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1  | INTRODUC TION

The ability of a species to adapt is fundamental to being resilient 
to environmental change. A species can biologically respond to 
change by extinction, shifting its distribution, or adapting to new 
environmental conditions (Raia, Passaro Fulgione, & Carotenuto, 

2012; Teplitsky & Millien, 2014). Alterations in species distribution 
and abundance that follow shifting of climatic conditions have been 
documented in several plant and animal species (Parmesan & Yohe, 
2003; Root et al., 2003). Similarly, changes in species phenology 
in response to climate change have been reported (Boutin & Lane, 
2014; Charmantier & Gienapp, 2014; Inouye, Barr, Armitage, & 
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Abstract
Polar bears (Ursus maritimus) are experiencing rapid and substantial changes to their 
environment due to global climate change. Polar bears of the southern Beaufort Sea 
(SB) have historically spent most of the year on the sea ice. However, recent reports 
from Alaska indicate that the proportion of the SB subpopulation observed on-shore 
during late summer and early fall has increased. Our objective was to investigate 
whether this on-shore behavior has developed through genetic inheritance, asocial 
learning, or through social learning. From 2010 to 2013, genetic data were collected 
from SB polar bears in the fall via hair snags and remote biopsy darting on-shore and 
in the spring from captures and remote biopsy darting on the sea ice. Bears were 
categorized as either on-shore or off-shore individuals based on their presence on-
shore during the fall. Levels of genetic relatedness, first-order relatives, mother–off-
spring pairs, and father–offspring pairs were determined and compared within and 
between the two categories: on-shore versus off-shore. Results suggested transmis-
sion of on-shore behavior through either genetic inheritance or social learning as 
there was a higher than expected number of first-order relatives exhibiting on-shore 
behavior. Genetic relatedness and parentage data analyses were in concurrence with 
this finding, but further revealed mother–offspring social learning as the primary 
mechanism responsible for the development of on-shore behavior. Recognizing that 
on-shore behavior among polar bears was predominantly transmitted via social 
learning from mothers to their offspring has implications for future management and 
conservation as sea ice continues to decline.
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Inouye, 2000). Polar bears (Ursus maritimus) are experiencing crit-
ical and rapid changes to their environment due to climatic warm-
ing (Stirling & Derocher, 2012). This ice-dependent Arctic marine 
mammal (Amstrup, 2003) was listed as “threatened” under the U.S. 
Endangered Species Act in 2008 (U.S. Fish and Wildlife Service 
2008). The listing was primarily due to the observed and projected 
loss of sea ice habitat, which puts polar bears at risk of becoming 
endangered in the foreseeable future (i.e., by mid-century). During 
1979–2014, the spatial extent of Arctic sea ice in September (when 
sea ice reaches its annual minima) has declined by 13.3% per de-
cade due to warming temperatures (Serreze & Stroeve, 2015). Sea 
ice extent (and volume) is expected to continue to decline and the 
southern Beaufort Sea is predicted to become essentially season-
ally ice-free (i.e., <1.0 × 106 km2) during the summer before the end 
of the 21st century (Stroeve et al., 2012). Hence, understanding the 
ecology and behavior of species dependent on sea ice is necessary 
for conservation and management actions to ensure their population 
persistence.

Polar bears depend on sea ice for long-distance movements, 
mating, access to their primary prey of ringed seal (Phoca hispida) 
and bearded seal (Erignathus barbatus), and some maternal den-
ning (Amstrup, 2003). Numerous studies indicate that survival 
(Bromaghin et al., 2015; Regehr, Hunter, Caswell, Amstrup, & Stirling, 
2010), reproduction, and body condition (Rode, Amstrup, & Regehr, 
2010) of the southern Beaufort Sea (SB) subpopulation are nega-
tively affected by changing sea ice conditions. In addition, polar 
bears have been observed swimming increasingly longer distances 
as sea ice has, on average, retracted farther from shore during sum-
mer (Pilfold, McCall, Derocher, Lunn, & Richardson, 2017), result-
ing in potentially higher energetic costs (Pagano, Durner, Amstrup, 
Simac, & York, 2012). Furthermore, the distribution of denning has 
shifted to include fewer denning sites on the pack ice and more sites 
on land in correspondence with a reduction in the availability and 
quality of pack ice serving as denning habitat (Fischbach, Amstrup, 
& Douglas, 2007).

