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Abstract: Chronic infection with hepatitis C virus (HCV) is associated with significant liver 

disease and is therefore an important public health problem. The current standard-of-care 

therapy for chronic HCV infection consists of a combination of pegylated (PEG) interferon 

(IFN)- and ribavirin. Although this therapy effectively generates a sustained viral response 

in approximately half of treated individuals, it is associated with significant hematological 

and neurological side effects. A new family of IFN-related proteins (IFN-1, 2, and 3; or 

alternately, IL-29, 28A, 28B, respectively) possesses properties that may make these 

cytokines superior to PEG-IFN- for HCV therapy. Genetic studies have also implicated 

these proteins in both the natural and therapy-induced resolution of HCV infection. This 

review summarizes the basic aspects of IFN- biology, the potential role of these cytokines 

in HCV infection, and the outlook for their therapeutic application. 
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1. Structural properties of IFN- 

The IFN- family of IFN-related proteins was discovered in 2003 using computational methods 

designed to find new proteins within the class II -helical cytokine family [1,2]. Three members of this 

family were identified and alternatively named IFN-1, 2, 3, or IL-29, 28A, 28B, and are now also 

referred to as the “type III” IFNs to further distinguish them from IFN-/ (type I) and IFN- (type II). 

Although the three IFN- family members have a high degree of amino acid identity to each other 
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(81% between IFN-1 and IFN-2; 96% between IFN-2 and IFN-3), these proteins have low 

sequence homology to both IFN- (15-19% identity, 31-33% similarity) and IL-10 (11-13% identity, 

22-23% similarity) [1-3]. Despite this minimal homology, conserved cysteine patterns and predicted 

amphipathic helix profiles indicated that the IFN-s belong to the class II cytokine family. 

Furthermore, the IFN- genes are composed of five to six exons, an arrangement that is similar to  

IL-10, but is unlike the type I interferons, which are each encoded by a single exon [1,2]. Recently, the 

crystal structure of IFN-3 was reported to contain a bundle of four alpha helices at its core, which is 

similar to other class II cytokines [3]. Further comparison of the structure between IFN- and other 

class II cytokines found a closer association between IFN- and IL-10 family cytokines, in particular 

IL-22, than with the type I IFNs. Therefore, despite low amino acid homology between IFN- and the 

IL-10 family cytokines, there is a strong structural correlation between these two groups of proteins. 

Figure 1. Comparison of type I IFNs, IFN- and IL-10 related cytokines. The type III 

IFNs are functionally similar to type I IFNs (IFN-/). However, they are more 

structurally related to the IL-10 family cytokines. 

 
 

The IFN-s do not bind to the IFN-/ receptor, but instead exert their activity through a distinct 

receptor. The IFN- receptor consists of two subunits: IL-28R and IL-10R [1,2]. The IL-10R 

subunit is not unique to IFN-, as it is also utilized by IL-10 and IL-22 [4,5]. While the IL-10R 

subunit is ubiquitously expressed on many cell types [6], the IL-28R subunit displays a more 

restricted profile [1,2], and is most strongly expressed on cells of epithelial origin [7-10]. Although the 

regulation of IFN- expression has been well studied (described in section 2 below), there is little 

known about the mechanisms that control expression of the IL-28R receptor subunit. Since the 

expression of the IFN- receptor is highly dependent on cell type, there may be tissue-specific signals 

required to induce IL-28R expression, such as specific transcription factors, DNA and histone 

methylation patterns, or microRNAs. Interestingly, it was also recently found that a splice variant of 
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the IL-28R transcript encodes a soluble version of the receptor that inhibits IFN- activity in 

leukocytes [8], further indicating that precise restriction of IFN- activity to specific cell types may be 

important for its biological function. 

