that the system presented in this work will have a high
acceptance by the end user due to the short response time.

4. Conclusions

The design of an HMI system developed a new method of classifying EOG signals
that allows real-time generation of trajectories in the (X, Y) plane.

The HMI works with any inexperienced user because the system adapts to personal
characteristics after a short training of no more than 30 tests. For future patient trials,
approval of an ethical protocol will be included. The classifier has the property of discrimi-
nating involuntary movements such as blinking and if some of these movements occur the
robot does not move, which allows the user to control the robot by having a stop option.

This HMI customizes the use of assistive devices when using physiological signals,
reducing training time. Due to these characteristics, this HMI could be very useful to
support people with disabilities in their routine activities, to control devices such as
wheelchairs, assistance robots, virtual keyboards and mice, digital pointers and home
automation controls.
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13. Ülkütaş, H.Ö.; Yıldız, M. Computer based eye-writing system by using EOG. In Proceedings of the 2015 Medical Technologies
National Conference (TIPTEKNO), Bodrum, Turkey, 15–18 October 2015.

14. Chang, W.-D. Electrooculograms for Human-Computer Interaction: A Review. Sensors 2019, 19, 2690. [CrossRef]
15. Rim, B.; Sung, N.-J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [CrossRef]

[PubMed]
16. Martínez-Cerveró, J.; Ardali, M.K.; Jaramillo-Gonzalez, A.; Wu, S.; Tonin, A.; Birbaumer, N.; Chaudhary, U. Open Soft-

ware/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification. Sensors 2020,
20, 2443. [CrossRef]

17. Laport, F.; Iglesia, D.; Dapena, A.; Castro, P.M.; Vazquez-Araujo, F.J. Proposals and Comparisons from One-Sensor EEG and EOG
Human–Machine Interfaces. Sensors 2021, 21, 2220. [CrossRef] [PubMed]

18. Lee, K.-R.; Chang, W.-D.; Kim, S.; Im, C.-H. Real-Time “Eye-Writing” Recognition Using Electrooculogram. IEEE Trans. Neural
Syst. Rehabil. Eng. 2017, 25, 37–48. [CrossRef]

19. Mohd Noor, N.M.; Ahmad, S.; Sidek, S.N. Implementation of Wheelchair Motion Control Based on Electrooculography Using
Simulation and Experimental Performance Testing. App. Mech. Mater. 2014, 554, 551–555. [CrossRef]

20. Fang F.; Shinozaki T. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication
systems. PLoS ONE 2018, 13.

21. Iáñez, E.; Azorín, J.M.; Fernández, E.; Úbeda, A. Interface Based on Electrooculography for Velocity Control of a Robot Arm. Appl.
Bionics Biomech. 2010, 7, 199–207. [CrossRef]

22. Ubeda, A.; Iañez, E.; Azorin, J.M. Wireless and Portable EOG-Based Interface for Assisting Disabled People. IEEE/ASME Trans.
Mechatron. 2011, 16, 870–873. [CrossRef]

23. Ramkumar, S.; Sathesh Kumar, K.; Dhiliphan Rajkumar, T.; Ilayaraja, M.; Shankar, K. A review-classification of electrooculogram
based human computer interfaces. Biomed. Res. 2018, 29, 1078–1084. [CrossRef]

24. Reynoso, F.D.P.; Suarez, P.A.N.; Sanchez, O.F.A.; Yañez, M.B.C.; Alvarado, E.V.; Flores, E.A.P. Custom EOG-Based HMI Using
Neural Network Modeling to Real-Time for the Trajectory Tracking of a Manipulator Robot . Front. Neurorobot. 2020, 14, 578834.
[CrossRef] [PubMed]

25. Kubacki, A.; Jakubowski, A. Controlling the industrial robot model with the hybrid BCI based on EOG and eye tracking. AIP
Conf. Proc. 2018, 2029, 020032.

