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Abstract

The striatum has traditionally been the focus of Huntington's disease research due to

the primary insult to this region and its central role in motor symptoms. Beyond the

striatum, evidence of cortical alterations caused by Huntington's disease has sur-

faced. However, findings are not coherent between studies which have used cortical

thickness for Huntington's disease since it is the well-established cortical metric of

interest in other diseases. In this study, we propose a more comprehensive approach

to cortical morphology in Huntington's disease using cortical thickness, sulcal depth,

and local gyrification index. Our results show consistency with prior findings in corti-

cal thickness, including its limitations. Our comparison between cortical thickness and

local gyrification index underscores the complementary nature of these two

measures—cortical thickness detects changes in the sensorimotor and posterior areas

while local gyrification index identifies insular differences. Since local gyrification

index and cortical thickness measures detect changes in different regions, the two

used in tandem could provide a clinically relevant measure of disease progression.

Our findings suggest that differences in insular regions may correspond to earlier

neurodegeneration and may provide a complementary cortical measure for detection

of subtle early cortical changes due to Huntington's disease.
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1 | INTRODUCTION

Huntington's disease is an inherited, progressive, autosomal-dominant

neurodegenerative disorder. The typical life expectancy is 20 years

from motor diagnosis. Huntington's disease symptoms are character-

ized by chorea, lack of coordination, dystonia, cognitive decline, and

changes in behavior. Usually onset is during middle-age (�30–

50 years; Walker, 2007).

HD is caused by an expansion of 36 or more repeats of a

cytosine-adenosine-guanine [CAG] trinucleotide in the huntingtin

gene. Full penetrance occurs at 41 or more CAG repeats, partial pene-

trance occurs from 36 to 40 CAG repeats. Intermediate alleles are

26–35 repeats, where mutation can occur across generations. Repeat

lengths <26 are considered healthy (Walker, 2007). Age of motor

onset has a strong inverse relationship with CAG length. Due to the

strong association of gene mutation length and age at Huntington's

disease diagnosis, personal onset age can be roughly estimated from

the number of trinucleotide repeats multiplied by the current age.

Unfortunately, these estimates have large confidence intervals, lead-

ing to considerable variability in the CAG strata. Some of this variabil-

ity can be explained by genetic variants (Long et al., 2018) and

imaging, clinical, and demographic variables (Paulsen et al., 2015).

The neurodegeneration caused by Huntington's disease is mainly

focal, preferentially targeting striatal medium spiny neurons, which are

instrumental to the basal ganglia-thalamocortical circuitry. The indirect

pathway of this circuit is crucial to motor control by preventing

unwanted muscle contractions and facilitating motor control guided by

the cortex (Ehrlich, 2012). Particular regions that substantially atrophy

from Huntington's disease are the caudate nucleus and the putamen,

the globus pallidum, substantia nigra, parts of the cerebral cortex, hip-

pocampus, cerebellum, hypothalamus, and thalamus (Walker, 2007).

While prior Huntington's disease studies have focused on subcortical

regions (Hett et al., 2020; Li et al., 2020; Li et al., 2021a; Li

et al., 2021b), evidence of cortical changes suggests that there might be

an alternative mechanism of neurodegeneration than that which causes

subcortical changes (Paulsen et al., 2010; Paulsen et al., 2015). Neuro-

degeneration in the cerebral cortex has been reported and may be

partly responsible for non-choreic symptoms such as dementia, irritabil-

ity, apathy, and depression, motivating our study of the cortical surface

(Hedreen et al., 1991). Our overarching hypothesis is that detecting dif-

ferences in the broader cortex through complementary measures may

be integral to developing better measures of detection and gaining

more insight into disease progression towards a better understanding

of the complexity of Huntington's disease pathophysiology.

Former studies of the cortical alterations in Huntington's disease have

based their analysis on cortical thickness (Nopoulos et al., 2010; Rosas

et al., 2002; Tabrizi et al., 2013). However, cortical thickness can be prone

to local measurement noise and does not entirely characterize the mor-

phology of the cerebral cortex. For example, the insula was largely unde-

tected by cortical thickness, yet differences in the insula and basal ganglia

have been tied to impaired disgust processing in pre-symptomatic Hun-

tington's disease, which might be useful for early detection (Hennenlotter

et al., 2004). Hence, in this study we undertake a more thorough study of

cortical neurodegeneration in Huntington's disease through a more com-

plete set of descriptors, namely, cortical thickness (Fischl & Dale, 2000),

sulcal depth (Lyu, Kang, Woodward, & Landman, 2018), and local gyrifica-

tion index (Lyu, Kim, Girault, et al., 2018).