Polar bears of the SB have historically spent most of the year 
on the sea ice with the exception of denning (Amstrup, Durner, 
Stirling, Lunn, & Messier, 2000). However, recent research in Alaska 
indicates that polar bears of the SB subpopulation are becoming in-
creasingly reliant on land during late summer and fall, when sea ice 
is no longer present over the biologically productive, shallow water 
of the continental shelf (Atwood et al., 2016; Gleason & Rode, 2009; 
Schliebe et al., 2008). The estimated proportion of radio-collared 
bears from the SB subpopulation observed on-shore increased from 
5.8% during 1986–1999 to 20.0% during 2000–2014, reaching a 
peak of 37.0% in 2013 (Atwood et al., 2016).

The number of bears observed on-shore has been shown to in-
crease when sea ice retracts farther from the shore following the 
summer melt season (Schliebe et al., 2008). In addition, the spatial 
distribution of on-shore bears appears to be linked to the acces-
sibility of ringed seals in off-shore waters and the availability of 
subsistence-harvested bowhead whale (Balaena mysticetus) car-
casses (Atwood et al., 2016; Schliebe et al., 2008). Coastal Iñupiat 

communities of Alaska annually hunt bowhead whales and deposit 
the unused remains at localized “bone piles” on-shore that consist 
of trimmed blubber, meat, and bones (Ashjian et al., 2010), thereby 
attracting polar bears and other wildlife. On-shore bears could be at 
a higher risk of human–bear conflicts with local residents, tourists, 
and industrial activities (Laforge et al., 2017; Wilder et al., 2017), 
as well as increased exposure to certain pathogens (Atwood et al., 
2017) and pollutants (Amstrup, Gardner, Myers, & Oehme, 1989). 
Despite this marked increase of bears exhibiting on-shore behavior, 
there remains a lack of research on how this behavior developed.

Recognizing how animals acquire different behavioral strategies 
is necessary for both basic and applied scientific disciplines such as 
wildlife management and conservation biology. Animal behavioral 
traits can be obtained through genetic inheritance (Arnold, 1981), 
but frequently the acquisition of a behavior occurs via learning 
(Heyes, 1994; Heyes & Galef, 1996). Learning incorporates complex 
ontogenetic processes allowing animals to acquire, store, and use 
information about the environment (Galef & Laland, 2005). Learning 
can occur socially or asocially, whereby social learning refers to 
knowledge acquired from the observation of others, typically a con-
specific or the products of their activities, and asocial learning refers 
to learning where no social interaction is required (Heyes, 1994).

Recent studies have investigated the transmission of forag-
ing behavior from mother to offspring in free-ranging black bears 
(U. americanus) using observational and genetic techniques (Breck 
et al., 2008; Hopkins, 2013; Mazur & Seher, 2008). Similarly, studies 
on grizzly bears (U. arctos) examined the transmission of habitat se-
lection and conflict behavior from mother to offspring (Morehouse, 
Graves, Mikle, & Boyce, 2016; Nielsen, Shafer, Boyce, & Stenhouse, 
2013). Bears are good candidates for studying whether particular 
behaviors are transmitted from mother to offspring because bears 
are highly intelligent and solitary with the exception of a prolonged 
mother–offspring association (Gilbert, 1999). Polar bear offspring 
typically remain with their mother up until 2.3 years of age (Ramsay 
& Stirling, 1988). Therefore, it is feasible to determine that a bear is 
learning socially from its mother if bears display the same behavioral 
patterns as adults.

In light of the pronounced increase in the number of polar bears 
coming on-shore and its potential to have both ecological and man-
agement implications, our objective was to elucidate how this be-
havior developed. We collected genetic and behavioral data from 
bears that come on-shore (hereafter “on-shore”) and those that re-
main on the pack ice (hereafter “off-shore”) during the fall season. 
Specifically, we addressed the following question: Was on-shore be-
havior for polar bears in the SB subpopulation acquired via asocial 
learning, social learning, or genetic inheritance?