26. Kim, B.H.; Kim, M.; Jo, S. Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye
tracking. Comput. Biol. Med. 2014, 51, 82–92. [CrossRef] [PubMed]

27. Postelnicu, C.-C.; Girbacia, F.; Voinea, G.-D.; Boboc, R. Towards Hybrid Multimodal Brain Computer Interface for Robotic Arm
Command. In Augmented Cognition; Schmorrow D., Fidopiastis C., Eds.; Springer: Cham, Switzerland, 2019; Volume 11580,
pp. 461–470.

28. McMullen, D.; Hotson, G.; Katyal, K.D.; Wester, B.A.; Fifer, M.S.; McGee, T.G.; Harris, A.; Johannes, M.S.; Vogelstein, R.J.;
Ravitz, A.D.; et al. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye
tracking and computer vision to control a robotic upper limb prosthetic. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 784–792.
[CrossRef]

29. Sai, J.-Z.; Lee, C.-K.; Wu, C.-M.; Wu, J.-J.; Kao, K.-P. A feasibility study of an eye-writing system based on electro-oculography.
J. Med. Biol. Eng. 2008, 28, 39–46.

30. Luu, T.; Ngoc, H.; Le, V.; Ho, T.; Truong, N.; Ngan, T.; Luong H.; Nguyen Q. Machine Learning Model for Identifying Antioxidant
Proteins Using Features Calculated from Primary Sequences. Biology 2020, 9, 325.

31. Nguyen, Q.; Duyen, T.; Truong, K.; Luu, T.; Tuan-Tu, H.; Ngan, K.A Computational Framework Based on Ensemble Deep Neural
Networks for Essential Genes Identification. Int. J. Mol. Sci. 2020, 21, 9070.

32. Daqi, G., Yan, J. Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognit. 2005,
38, 1469–1482. [CrossRef]

33. Quinlan, J.R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 1996, 4, 77–90. [CrossRef]
34. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
35. Otneim, H.; Jullum, M.; Tjøstheim, D. Pairwise local Fisher and Naïve Bayes: Improving two standard discriminants. J. Econom.

2020, 216, 284–304. [CrossRef]
36. Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
37. Yamashita, Y.; Wakahara, T. Affine-transformation and 2D-projection invariant k-NN classification of handwritten characters via

a new matching measure. Pattern Recognit. 2016, 52, 459–470. [CrossRef]
38. Noh, Y.-K.; Zhang, B.-T.; Lee, D.D. Generative Local Metric Learning for Nearest Neighbor Classification. IEEE Trans. Pattern

Anal. Mach. Intell. 2018, 40, 106–118. [CrossRef]
39. Stoklasa, R.; Majtner, T.; Svoboda, D. Efficient k-NN based HEp-2 cells classifier. Pattern Recognit. 2014, 47, 2409–2418. [CrossRef]
40. Pernkopf, F. Bayesian network classifiers versus selective k-NN classifier. Pattern Recognit. 2005, 38, 1–10. [CrossRef]
41. Le Cessie, S.; van Houwelingen, J.C. Ridge Estimators in Logistic Regression. Appl. Stat. 1992, 41, 191–201. [CrossRef]
42. Paranjape, P.; Dhabu, M.; Deshpande, P. A novel classifier for multivariate instance using graph class signatures. Front. Comput.

Sci. 2020, 14, 144307. [CrossRef]

http://dx.doi.org/10.3390/s19122690
http://dx.doi.org/10.3390/s20040969
http://www.ncbi.nlm.nih.gov/pubmed/32054042
http://dx.doi.org/10.3390/s20092443
http://dx.doi.org/10.3390/s21062220
http://www.ncbi.nlm.nih.gov/pubmed/33810122
http://dx.doi.org/10.1109/TNSRE.2016.2542524
http://dx.doi.org/10.4028/www.scientific.net/AMM.554.551
http://dx.doi.org/10.1155/2010/813184
http://dx.doi.org/10.1109/TMECH.2011.2160354
http://dx.doi.org/10.4066/biomedicalresearch.29-17-2979
http://dx.doi.org/10.3389/fnbot.2020.578834
http://www.ncbi.nlm.nih.gov/pubmed/33117141
http://dx.doi.org/10.1016/j.compbiomed.2014.04.020
http://www.ncbi.nlm.nih.gov/pubmed/24880998
http://dx.doi.org/10.1109/TNSRE.2013.2294685
http://dx.doi.org/10.1016/j.patcog.2005.03.024
http://dx.doi.org/10.1613/jair.279
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1016/j.jeconom.2020.01.019
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1016/j.patcog.2015.10.002
http://dx.doi.org/10.1109/TPAMI.2017.2666151
http://dx.doi.org/10.1016/j.patcog.2013.09.021
http://dx.doi.org/10.1016/j.patcog.2004.05.012
http://dx.doi.org/10.2307/2347628
http://dx.doi.org/10.1007/s11704-019-8263-5