The central hypothesis of this study is that a more comprehensive

shape analysis on specific cortical features may uncover more Hun-

tington's disease-caused cortical alterations than previously known.

Other shape analyses often assess general atrophy, analyzing whole-

brain segmentation (Wu et al., 2018), the subcortical structures (Tan

et al., 2018; Tang et al., 2019), or the white matter tracts connecting

subcortical structures to cortical areas corresponding to certain func-

tions (Hong et al., 2018). In contrast, we focus only on the cortical sur-

face, and we estimate cortical changes using three complementary

cortical shape features—cortical thickness, sulcal depth, and local gyri-

fication index—to discover significant differences in affected cortical

regions. Our findings identify robust cortical alterations in Hunting-

ton's disease that complement striatal atrophy, which has been exten-

sively studied. The results of the endeavor have direct utility for

neuroscience by identifying novel markers of neurodegeneration in

Huntington's disease, determining areas that differ significantly on the

cortical surface of Huntington's disease patients, and contributing to

the detection and tracking of Huntington's disease progression.

2 | MATERIALS AND METHODS

2.1 | Demographics

The Huntington's disease dataset analyzed throughout this project

was provided by the PREDICT-HD study (Paulsen et al., 2008) which

is a multi-site longitudinal study focused on improving the prediction

of Huntington's disease diagnosis, identifying its markers of progres-

sion, and improving the reliability of measures. For this study, we

select the subset of PREDICT-HD that consists of participants who

completed at least two sessions using 3 T MRI.

A widely used progression index is the CAG-Age Product,

CAP¼Age0� CAG�33:66ð Þ, where Age0 is the age of the subject at

the time of first MRI scan and CAG is the length of their CAG expan-

sion (Zhang et al., 2011). Following conventional practice, we classify

patients with similar severity of pathology into three distinct CAP

groups: CAPlow (CAP<290), CAPmedium (290≤CAP<368), and CAPhigh

(CAP≥368; Zhang et al., 2011).

In total, this dataset is composed of 1083 MRIs (see Table 1 for more

details). We note that subjects undergo scanning sessions at different time

points in their disease progression, which is important to account for in

modeling the progression of individual patterns of neurodegeneration.

2.2 | Cortical surface reconstruction and spherical
mapping

Skull stripping, tissue segmentation, and surface reconstruction were

performed with the FreeSurfer v6.0 pipeline (Fischl, 2012). To
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standardize the data and reduce bias, the reconstructed surfaces are

then spherically deformed via surface registration with minimal distor-

tion (Lyu et al., 2019). Each surface is resampled into the same num-

ber of vertices (# = 163,842) via icosahedral subdivision. Only these

resampled surfaces are used for statistical shape analysis. Note that

surface-related processing used the originally reconstructed surfaces

to avoid any potential loss of information from the resampling pro-

cess. Cortical surface parcellation is independently obtained via a

spherical neural network (Parvathaneni et al., 2019) using the Brain-

COLOR (Klein et al., 2010) protocol with 49 cortical labels per hemi-

sphere and defines the region boundaries of the reconstruction. This

method has been shown to outperform traditional methods such as

multi-atlas segmentation (Parvathaneni et al., 2019). This method also

avoids slow-running inter-subject registration using geometric fea-

tures using traditional parcellation methods (Fischl, 2012). Rather, it

uses intermediate deformation fields to smoothly morph the geomet-

ric features and parcellation maps, generating full cortical parcellations

in less than a minute.