To answer this question, we tested hypotheses to determine 
how on-shore behavior developed via three analyses: (a) genetic 
relatedness (i.e., quantitative estimate of the proportion of genes 
shared between the genomes of any two individuals); (b) first-order 
relatives (i.e., parent–offspring or sibling pairs); (c) and parentage 
(i.e., mother–offspring and father–offspring pairs) within and be-
tween polar bears categorized as on-shore and off-shore bears. 
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We included transmission (i.e., the behavior was transmitted via 
social learning or genetic inheritance) as an additional hypothe-
sis because not all analyses that we conducted could differentiate 
between social learning and genetic inheritance. It is important 
to note that these hypotheses are not mutually exclusive, thus 
evidence for one hypothesis does not indicate other mechanisms 
are not occurring but that the most supported hypothesis is more 
predominant.

1.1 | Hypothesis 1: On-shore behavior for polar 
bears developed via asocial learning

The asocial learning hypothesis from the genetic relatedness analy-
ses predicts that female bears that exhibit on-shore behavior do 
not have higher levels of genetic relatedness relative to the entire 
sampled population. Asocial learning of on-shore and off-shore be-
havior from the parentage analysis would be evident if there was 
no association between the parent’s behavior and the offspring’s 
behavior.

1.2 | Hypothesis 2: On-shore behavior for polar 
bears developed via social learning

The transmission via social learning hypothesis from the genetic 
relatedness analyses predicts that female bears but not male bears 
that exhibit on-shore behavior have higher levels of genetic re-
latedness relative to the sampled population. Furthermore, an 
association between the mother’s behavior and her offspring’s 
behavior, but no association between the father’s behavior and 
his offspring’s behavior (as male bears do not rear cubs), from the 
parentage analyses would be indicative of social learning for on-
shore and off-shore behavior.

1.3 | Hypothesis 3: On-shore behavior for polar 
bears developed via genetic inheritance

The transmission via genetic inheritance hypothesis from the genetic 
relatedness analyses predicts that both female and male bears that 
display on-shore behavior have higher levels of genetic relatedness 
than the sampled population. In addition, a scenario of genetic inher-
itance of on-shore and off-shore behavior from the parentage analy-
ses would be if there was an association between both the mother’s 
behavior and her offspring’s behavior and the father’s behavior and 
his offspring’s behavior.

1.4 | Hypothesis 4: On-shore behavior for polar 
bears developed via transmission (i.e., social 
learning or genetic inheritance)

The transmission hypothesis from the genetic relatedness analyses 
predicts that female bears that exhibit on-shore behavior have a 
higher genetic relatedness than the sampled population. Secondly, 
a higher than expected number of first-order relatives that display 

on-shore behavior would provide evidence of transmission for this 
behavior.

2  | MATERIAL AND METHODS

2.1 | Study area

The SB polar bear subpopulation inhabits a region encompassing 
areas along the north coast of Alaska and Canada from Icy Cape, 
USA, (70.3°N, 161.9°W) in the west, to Tuktoyaktuk, Canada 
(69.4°N, 133.0°W), in the east; following IUCN (Polar Bear Specialist 
Group; http://pbsg.npolar.no/en/). The southern Beaufort Sea has 
a narrow continental shelf with a steep shelf-break that plunges to 
some of the deepest waters of the Arctic Ocean (Jakobsson et al., 
2008). The SB is typically ice covered from October to June, and sea 
ice retreats to its minimum in the summer and fall seasons from July 
to September. In recent years there has been a trend in the SB of 
earlier melt onset, reduced summer sea ice extent, a lengthening of 
the open-water season (i.e., sea ice retreats toward the pole during 
the annual sea ice minimum), and later freeze-up (Stroeve, Markus, 
Boisvert, Miller, & Barrett, 2014).

2.2 | Collection of genetic material

We collected genetic material from SB polar bears from 2010 to 2013 
(Figure 1) via direct polar bear captures, remote biopsy darting, and 
hair snags. We used the contemporary genetic data in conjunction 
with a long-term data set of SB polar bears captured nearly every 
spring since the mid-1980s. We captured polar bears in coastal areas 
(e.g., within 150 km of the coast) of the SB from Utqiagvik, Alaska 
(~157°W) to the U.S.–Canada border (~141°W). We conducted cap-
tures over the sea ice during the spring season from March to early 
May over the study. We encountered adults and subadults oppor-
tunistically while flying in a helicopter and immobilized them with ti-
letamine hydrochloride plus zolazepam hydrochloride (Telazol®, Fort 
Dodge and Warner-Lambert Co.) using a projectile syringe fired from 
a dart gun. We collected blood and tissue samples for genetic identi-
fication. In addition, we fitted an Argos or global positioning system 
(GPS) platform transmitter terminal (PTT) satellite radio-collars to a 
subset of adult female polar bears to collect movement and spatial 
data (Durner et al., 2009).