2. Activation of IFN- expression 

IFN- expression has been detected in primary neuronal cells, alveolar epithelial cells, hepatocytes, 

and a variety of cell lines [7,11,12]. However, like IFN-, the primary producers of IFN- appear to be 

dendritic cells (DCs) [7,11-14]. Similar to the type I IFNs, IFN- expression is induced following viral 

infection or activation of Toll-like receptors (TLRs). Stimulation of the cytoplasmic receptor RIG-I, 

which detects cytoplasmic viral RNA, activates IFN- expression [15,16]. While many cell types may 

produce IFN- following TLR activation, DCs and DC-derived cell lines are the best characterized, as 

they produce relatively high levels of IFN- [12,14,15,17]. Activation of TLRs-3, -4, -7 and -9 all 

increase IFN- expression in DCs [14,15]. TLR-3, -7 and -9 are typically localized in endosomes and 

detect viral pathogen-associated molecular patterns such as doubled stranded RNA (dsRNA), single 

stranded RNA, and non-methylated double-stranded CpG-rich DNA [18]. Stimulation of these 

receptors ultimately leads to the activation of transcription factors such as interferon-regulatory factor 

(IRF)-3, IRF-7 and NF-B. Though IFN- is typically activated by viral infections, activation of TLR-

4 by bacterial LPS has been shown to induce IFN- in DCs [14,19], suggesting that IFN- may have 

additional functions in the modulation of the immune response [19]. 

Binding sites for IRF-3, IRF-7, and NF-B have all been identified in the promoter region for IFN-

 and are essential for induction of expression [16]. However, there are differences in the regulation of 

IFN-1 and IFN-2/3 transcription. IFN-1 is activated by both IRF-3 and -7, whereas IFN-2/3 is 

primarily regulated by IRF-7 [20]. In contrast to the type I IFNs, which are not induced by IFN 

treatment, IFN- mRNA expression can be induced by stimulating cells with IFN- or IFN- alone, 

indicating that IFN- is in fact also an interferon-stimulated gene (ISG) [21]. Furthermore, IFN- may 

play a role in regulating TLR-induced activation of IFN- expression [22], demonstrating additional 

cross-talk between the type I and type III interferon responses. 

The extent to which IFN- is induced in a natural HCV infection is unclear, as HCV has evolved 

multiple mechanisms to inhibit the IFN-/ response in infected hepatocytes. The HCV NS3/4A 

protease inhibits IRF-3 activation and cleaves the RIG-I and TLR signaling adapters IPS-1 and TRIF 

[23-25]. A second HCV protein (NS2) also blocks activation of IFN- through an uncharacterized 

mechanism that is distinct from that of NS3/4A [26], and the HCV NS5A protein is yet another factor 

capable of inhibiting IFN-/ expression [27]. Because IFN-/ and IFN- are activated through a 

common molecular mechanism [16] by identical types of stimuli [14], the viral immunomodulatory 

mechanisms that HCV has evolved to inhibit IFN-/ expression also likely block IFN- production. 

In fact, when over-expressed in cell culture, NS3/4A prevents the induction of both IFN-/ as well as 

IFN- [26]. Furthermore, like IFN-/, IFN- is expressed in PBMC but not in the liver of chronic 

HCV patients [28]. 
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3. IFN--induced signaling and gene expression 

The signaling pathways induced by IFN- are very similar to those induced by the type I IFNs 

(Figure 2) [29]. The intracellular domains of the IFN- receptor subunits, IL-28R and IL-10R, 

interact with the receptor-associated tyrosine kinases Jak1 and Tyk2. These kinases in turn 

phosphorylate STAT proteins, which then dimerize and act as transcription factors. Binding of IFN- 

to its receptor induces phosphorylation of STAT-1, -2, -3, and -5 through a process that requires two 

key tyrosine residues on IL-28R [1,29-34]. In most cell types, IFN- induces phosphorylation of 

STAT-1 and STAT-2, which form a heterodimer that interacts with IRF-9 to form the transcription 

factor interferon-stimulated gene factor-3 (ISGF-3) [35]. ISGF-3 preferentially binds to promoters 

containing ISREs, which are found in the upstream regions of ISGs. Like IFN-, IFN--induced STAT 

activation is negatively regulated by the suppressor of cytokine signaling (SOCS) proteins [36]. 