2.3 | Feature extraction

In our experiments, we investigated three cortical shape features: cor-

tical thickness, sulcal depth, and local gyrification. Cortical thickness

[CT] is the width of the cortical gray matter and is computed using

FreeSurfer (Fischl, 2012; Fischl & Dale, 2000). For sulcal depth and

local gyrification index, the cerebral hull surface is used as the refer-

ence; the cerebral hull is the outer contour of the cortex and the pial

surface is the inner contour (see Figure 1; Lyu, Kim, Girault,

et al., 2018; Moorhead et al., 2006). Sulcal depth [SD] is the geodesic

distance between the pial surface and the cerebral hull (Lyu, Kang,

Woodward, & Landman, 2018). Gyrification index is defined as the

area ratio between the cerebral hull and the pial surface and local gyri-

fication index [LGI] is the local ratio computed by a shape-adaptive

kernel for a sulcal point on the inner contour (Lyu, Kim, Girault,

et al., 2018). Figure 1 (top panel) visualizes the CT, SD, and LGI mea-

surements on the cortex.

After the above surface reconstruction pipeline, sulcal and gyral

regions were segmented (Lyu, Kim, Woodward, et al., 2018). From

these, an adaptive kernel traversed cortical regions at a spatially vary-

ing diffusion speed along sulci and gyri to compute the pial/hull area

ratio (Lyu, Kim, Girault, et al., 2018). After feature extraction, 1110

sets of feature maps, such as those shown in Figure 1 (bottom panel),

were visually quality controlled to identify anomalous or unusable

results. 25 sets were excluded from the study as they failed visual

inspection at various stages of preprocessing. We excluded two addi-

tional subjects from the dataset because they were missing classifica-

tion as a control or patient. This led to a final cohort of 1083 sets of

feature maps included in our study.

Via regression, we verified that sulcal depth is correlated with

total intra-cranial volume [TICV], generating hard-to-interpret results.

To compensate, sulcal depth values for each session were divided by

the cubic root of the TICV of the subject associated with that session.

Division by the TICV cubic root reduced multicollinearity

(Multicollinearity, 2010) among sulcal depth measurements, stabilizing

the detected differences. For the purpose of this normalization, TICV

was computed as the volume of the FreeSurfer segmentation map.

2.4 | Statistical analysis

The longitudinal structure of the data was handled using a linear

mixed model [LMM], through which we compared the diagnostic

groups differences from study entry (intercept) changing over time

(slope) with the control intercepts (Long et al., 2018). Suppose that Yij

is the imaging measure for the ith participant i¼1, …, Nð Þ at the jth

visit j¼1, …, nið Þ, where ni is the number of visits of the ith partici-

pant. The LMM for the analysis was:

Yij ¼ β0tijþβ1aijþβ2siþβ3g0iþβ4g1iþβ5g2iþβ6g3iþbiþϵij ð1Þ

where βk is a fixed effect; tij is the duration computed as the age at

the current ( jth) scan minus the age at the first scan; aij is the subject's

age at the current scan; si encodes sex (0 = female, 1 = male);

g0i ,g1i,g2i,g3i encodes membership in each of the control, CAPlow,

CAPmed, and CAPhigh groups (0 = not in class, 1 = in class) at study

entry, respectively; bi is a random effect encoding session belonging

to each subject and assumed to be normally distributed; and ϵij is the

residual which accounts for effects that are otherwise unexplained by

the other variables and is assumed to be normally distributed and

orthogonal to bi. Under the normality assumption, estimation is car-

ried out using maximum likelihood methods (Verbeke &

Molenberghs, 2000). The objects of inference in the model of

Equation (1) are the group intercepts β3,β4,β5,β6 and, more specifi-

cally, the differences between the control intercept and the CAP

group intercepts (e.g., β3�β4). The group mean was not used. An

omnibus null hypothesis of no difference between any of the CAP

groups and controls was evaluated using a Wald-type test statistic.

TABLE 1 Demographic description
of the analyzed cohort

(a) Overall Control CAPlow CAPmed CAPhigh

# Sessions 1083 323 261 282 217

# Subjects 395 111 98 103 83

Age (SD) 46.72 (12.61) 49.48 (12.00) 37.76 (9.81) 47.73 (12.15) 52.1 (11.61)

CAG interval [15,58] [15, 35] [37,45] [38,48] [39,58]

Gender (F:M) 716: 367 205: 118 186: 75 207: 75 118: 99
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p values were adjusted for multiple comparisons with a family-wise

error rate [FWER] correction based on random field theory (Taylor &

Worsley, 2007; Worsley et al., 1999). Multi-comparison correction

was not considered between features as they are treated separately

and never directly statistically compared.