During the spring, we conducted remote biopsy darting from a 
helicopter to collect tissue samples from adult and subadult bears 
within approximately 150 km of the coast between Utqiagvik, 
Alaska, and the U.S.–Canada border. In addition, we conducted re-
mote biopsy darting in the fall along the coastline, barrier islands, 
and inland areas within approximately 30 km of the coast (Pagano, 
Peacock, & McKinney, 2014). The remote biopsies collected skin tis-
sue samples for genetic identification. We implemented hair snags 
in Utqiagvik, Alaska in the fall season of 2011 and Kaktovik, Alaska 
(~143°W), in the fall seasons of 2012 and 2013 to collect hair sam-
ples for genetic identification (see [Herreman & Peacock, 2013] for 
details).

http://pbsg.npolar.no/en/
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2.3 | Genetic identification

We genotyped blood, tissue, and hair samples at 20 microsatellite 
loci and a ZFX/ZFY sex identification marker by Wildlife Genetics 
International (Nelson, British Columbia, Canada). The DNA was 
extracted using a Qiagen DNeasy kit (QIAGEN Inc., Valencia, CA, 
USA). The DNA was extracted from hair samples using a minimum 
of 10 guard hair roots, if available, or up to 30 whole underfur hairs 
if needed to supplement guard hairs. The DNA was extracted from 
the dry blood and tissue samples using a clipped piece ~3 mm2 
from the end of a Q-tip or ear punch. The DNA extracts were ini-
tially amplified at 11 hypervariable microsatellite markers to identify 
individuals: G1A, G10B, G10C, CX110, G1D, G10L, G10M, MU59, 
G10P (Paetkau & Strobeck, 1994; Proctor, McLellan, & Strobeck, 
2002; Taberlet et al., 1997); and G10H and G10J (GenBank acces-
sion numbers U22086.1 and U22087.1, respectively). Any DNA 
extracts that were amplified at <11 loci were considered unsuc-
cessful and excluded from further analyses. After individuals were 
identified, each individual was amplified at nine additional mark-
ers including a sex-linked locus: MSUT-2, CPH9, CXX20, MU50, 

MU51, G10X, CXX173 (Kitahara, Isagi, Ishibashi, & Saitoh, 2000; 
Molecular Ecology Resources Primer Development Consortium, 
2010; Ostrander, Sprague, & Rine, 1993; Paetkau, Calvert, Stirling, 
& Strobeck, 1995; Proctor et al., 2002; Taberlet et al., 1997); and 
14RENP07 and G10U (GenBank accession numbers AJ411284, and 
U22092.1, respectively).

2.4 | On-shore and off-shore bears

We categorized polar bears based on their behavior as on-shore or 
off-shore individuals both pooled over the duration of the study and 
on an annual basis. For the pooled data set, we considered bears 
as on-shore individuals if they were identified on-shore during the 
study. We identified bears on-shore during the fall season using in-
formation from the remote biopsy, hair snag, or GPS locations (see 
[Atwood et al., 2016] for details). We restricted the fall season to 
July 1 to October 31 as this was when the sea ice was not contigu-
ous to the coast. We categorized bears as off-shore individuals if 
they were identified on the sea ice during the spring remote biopsy 
or direct capture and were not observed on-shore at any time during 

F IGURE  1 Study area along the Beaufort Sea coast from Utqiagvik, Alaska to the Canadian border

info:ddbj-embl-genbank/U22086.1
info:ddbj-embl-genbank/U22087.1
info:ddbj-embl-genbank/AJ411284
info:ddbj-embl-genbank/U22092.1
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the study. For the annual data set, we considered bears as on-shore 
individuals if they were identified on-shore for a given year from 
the fall season remote biopsy, hair snag, or GPS locations. We cat-
egorized bears as off-shore individuals if they were not identified 
on-shore for that respective year. We conducted the annual catego-
rization because some bears switched behavioral strategies during 
the 4 years of sampling. We conducted identical analyses on the 
pooled and the annual data sets to ascertain if comparable results 
would be obtained.