Figure 2. Type I and type III IFN signaling pathways. Though the type I and type III 

receptors are distinct, both cytokines induce STAT phosphorylation through the Jak 

kinases associated with the respective receptor subunits. Both IFN- and IFN- primarily 

activate STAT-1 and -2, which complex with IRF-9 to form the transcription factor  

ISGF-3. This complex induces expression of genes with ISREs in their promoters. 

 
 

Though the signaling pathway induced by IFN- is nearly identical to that of IFN-, the kinetics 

and magnitude of the responses can be subtly different. In Huh-7 hepatocellular carcinoma cells, IFN- 

induces STAT-1 and STAT-2 more rapidly than IFN- [30]. Additionally, IFN- induces STAT-1 and 

STAT-2 phosphorylation for a longer period of time in HaCaT keratinocytes compared to IFN- [37]. 

Furthermore, although the subsequent transcriptional response is slightly delayed, the increase in ISG 

expression induced by IFN- is stronger and more prolonged than the response activated by IFN- 
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[30,37]. Nevertheless, with their signaling patterns being nearly identical, IFN- and IFN- induce 

very similar patterns of gene expression [30,31,38]. Consistent with the convergence of the two 

signaling pathways to a similar transcriptional response, combinations of IFN- and IFN- together 

appear to have no more than a dose-dependent additive effect on HCV replication [30,39]. 

Although Jak/STAT signaling mediates the primary functions of IFN-, other pathways are also 

activated by the receptor. One study found that IFN- activated ERK-1/2, mitogen activated protein 

kinase (MAPK) and Akt in intestinal epithelial and colorectal cancer-derived cell lines [40]. This 

activity led to increased IL-8 expression, a chemokine that is associated with the inflammatory 

response [41]. Additionally, activation of MAPKs was also observed in Raji cells following treatment 

with IFN- [38]. These results indicate that IFN- can induce multiple signaling pathways that may 

contribute to its activity as an antiviral and immunomodulatory cytokine. 

4. Functions of IFN- 

4.1. IFN- antiviral activity 

Much of the early work on IFN- was devoted to determining its ability to inhibit virus replication 

in cell culture model systems. Encephalomyocarditis virus (EMCV), vesicular stomatitis virus, 

cytomegalovirus, herpes simplex virus 1, influenza A virus, HIV, HBV, and HCV are all sensitive to 

the antiviral effects of IFN- [1,2,21,30,31,42-47]. Specifically with respect to HCV replication, 

antiviral activity of IFN- has been demonstrated using both replicon (subgenomic and full-length 

genomic) and cell culture infectious virus model systems [30,31,39,43,45] in Huh-7 hepatocellular 

carcinoma cells. Similarly to HCV, HBV also is inhibited by IFN- in mouse immortalized 

hepatocytes, and to a somewhat lesser extent, in the human hepatoblastoma cell line HepG2 

[31,45,48]. Therefore, IFN- has clear antiviral activity against human hepatotropic viruses. 

For some viruses, infection, but not preexisting replication, is inhibited by IFN-. IFN- prevents 

West Nile virus infection, but not the replication of virus-like particles in a hepatocyte derived cell line 

[49]. Similarly, IFN- prevents Hantavirus infection of lung epithelial cells in vitro, but it is unable to 

inhibit replication once an infection is established [50]. Furthermore, IFN- does not inhibit the 

replication of Lassa virus in macrophages or DCs [51]. It should be noted however that neither IFN- 

nor IFN- inhibited Hantavirus infection, and IFN- was also unable to prevent Lassa virus replication 

in the reported studies. Therefore, the inability of IFN- to inhibit these viruses may be due to their 

inherent insensitivity to the antiviral effects of IFNs in general, rather than a specific shortcoming of 

the IFN- response. 

Compared to cell culture studies on the antiviral activity of IFN-, the number of reports on IFN- 

activity in animal models is relatively limited. In vivo antiviral activity of IFN- in mice appears to be 

highly dependent on the virus and the administration route. Intraperitoneal administration of IFN-2 

protects mice from HSV-2 infection in the liver, but intravenous injection of IFN-2 does not provide 

protection from EMCV or lymphocytic choriomeningitis virus in the heart or spleen, respectively [21]. 