Note that each session can only belong to one group, that is, only

one of g0ij,g1ij,g2ij,g3ij equals 1 while the rest equal 0. Therefore, group

intercept values (β3…β6Þare used to compare the model fits for each

group in different brain areas. The sampling distributions for these

values can illuminate trends corresponding to disease progression.

2.5 | Implementation details

Linear mixed models were fitted using the lme4 package in R (Bates

et al., 2015), which is a general linear model toolbox. SurfStat

(Worsley et al., 2009), which is a MATLAB toolbox for linear mixed

effects models and random field theory on brain surface and volumet-

ric data, was used for surface smoothing, multiple comparison correc-

tion, and displaying results. To denoise the CT input, we applied a

Gaussian smoothing kernel (full width at half maximum

[FWHM] = 6 mm) using SurfStat, which provides the best balance

between conservative analysis and preserving sensitivity (Han

et al., 2006).

2.6 | Data availability statement

The data that support the findings of this study are available on

request from the corresponding author. The data are not publicly

available due to restrictions, for example, their containing information

that could compromise the privacy of research participants. The code

for our statistical analysis is available at https://github.com/MedICL-

VU/Cortical-Shape-Analysis-in-HD.

3 | RESULTS

3.1 | Cortical thickness

Figure 2 shows the brain map of regions showing statistically signifi-

cant CT differences based on the omnibus testing (top panel), and

boxplots of the associated group intercept estimates (bottom panel).

CT appears highly sensitive to changes in the primary motor cortex,

with a high occurrence of statistically significant changes on the pre-

central gyrus (Figure 2, top panel). CT is the only feature that captures

differences with higher p values (p < 0.05), shown in darker shades of

blue. CT alterations were mostly detected in the posterior regions

while very few significant changes appeared in the anterior regions.

Group intercepts fit similarly in analogous regions in both

F IGURE 1 Cortical measurement visualizations on an example cortical section (top) and examples of the full feature maps (bottom). For CT
and SD, the green bars indicate the measured geodesic distance between vertices. For SD and LGI, the red contour indicates the pial surface and
the blue contour indicates the cerebral hull. LGI is then defined as the ratio of the (red surface area)/(blue surface area), using a shape-adaptive
local kernel. The gradients for LGI and the bottom figures signify where magnitude is expected to be greater (red) and lesser (blue). The grey and
white matter surface originates from Reference Roberts et al. (1970).
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hemispheres and marked an inverse relationship between the mean

intercept value in the region and the level of disease progression

(Figure 2, bottom panel). Note that only CT exhibits outliers in these

figures.

Figure 3 shows CT effect size (left) and T-test results (right) using

a stratified analysis of the difference between controls and each of

the CAPlow (top), CAPmed (middle), and CAPhigh (bottom) groups. CT

displays an increase in effect size with disease progression, across the

entire cortical surface. The regions with statistically significant differ-

ences for CT are: pre-central, pre-cuneus, cuneus, superior temporal,

superior frontal, inferior parietal, superior parietal, and lateral occipital.

The p values and group mean intercepts for these regions are pro-

vided in Table S1. Figure S1 shows the effect of age on the CT mea-

surements after smoothing and after fitting the model.

F IGURE 2 Omnibus test results (top) and cluster intercept boxplots (bottom) for CT. p values were adjusted for FWER using random field
theory α¼0:01ð Þ.
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F IGURE 3 Effect size (left) and T-test results (right) for the difference between controls and CAPlow (top), CAPmed (middle), and CAPhigh

(bottom) for CT. The T-test comparison for each stratum is β3�βj where j corresponds to the intercept for each CAP group. Effect size is
computed by SurfStat using Cohen's coefficient
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3.2 | Sulcal depth

Among the three investigated features, SD showed the fewest signifi-

cant differences and upon observation also the smallest clusters on

average (Figure 4, top panel). However, SD indicates the same

decreasing trend between intercept value and disease progression as

CT (Figure 4, bottom panel).