We estimated the age of individual bears from analysis of ce-
mentum annuli (Calvert & Ramsay, 1998), or they were classed as 
a known age bear if they were originally captured as dependent 
young with their mother (Ramsay & Stirling, 1988). We conducted 
three separate analyses to determine how on-shore behavior was 
acquired: genetic relatedness, first-order relatives, and parentage 
(Breck et al., 2008; Hopkins, 2013). We conducted all statistical 
tests using α = 0.05 in R (R Core Team 2016). We included an indi-
vidual bear only once in all analyses after it was categorized as an 
on-shore or off-shore bear. In addition, we included only bears con-
sidered independent in all analyses because dependent young had 
no choice but to remain with their mother. We considered bears as 
independent if they were ≥2 years old or if they were observed with-
out their mother when captured.

2.5 | Genetic relatedness

We calculated pairwise relatedness (Queller & Goodnight, 1989) be-
tween all possible pairings of individuals using Genalex (Peakall & 
Smouse, 2006, 2012). Theoretical values of relatedness range from 
−1 to 1, with negative values indicating the gene frequencies of the 
two compared individuals differ from the population mean in op-
posite directions, zero representing random associations between 
individuals, and increasing values corresponding to increased re-
latedness. Relatedness values are affected by genetic structure, as 
these values measure genetic differences in overall allelic frequen-
cies (Queller & Goodnight, 1989). Polar bears are weakly structured 
throughout their circumpolar distribution (Peacock et al., 2015). 
No differentiation observed at microsatellite loci among southern 
Beaufort and adjacent (northern Beaufort and Chukchi Sea) sub-
populations was observed; therefore, we conducted analyses among 
bears across all sampled sites.

We used bootstrap resampling for the genetic relatedness anal-
ysis because the relatedness distributions were non-normal and 
each behavioral group was a subset of the entire sampled population 
(Hopkins, 2013). The behavioral groups tested were on-shore/on-
shore, on-shore/off-shore, and off-shore/off-shore with mean relat-
edness determined for the entire sampled population, and females 
and males, separately. We randomly selected a subset of bears for 
each behavioral group from the sampled population matrix 10,000 
times and calculated relatedness. We then used every relatedness 
value to generate the bootstrap distribution of the sample mean. 
We calculated the p-value by the number of times the bootstrap 

relatedness estimate was greater than or equal to the mean related-
ness for the entire sampled population.

2.6 | Parentage

We identified mother–offspring and father–offspring pairs (Breck 
et al., 2008) using Cervus 3.0 (Marshall, Slate, Kruuk, & Pemberton, 
1998). We considered bears as mothers or fathers if they were 
estimated to be ≥3 years older than the bear presumed to be the 
offspring, there were no genotype inconsistencies between parent–
offspring pairs, and if parentage assignments were made with ≥80% 
confidence. We used either a chi-square goodness-of-fit test or a 
Fisher’s exact test (when sample size in at least 1 category was ≤5) to 
test the null hypothesis that there was no association between the 
parent’s behavior and the offspring’s behavior.

2.7 | First-order relatives

We used the pairwise relatedness values to identify individual pairs 
that were first-order relatives (Breck et al., 2008). Based on related-
ness values from known mother–offspring (n = 27) and sibling (n = 6) 
pairs, we used a value of relatedness ≥0.42 to indicate pairs related 
at the level of first-order relatives. We categorized first-order rela-
tives into the same on-shore/on-shore, on-shore/off-shore, and off-
shore/off-shore behavioral groups examined previously. We used 
either a chi-square goodness-of-fit test or an exact test for multino-
mial (when sample size in at least 1 category was ≤5) to determine 
if the number of observed related pairs differed from the number 
of expected for each behavioral group. We calculated the expected 
numbers by multiplying the observed number of bears for each be-
havioral group by the proportion of all possible pairings within a be-
havioral group.