Similarly, intraperitoneal injection of IFN-3 does not protect mice from infection by the hepatotropic 

virus Thogotovirus, but intranasal administration of IFN-3 confers protection from influenza A virus 

infection in the lungs [9]. In mice, cellular sensitivity to IFN- correlates strongly with expression of 
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the IL-28R receptor subunit, which is most prominently expressed in epithelial cells of the 

gastrointestinal and respiratory tracts [7,10]. 

An alternative delivery method for IFN- was utilized by Bartlett and colleagues to test the activity 

of IFN- against poxviruses in mice. Rather than administer the cytokine systemically, a recombinant 

vaccinia virus (VACV) was engineered to express murine IFN-2 or IFN-3, and mice were infected 

with the virus intranasally or intradermally [52]. VACV expressing IFN- did not cause any symptoms 

in infected mice and was cleared more rapidly compared to the control viruses after intranasal 

infection. IFN- also limited the infection of VACV after intradermal infection, as the lesions caused 

by the infection were both delayed in appearance and reduced in size [52]. However, IFN- does not 

directly inhibit VACV replication in cell culture, indicating that these effects are likely due to 

immunomodulatory, rather than antiviral, activities of the cytokine [52,53]. 

4.2. IFN- immunomodulatory activity 

IFN- clearly has direct inhibitory effects on the replication of most viruses, and therefore may be 

an important component of the innate immune response, at least in certain contexts. However, a 

number of studies have also demonstrated that IFN- also plays a role in antiviral immunity through 

modulation of both the maturation and differentiation of immune cells. Though monocytes express low 

levels of the IFN- receptor, differentiation of these cells into DCs leads to an upregulation of IL-

28R and an increased ability to express IFN- [54-56]. Conversely, monocytes that differentiate into 

macrophages show reduced expression of IFN- [56]. Additionally, when DCs are subsequently 

exposed to IFN-, increased maturation and migration capacity are induced [55]. These changes are 

due in large part to changes of cell surface molecules on DCs that alter both the stimulation and 

homing of these antigen-presenting cells [54]. In turn, IFN- influences the effects that DCs have 

when interacting with T cells. DCs treated with IFN- preferentially expand regulatory T cells, which 

are critical for negative regulation of the immune response, as well as promoting self-tolerance [55]. 

By altering the maturation and differentiation of other immune cells, particularly T cells, IFN- also 

alters the expression of other cytokines and chemokines. The role of IFN- appears to be primarily 

focused on biasing T cell differentiation against Th2 development and Th2 cytokine secretion [57,58]. 

IFN- inhibits IL-4, IL-5 and IL-13 expression in T cells independently of IL-10 [58,59], and 

modulates both cytokine and chemokine expression in peripheral blood mononuclear cells (PBMCs), 

reducing IL-13 as well as IL-6, IL-8 and IL-10 production [60]. Additionally, the chemokines MIG, 

IP-10 and I-TAC, which are antimicrobial chemoattractants for mononuclear cells, were found to be 

upregulated by IFN- in PBMCs [61]. In total, these studies indicate a potential important role for 

IFN- in both the regulation and development of the adaptive immune response. 

5. IL28B polymorphisms and HCV infection/therapy outcome 

Recent genome-wide association studies have found a strong genetic link between HCV infection, 

treatment outcome, and IFN-. Both spontaneous HCV clearance and a sustained viral response 

following PEG-IFN- plus ribavirin therapy correlate with single nucleotide polymorphisms (SNPs) 

found in the IL28B gene locus, which encodes the IFN-3 protein [62-66]. The rs12979860 SNP 

resides 3 kb upstream of the IL28B gene, and variations at this position are associated with 
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approximately 2-fold differences in spontaneous clearance and response to treatment [62-64]. The C/C 

genotype is associated with better outcomes, and the T/T genotype, worse outcomes. The rs8099917 

SNP is located within an intergenic region between the IL28A and IL28B genes, and is similarly 

associated with a 2-3 fold difference in spontaneous clearance and response to therapy [65-67]. The 

polymorphisms associated with poor response to therapy are found at a higher frequency in African 

populations compared to European populations, consistent with the lower response rates of PEG-IFN-

 plus ribavirin treatment in African-Americans [68]. 