Figure 5 shows SD effect size (left) and T-test results (right) for

the difference between controls and CAPlow (top), CAPmed (middle),

and CAPhigh (bottom). SD effect sizes increase with disease

F IGURE 4 Omnibus test results (top) and cluster intercept boxplots (bottom) for SD. p values were adjusted for FWER using random field
theory α¼0:01ð Þ.
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F IGURE 5 Effect size (left) and T-test results (right) for the difference between controls and CAPlow (top), CAPmed (middle), and CAPhigh

(bottom) for SD. The T-test comparison for each stratum is β3�βj where j corresponds to the intercept for each CAP group. Effect size is
computed by SurfStat using Cohen's coefficient
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progression with noteworthy effects in the left opercularis and the

insula. The regions with detected differences for SD are: pre-central,

post-central, transverse temporal, and opercularis. The p values and

group mean intercepts are provided in Table S2. Figure S2 shows the

effect of age on the SD measurements after fitting the model.

3.3 | Local gyrification index

Group differences based on LGI appears uniquely significant in the

insular regions (Figure 6, top panel), which may correlate with changes

in the basal structures. Like CT, LGI detects differences on the pre-

F IGURE 6 Omnibus test results (top) and cluster intercept boxplots (bottom) for LGI. p values were adjusted for FWER using random field
theory α¼0:01ð Þ.
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central gyrus and in the posterior regions. LGI stands apart from the

other two cortical shape features in that it detects clusters of insular

changes in both hemispheres, although more pronounced in the right

hemisphere. The insular clusters for LGI also show a high concentra-

tion of significant peaks which corresponds to many detected clusters

cooccurring in these regions. LGI also demonstrates the same decreas-

ing intercept pattern as CT and SD (Figure 6, bottom panel).

Figure 7 shows LGI effect size (left) and T-test results (right) for

the difference between controls and CAPlow (top), CAPmed (middle),

and CAPhigh (bottom). LGI displays a large effect in the insula with dis-

tinctly increasing effect as the disease progresses. Small pockets of

greater effect size beyond the insula coincide with areas of significant

change, as well as some that do not. The regions with detected differ-

ences for LGI are: pre-central, post-central, pre-cuneus, cuneus, insu-

lar, transverse temporal, superior temporal, inferior temporal, and

supra-marginal. The p values and group mean intercepts are summa-

rized in Table S3. Figure S3 shows the effect of age on the LGI mea-

surements after fitting the model.

4 | DISCUSSION

4.1 | Feature comparison

4.1.1 | Cortical thickness

The results indicate that pre-central and post-central gyri around the

central sulcus, which correspond to the primary motor and somato-

sensory cortices, are highly affected. Previous studies suggest that

cortical thinning progresses posteriorly to anteriorly and affects the

sensorimotor region most (Rosas et al., 2002). Consistent with this

conceptualization of cortical thinning progression in Huntington's dis-

ease, our results show differences in cortical thickness at the posterior

poles more than the anterior poles and conspicuously show that the

most statistically affected region is the sensorimotor area. Effect sizes

for CT display an increasing trend correlated to disease progression.

However, areas of effect for CT are ubiquitous across the cortical sur-

face. These findings suggest that CT correlates with Huntington's

disease-related changes but does not uniquely correlate with specific

areas that could conclusively indicate the presence of disease, sug-

gesting that most of its detected areas of change could have practical

utility.

4.1.2 | Sulcal depth

In our analysis, regional changes for SD are largely inconclusive in

most brain regions, which suggests that SD measures are generally

less sensitive to anatomical changes during the course of Huntington's

disease compared with the other two features. Only two areas in the

pre-central and transverse temporal regions show significant cortical

differences between control and Huntington's disease patients, which

may suggest changes in the primary motor and auditory cortices,

respectively. Hence, these detections parallel known pathology as

well as findings from the other two features. It is noteworthy that SD

captured differences in the left opercularis, which was an area largely

undetected by the other features. SD effect sizes increase with dis-

ease progression; the left opercularis has a large effect size suggesting

this detection may have practical significance.