3  | RESULTS

A total of 231 independent (i.e., ≥2 years old or if they were observed 
without their mother when captured) polar bears for the pooled 
data set were successfully genotyped at a number of loci sufficient 
to provide individual identity (11) and could be categorized as on-
shore or off-shore individuals from the behavioral data; of these 123 
bears were categorized as off-shore (59 females and 64 males) and 
108 bears were categorized as on-shore (58 females and 50 males). 
Over the duration of the study, 12.6% (n = 29/231) of the identified 
bears switched behaviors among the years. We conducted an an-
nual analysis solely for 2011, because sample size for independent 
bears was the highest (2010: n = 81, 2011: n = 103, 2012: n = 97, 
2013: n = 57) and we had sufficient data for mother–offspring and 
father–offspring pairs to conduct the Fisher’s exact test. In 2011, 
there were 103 identified independent bears with behavioral data; 
we categorized 47 bears as off-shore (24 females and 23 males) and 
56 bears as on-shore (28 females and 28 males).
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Female on-shore/on-shore pairs had the highest mean relatedness 
of all behavioral groups (Table 1), which was significantly higher than 
the mean relatedness of the entire sampled population. Male on-shore/
on-shore pairs did not have a significantly higher mean relatedness than 
the mean relatedness of the entire sampled population, which provided 
evidence of social learning of on-shore behavior given that the female 
on-shore/on-shore pairs had significantly higher relatedness than 
the sampled population. A similar pattern was observed for the 2011 
annual analysis. Among the 2011 analyses, only female on-shore/on-
shore pairs had significantly higher mean relatedness than the mean 
relatedness for the entire sampled population (and the highest mean 
relatedness of all behavioral groups). In contrast, male on-shore/on-
shore pairs did not have a significantly higher mean relatedness than 
the mean relatedness of the entire sampled population.

There was evidence of an association between a mother’s behav-
ior and her offspring’s behavior (Table 2). The numbers of on-shore/
on-shore and off-shore/off-shore mother–offspring pairs were higher 

than expected. The number of on-shore/off-shore mother–offspring 
pairs was lower than expected consistent with the pattern of off-
spring retaining the behavioral strategy of their mother. The same pat-
tern was observed for the 2011 data set, though the signal was not 
as strong. The number of on-shore/on-shore and off-shore/off-shore 
mother–offspring pairs was higher than expected, while the number of 
on-shore/off-shore mother–offspring pairs was lower than expected. 
There was no significant association between a father’s behavior and 
his offspring’s behavior (Table 3) for the pooled data set or for the 2011 
data set; though the sample size was low for 2011 and may limit the 
power of the test. Collectively, the parentage findings provide evidence 
for mother–offspring social learning of on-shore behavior.

The observed number of first-order relatives deviated from the 
expectation for both the pooled and 2011 data sets (Table 4). The 
number of on-shore/on-shore first-order relatives was higher than 
expected, which provided evidence for transmission via genetic in-
heritance or social learning of on-shore behavior. Conversely, the 
number of on-shore/off-shore and off-shore/off-shore first-order 
relatives was lower than expected.

4  | DISCUSSION

Analyses testing relationships based on genetic relatedness and 
parentage estimates revealed that social learning was the primary 
mechanism responsible for on-shore behavior. This was revealed by 
the finding that the female on-shore/on-shore behavioral category 
had a significantly higher mean relatedness than the entire sampled 
population, while the male on-shore/on-shore behavioral category 
did not (Table 1). Thus, female polar bears exhibiting on-shore be-
havior had higher relatedness; while on-shore males were not more 

TABLE  1 Mean relatedness and corresponding p-values of 
behavioral groups by category for polar bears of the southern 
Beaufort Sea, pooled for 2010–2013 and annually for 2011. The 
p-value was calculated by the number of times the bootstrap 
relatedness estimate for each behavioral category was greater than 
or equal to the mean relatedness for the entire sampled population

Behavioral groups n Mean relatedness p-value

Pooled

Sampled population 231 −0.0043

On-shore/on-shore 0.0066 0.082

On-shore/off-shore −0.0075 0.726

Off-shore/off-shore −0.0072 0.648

Female bears 117

On-shore/on-shore 0.0151 0.039

On-shore/off-shore −0.0005 0.298

Off-shore/off-shore −0.0020 0.406

Male bears 114

On-shore/on-shore −0.0018 0.406

On-shore/off-shore −0.0141 0.904

Off-shore/off-shore −0.0147 0.849

2011

Sampled population 103 −0.0098

On-shore/on-shore −0.0007 0.192

On-shore/off-shore −0.0129 0.657

Off-shore/off-shore −0.0151 0.678

Female bears 52

On-shore/on-shore 0.0110 0.089

On-shore/off-shore −0.0196 0.810

Off-shore/off-shore −0.0109 0.524

Male bears 51

On-shore/on-shore −0.0083 0.459

On-shore/off-shore −0.0241 0.894

Off-shore/off-shore −0.0079 0.458

TABLE  2 Observed and expected mother–offspring pairs by 
behavioral group for polar bears of the southern Beaufort Sea, 
pooled for 2010–2013 and annually for 2011. A chi-square 
goodness-of-fit test or a Fisher’s exact test (when sample size in at 
least 1 category was ≤5) was used to test the null hypothesis that 
there is no association between the parent’s behavior and the 
offspring’s behavior