Although the relationship between HCV infection outcome and therapy response with IL28B 

variation is now well established, the molecular mechanisms behind this association have not yet been 

identified. The rs12979860 SNP is associated with two other polymorphisms found in the IFN-3 

transcription initiation and coding regions, which may potentially alter the expression or activity of the 

cytokine [65,66]. Individuals harboring the rs8099917 minor allele were found to have reduced IFN-3 

expression levels in PBMC, indicating that this variant may be located within a transcriptional 

regulatory element [63,64]. Because IFN- upregulates IFN- expression [21,22], IFN- may amplify 

interferon-stimulated gene expression following administration of PEG-IFN-. As other host factors 

have also been associated with therapy outcome, the interplay between these various factors needs to 

be better defined. For example, patients who fail to achieve a sustained viral response after PEG-IFN- 

therapy have a high pre-therapy level of intrahepatic ISG expression [69,70], and it has not yet been 

addressed whether this observation is also related to IL28B variation. Elucidation of these mechanisms 

will be important for understanding the role of IFN- in chronic HCV infection and in IFN-based 

therapies.  

6. IFN- and HCV Therapy 

It was immediately recognized after its discovery that due to the relatively restricted expression of 

the IFN- receptor, the type III IFNs could potentially be useful therapeutically for chronic HCV 

infection [1,2]. Because the receptor is expressed at low levels on T cells and NK cells, and is not 

expressed on hematopoetic precursor cells, it was predicted that therapeutic use of IFN- would not 

cause the hematological side effects associated with PEG-IFN- therapy [71]. This prediction has 

largely been proven true by a recently reported Phase 1b clinical trial of PEG-IFN-1 for genotype 1 

chronic HCV infection [72]. In this study, the antiviral efficacy and side effects of PEG-IFN-1 were 

measured in IFN- relapse patients as a single agent, and in relapse and treatment-naïve patients in 

combination with ribavirin. 

The majority of patients in this study achieved significant reductions in HCV RNA levels after 4 

weeks of treatment with PEG-IFN-, both as a single agent alone and when administered together 

with ribavirin. More specifically, in individuals who received weekly doses of 1.5 µg/kg or greater, 

96% (23 of 24) of treatment-relapse patients and 86% (6 of 7) of treatment-naïve patients had a > 2 

log10 decline in viral RNA [72]. Furthermore, a subset of these patients (17% of relapse and 29% of 

naïve) attained undetectable levels of HCV RNA. While not directly compared in this study, the 

biphasic kinetics of viral decline were found to be similar to the pattern typically observed with IFN- 

therapy. This study also demonstrated that PEG-IFN- administration did not cause the significant 

reductions in neutrophil counts, platelet counts, or hemoglobin levels that can be associated with PEG-
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IFN- therapy [73]. IFN-1 therapy was generally otherwise well-tolerated, with adverse events such 

as fatigue, nausea, myalgia, fever, or irritability being relatively rare and mild [71,72]. Therefore, 

PEG-IFN-1 may have fewer of the safety and tolerability issues that can limit PEG-IFN-efficacy. 

While the results from the Phase 1 trial are very promising, a number of questions remain regarding 

the clinical utility of IFN- for chronic HCV that can only be resolved through additional larger 

studies. First, will IFN- therapy successfully generate a long-term sustained viral response after 

cessation of therapy? Second, how will the response to IFN- be influenced by the IL28B 

polymorphisms that affect PEG-IFN- therapy? Third, will the efficacy of IFN-1 extend to HCV 

genotypes other than genotype 1? Fourth, will long-term IFN- administration cause the same 

neurological side effects that can accompany IFN- therapy? Despite these unresolved questions, the 

encouraging results obtained thus far give reason to be optimistic that the clinical potential of IFN- 

will be realized not only for chronic HCV infection, but also for other diseases that respond to IFN- 

therapy, such as chronic HBV infection and melanoma. 
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