4.1.3 | Local gyrification index

The insular changes that LGI identified are of particular importance

since this area was largely ignored by cortical thickness measures in

prior studies (Nopoulos et al., 2010; Rosas et al., 2002; Tabrizi

et al., 2013). Since insular differences correspond to the basal ganglia

where the putamen and caudate nucleus are preferentially affected in

pre-symptomatic Huntington's disease (Hennenlotter et al., 2004), LGI

may promise some degree of early detection. Despite LGI overtly

detecting in the insula, it also has a posterior–anterior association sim-

ilar to CT, with a few clusters near the cuneus and virtually no clusters

detected anteriorly. However, unlike CT and SD, LGI results strongly

detected in the insula in both T-testing and omnibus testing, at every

acceptance threshold with which we experimented, with and without

multi-comparison correction. LGI displays large effect sizes mainly in

the insula with a few other small areas scattered along the cortical

surface. Like CT and SD, LGI's effect size is distinctly correlated with

disease progression. CAPhigh shows the strongest effect in the insula

in both hemispheres, yet CAPmed also shows a strong effect in the

insular areas particularly in the left hemisphere, indicating that LGI

could be a useful diagnostic tool for the reasons that CT is not.

Other neuroimaging research on PREDICT-HD suggests that

markers create patterns that may allow detection decades prior to

clinical diagnosis (Paulsen et al., 2008). However, to discover such pat-

terns, we need evidence of where features might be changing in the

cortex. The strength of the evidence that a feature is changing within

a given anatomical structure can be quantified by the total number of

detected vertices relative to the total number of vertices of the struc-

ture. Table 2 outlines the global and regional surface areas for each

feature in structures where that feature changed.

4.2 | Regional analysis

In addition to a global cortex analysis, we also compared the average

of group intercepts for select regions (Figures 2, 4, and 6, bottom

panels). The consistent stepwise decrease in average intercept values

reflects neurodegeneration caused by Huntington's disease since the

magnitude of these metrics should generally decrease with disease

progression (Nopoulos et al., 2010; Rosas et al., 2002). The similarity

in the intercept values for detected changes within the same regions

on separate hemispheres suggests that regional model fits are pre-

served across the features and throughout the corresponding struc-

ture for controls and diagnostic groups. High intercept values for LGI

in the insula indicate high correlation for changes in LGI in these
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F IGURE 7 Effect size (left) and T-test results (right) for the difference between controls and CAPlow (top), CAPmed (middle), and CAPhigh

(bottom) for LGI. The T-test comparison for each stratum is β3�βj where j corresponds to the intercept for each CAP group. Effect size is
computed by SurfStat using Cohen's coefficient

STOEBNER ET AL. 1427



regions, which would further support LGI as a potential early

biomarker.

The somatic expansion theory suggests that neurodevelopment is

normal until expansion reaches a threshold in midlife (Hong

et al., 2021; Mangin et al., 2020). In support, neurodevelopmental

changes do not appear to account for the detected changes as the

changes in CAPlow group is not significantly different from controls

(Figures 3, 5, and 7, top panels; Scahill et al., 2020). This strongly sug-

gests that neurodegeneration, rather than neurodevelopmental

defect, is responsible for the differences identified in our study; how-

ever, definitive confirmation of this would necessitate scanning sub-

jects over their entire lifespan.

Shown in Figure S4, we additionally observe that our model can

correlate clusters that span multiple structures, such as a cluster that

overlaps with both the cuneus and pre-cuneus. We note that these

detections are undeterred by differences in cortical shape that

delineate different cortical structures, and the relative intercept values

alter accordingly. Thus, cluster outliers may appear on the cluster

fringes that overlap with other regions where the model attempts to

fit intercepts that deviate from the majority of the cluster.

4.3 | Comparison with previous literature

Prior studies have examined cortical morphology in Huntington's dis-

ease and reported that cortical thinning occurs most prominently in

the posterior and superior cerebral cortex (Nopoulos et al., 2010;