Relationship Observed Expected p-value

Pooled

Mother–offspring

On-shore/on-shore 32 28 0.004

Off-shore/on-shore 4 8

On-shore/off-shore 6 10

Off-shore/off-shore 7 3

2011

Mother–offspring

On-shore/on-shore 14 13 0.056

Off-shore/on-shore 1 3

On-shore/off-shore 1 3

Off-shore/off-shore 2 1
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related than the general population. Furthermore, a significant as-
sociation between a mother’s behavior and her offspring’s behav-
ior was observed (Table 2), while no association between a father’s 
behavior and his offspring’s behavior was found (Table 3). In combi-
nation, the parentage results indicated that the transmission of on-
shore and off-shore behavior was through mother–offspring social 
learning because independent offspring generally continued to fol-
low the same behavioral strategy of their mother.

All three analyses from both the pooled and annual data sets 
suggested transmission, via social learning or genetic inheritance, of 
on-shore behavior for the SB polar bear subpopulation. The pooled 
and annual data sets had concordant results indicating that bears 
switching behavior among the years did not alter the overall con-
clusions. Analysis based on first-order relatives revealed higher than 
expected on-shore/on-shore first-order relatives and lower than 
expected on-shore/off-shore and off-shore/off-shore first-order 
relatives (Table 4). Close relatives exhibiting the same behavior in-
dicated transmission of on-shore behavior because closely related 
individuals were likely socially learning from each other or there was 
a genetic basis for on-shore behavior.

A high proportion of male polar bears leaving the study area 
could have resulted in similar patterns in our genetic relatedness 
analysis; thereby erroneously producing a signature of social learn-
ing. For example, male grizzly bears travel widely during breeding 
season (Ciarniello, Boyce, Seip, & Heard, 2007) and generally have 

longer natal dispersal distances than females (McLellan & Hovey, 
2001; Proctor, McLellan, Strobeck, & Barclay, 2004), which would 
likely result in a higher level of genetic relatedness among female 
bears in a region. Generally, movements of male and female polar 
bears do not differ greatly (Amstrup, Durner, McDonald, Mulcahy, & 
Garner, 2001) but female polar bears can have larger breeding range 
sizes than males (Laidre et al., 2013); whereas Zeyl, Aars, Ehrich, and 
Wiig (2009) found that polar bears of the Barents Sea exhibit male-
biased natal dispersal. Thus, because dispersal distance is sex-biased 
in polar bears, the scenario of higher genetic relatedness among fe-
male bears exhibiting on-shore behavior could be a result of greater 
male dispersal. Nonetheless, the mother–offspring findings provided 
evidence of social learning despite the uncertainty regarding the ge-
netic relatedness results because offspring generally followed the 
same behavioral strategy as their mother.

Lower survival of off-shore polar bears could also generate 
equivalent results. That is, if on-shore bears have higher survival, 
and therefore on-shore females have a higher recruitment rate of 
cubs than off-shore bears, then higher genetic relatedness among 
on-shore bears, a higher proportion of on-shore/on-shore first-
order relatives, and more on-shore/on-shore mother–offspring pairs 
would be observed. Thus far, no studies have been conducted on 
survival and recruitment comparing on-shore and off-shore polar 
bear subpopulations. However, research on SB polar bears found 
similar activity patterns and physiological condition for on-shore 

Relationship Observed Expected χ2 p-value

Pooled

Father–offspring

On-shore/on-shore 17 15 0.8755 0.349

Off-shore/on-shore 7 9

On-shore/off-shore 7 9

Off-shore/off-shore 7 5

2011

Father–offspring

On-shore/on-shore 3 2 0.0521 0.400

Off-shore/on-shore 0 1

On-shore/off-shore 1 2

Off-shore/off-shore 1 0

TABLE  3 Observed and expected 
father–offspring pairs by behavioral group 
for polar bears of the southern Beaufort 
Sea, pooled for 2010–2013 and annually 
for 2011. A chi-square goodness-of-fit 
test or a Fisher’s exact test (when sample 
size in at least 1 category was ≤5) was 
used to test the null hypothesis that there 
is no association between the parent’s 
behavior and the offspring’s behavior