Sensors 2021, 21, 5882 29 of 29

43. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM
SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

44. Lindberg, A. Developing Theory Through Integrating Human and Machine Pattern Recognition. J. Assoc. Inf. Syst. 2020, 21, 7.
[CrossRef]

45. Schwenker, F.; Trentin, E. Pattern classification and clustering: A review of partially supervised learning approaches. Pattern
Recognit. Lett. 2014, 37, 4–14. [CrossRef]

46. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
47. Adam, S.P.; Alexandropoulos, S.A.N.; Pardalos, P.M.; Vrahatis, M.N. No free lunch theorem: A review. In Approximation and

Optimization; Springer Optimization and Its Applications Series; Springer: Cham, Switzerland, 2019; Volume 145, pp. 57–82.
48. Stock, M.; Pahikkala, T.; Airola, A.; Waegeman, W.; De Baets, B. Algebraic shortcuts for leave-one-out cross-validation in

supervised network inference. Brief. Bioinform. 2020, 21, 262–271. [CrossRef] [PubMed]
49. Jiang, G.; Wang, W. Error estimation based on variance analysis of k-fold cross-validation. Pattern Recognit. 2017, 69, 94–106.

[CrossRef]
50. Soleymani, R.; Granger, E.; Fumera, G. F-measure curves: A tool to visualize classifier performance under imbalance. Pattern

Recognit. 2020, 100, 107–146. [CrossRef]
51. Moreno-Ibarra, M-A.; Villuendas-Rey, Y.; Lytras, M.; Yañez-Marquez, C.; Salgado-Ramirez, J-C. Classification of Diseases Using

Machine Learning Algorithms: A Comparative Study. Mathematics 2021, 9, 1817. [CrossRef]
52. Cogollo, M.R.; Velásquez, J.D.; Patricia, A. Estimation of the nonlinear moving model Parameters using the DE-PSO Meta-

Heuristic. Rev. Ing. Univ. Medellín 2013, 12, 147–156. [CrossRef]
53. Pruna, E.; Sasig, E.R.; Mullo S. PI and PID controller tuning tool based on the lambda method. In Proceedings of the 2017

CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON),
Pucon, Chile, 18–20 October 2017; pp. 1–6.

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.17705/1jais.00593
http://dx.doi.org/10.1016/j.patrec.2013.10.017
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1093/bib/bby095
http://www.ncbi.nlm.nih.gov/pubmed/30329015
http://dx.doi.org/10.1016/j.patcog.2017.03.025
http://dx.doi.org/10.1016/j.patcog.2019.107146
http://dx.doi.org/10.3390/math9151817
http://dx.doi.org/10.22395/rium.v12n22a13

	Introduction
	Materials and Methods
	Classifiers
	Multilayer Perceptron (MLP)
	Tree-Type Classifiers
	Naïve Bayes (NB)
	The K Nearest Neighbors (K-NN)
	Logistic Classifier (Logistic)
	Support Vector Machines (SVM)
	Performance Measures
	Ranking Metric Results

	EOG Signal
	Design of the HMI EOG
	Analog Signal Processing
	Digital Signal Processing

	Classification of the EOG Signal by Multilayer Perceptron
	Omnidirectional Robot
	State Machine


	Results and Discussion
	EOG Acquisition System Evaluation
	Performance Test

	Conclusions
	References