Rosas et al., 2002) and occurs variably between patients and between

diagnostic groups (Rosas et al., 2002). Our findings for CT are consis-

tent with these prior findings, with a higher relative concentration of

posterior changes compared with anterior changes and the appear-

ance of most clusters in the superior cerebral regions, for example,

TABLE 2 Summary of regions with
significant changes per feature

Cortical thickness Sulcal depth Local gyrification index

Left Right Left Right Left Right

Precentral gyrusa 17.45 13.24 – 1.27 – 2.76

Precuneusa 3.77 4.84 0.60 – 4.12 –

Cuneusb 32.38 – – – 12.13 –

Postcentral gyrusb – – 0.32 – 1.16 0.65

Planum temporalb 30.93 30.97 – – 15.37 8.33

Sup. Occ. Gyrusb 43.57 – – – 2.36 –

Trans. Temp. Gyrusb – – 13.96 – 80.02 –

Anterior insula – – – – 3.98 38.94

Central operculum – – – – 39.97 48.39

Entorhinal area – – – – – 10.17

Frontal operculum – – 21.95 – – –

Fusiform gyrus – – 0.64 0.74 – –

Inf. Occ. gyrus 21.03 12.07 – – – –

Inf. Temp. gyrus – – – – 1.12 –

Orb. Inf. frontal gyrus – – – – 10.29 –

Post. insula – – – – 22.57 68.82

Parietal operculum – – – – 38.70 20.16

Post. Orb. gyrus – – – – 7.25 8.71

Planum polare – – – – – 68.46

Sup. frontal gyrus 3.42 3.35 – – – –

Suppl. motor cortex 8.85 – – – – –

Sup. parietal lobe – 6.00 – – – –

Temp. pole – – – – – 5.45

Trans. temp. gyrus – – – – – 84.44

Note: The percentage of the structure with significant changes are reported, in terms of the number of

vertices. The parcellation scheme is used to identify regional belonging and compute the percentage of

detected vertices within the region. Regions are sorted according to cooccurrence in the three features.

Otherwise, regional changes were detected by only one of the features. –, no feature changes detected

for the region in the corresponding hemisphere.
aRegional changes were detected by all three features.
bRegional changes were detected by two of the features.
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the sensorimotor area. CT did not detect any superfluous differences

that were not already discovered in prior Huntington's disease studies

using CT. Instead of solely focusing on one feature, our paper adds a

comprehensive analysis comparing changes between CT, SD, and LGI

to the literature, which yields better contextual understanding of CT

as an indicator for Huntington's disease.

A prior study on SD in Huntington's disease identified a global

decrease in sulcal depth in Huntington's disease(Nopoulos

et al., 2012) and another found a localized decrease in sulcal depth in

the Sylvian fissure (Mangin et al., 2020). Global decrease suggests that

SD is not a precise tool for detecting Huntington's disease-related

cortical changes, which our findings for SD support yielding few sig-

nificant differences from controls. Additionally, one of those differ-

ences was detected in the transverse temporal gyrus, which is located

on the Sylvian fissure (Brown, 2005), aligning our findings with prior

study.

Prior studies using LGI in the context of other diseases found that

this novel measure yields higher reproducibility than conventional

methods and captures both positive and negative changes in gyrifica-

tion (Lyu, Kim, Girault, et al., 2018). To our knowledge, no previous lit-

erature on Huntington's disease applies LGI suggesting that our study

is the premier for this feature in the context of Huntington's disease,

and our findings are therefore novel.

4.4 | Clinical interpretation

Our results show that both CT and LGI correlate with changes due to

Huntington's disease in many cortical regions; CT and LGI capture

9 and 18 different regions of change, respectively. Additionally, CT

and LGI also correlate with specific regions of interest. We note that,

the consistency of insular detection for LGI potentially implies greater

reliability compared with CT in detecting Huntington's disease-related

cortical changes. Nonetheless, the detected areas for LGI and CT

appear complementary to each other, focusing on different areas

affected by neurodegeneration. Together, the two could better char-

acterize patient neurodegeneration and have even greater sensitivity

and reliability than if one were singularly used, which may ultimately

contribute to prediction and early detection. The complementarity of

the two features regarding clinical prediction outcomes will be investi-

gated in future work.

5 | CONCLUSION

Validating potential markers of Huntington's disease is a critical step

in asserting the reliability of early detection measures. In this study,

we propose an analysis of cortical changes using three different fea-

tures: cortical thickness, sulcal depth, and local gyrification index. Our

results reveal local gyrification index as a potentially eminent marker

for early detection with strong correlation to regional differences not

captured by cortical thickness. Local gyrification index and cortical

thickness were comparable overall with similar patterns in their

collocated detections. However, local gyrification index detected dif-

ferences in regions previously undetected by cortical thickness in

prior studies. Future direction for this research will involve correla-

tions between cortical morphology and the motor, cognitive and

behavioral scores provided by PREDICT-HD.
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