Behavioral groups Observed Expected χ2 p-value

Pooled

On-shore/on-shore 64 25 80.8917 <0.001

On-shore/off-shore 30 57

Off-shore/off-shore 19 32

2011

On-shore/on-shore 21 8 33.2949 <0.001

On-shore/off-shore 3 13

Off-shore/off-shore 2 5

TABLE  4 Observed and expected 
first-order relatives by behavioral group 
for polar bears of the southern Beaufort 
Sea, pooled for 2010–2013 and annually 
for 2011. A chi-square goodness-of-fit 
test or an exact test for multinomial (when 
sample size in at least 1 category was ≤5) 
was used to determine whether the 
number of observed related pairs differed 
from the number of expected for each 
behavioral group
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and off-shore bears, which suggests that neither the on-shore or 
off-shore group realizes a greater benefit than the other (Whiteman 
et al., 2015). While the mother–offspring data suggest on-shore be-
havior was acquired through social learning, we cannot rule out the 
possibility that off-shore mothers experienced a high incidence of 
reproductive failure, which then contributed to the clustering of rel-
atives on-shore.

Behavioral or physiological modifications in response to 
climate-driven changes in their environment have been observed 
in other species (Bradshaw & Holzapfel, 2006) with both positive 
and negative fitness consequences (Both, Bouwhuis, Lessells, & 
Visser, 2006; Halupka, Dyrcz, & Borowiec, 2008; Réale, McAdam, 
Boutin, & Berteaux, 2003). The increase in SB polar bears coming 
on-shore (Atwood et al., 2016) and the transmission of this behav-
ior via mother–offspring social learning may be a behavioral mod-
ification in response to climate change and suggests that some SB 
polar bears are altering their behavior in response to a changing cli-
mate. Furthermore, some bears were observed switching behaviors 
over the duration of the study revealing that these behaviors are 
dynamic. Bears may alter their behavior for a multitude of reasons, 
such as annual sea ice conditions, food availability, and reproductive 
status. Plasticity in on-shore/off-shore behavior may provide an av-
enue for polar bears to respond to changing sea ice conditions on an 
annual basis.

On-shore bears may be exposed to additional risks, includ-
ing a greater potential for human–bear conflicts and increased 
exposure to contaminants and diseases (Stirling & Derocher, 
2012). There are several villages along the north coast of Alaska 
and an industrial footprint associated with oil exploration and 
extraction, all of which can occur in relatively close proximity to 
on-shore bears. Also in close proximity to human settlements are 
the remains of subsistence-harvested bowhead whale carcasses, 
which are deposited on land and attract large aggregations of 
bears (Herreman & Peacock, 2013). Therefore, human–bear 
conflicts will likely increase as the sea ice continues to decline 
and more bears come ashore. Human–wildlife conflicts can 
have broad effects: negatively impacting wildlife populations, 
changing the structure of ecosystems (Woodroffe, Thirgood, 
& Rabinowitz, 2005), and endangering public safety (Thirgood, 
Woodroffe, & Rabinowitz, 2005). Other polar bear populations, 
such as the Western Hudson Bay population, have experienced 
increases in the number of problem bears correlated with de-
layed sea ice formation and changes in polar bear distribution 
and declining body condition. In addition, polar bears that were 
highly motivated to obtain food appeared more willing to risk 
interacting with humans (Towns, Derocher, Stirling, Lunn, & 
Hedman, 2009).

The proportion of SB polar bears exhibiting on-shore behavior 
during the fall season has increased over time (Atwood et al., 2016; 
Pongracz & Derocher, 2016). Furthermore, trends of earlier arrival on-
shore, increased length of stay, and later departure back to the sea ice 
have been detected, which are all related to declines in the availability 
of sea ice habitat over the continental shelf and changes to sea ice 

phenology. The Arctic is expected to continue to warm given the cur-
rent trends in global greenhouse emissions (Larsen et al., 2014). Thus, 
SB polar bears will likely continue to experience changes to their envi-
ronment resulting in more bears coming on-shore. Therefore, it will be 
important to monitor the population-level consequences of extended 
land use. Properly managing polar bear mother–offspring pairs, when 
feasible, will be important to ensure their continued persistence in a 
rapidly changing environment and mitigate human–bear conflicts for 
this apex predator in the changing Arctic.
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