
https://doi.org/10.1177/1176934319869015

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 15: 1–5
© The Author(s) 2019
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1176934319869015

Introduction
elPrep is an open-source, multithreaded software tool for pro-
cessing Sequence Alignment/Map (SAM)/Binary Alignment/
Map (BAM) files to efficiently execute the time-consuming
phases of typical next-generation sequencing pipelines.1 It can
be used as a drop-in replacement for many of the tools pro-
vided by GATK, Picard, and SAMtools, producing identical
results, albeit considerably faster. elPrep has been designed with
performance and extensibility in mind. It has a unique software
architecture which allows combining the processing of multi-
ple pipeline steps into a single program run, whereas the stand-
ard approach is to spread out the steps over several tool
invocations. Our approach allows us to merge and parallelize
the resulting computations, which we have shown to be signifi-
cantly more efficient at reducing the overall runtime of a pipe-
line compared with optimizing individual steps in isolation.2

For example, elPrep executes a 4-step pipeline from the
Broad Best Practices (sorting, marking duplicates, base quality
score recalibration and application) up to 7.4× faster for
whole-genome data, and up to 13× faster for whole-exome
data while needing fewer compute resources compared with
using GATK4.1

To achieve this level of efficiency, we faced multiple perfor-
mance challenges when developing elPrep. For example, a
major effort went into developing more efficient algorithms for
particular pipeline steps (duplicate marking, base quality score

recalibration, etc) that still produce identical results compared
with their reference implementations in GATK, Picard, and
SAMtools.1,2 This included introducing parallelization into
these computations in such a way that their calculations can be
combined to maximize CPU usage.

In a recent article, we showed that memory management is
another major performance bottleneck when implementing a
sequencing tool such as elPrep.3 In general, sequencing soft-
ware needs to manipulate large amounts of data as SAM/BAM
files are in the range of hundreds of gigabytes of data. elPrep
additionally tries to keep as much data as possible in main
memory while processing multiple pipeline steps. This allows
elPrep to avoid unnecessary file I/O and eliminates synchroni-
zation bottlenecks for parallelization, which are both key rea-
sons for elPrep’s efficiency.2

Manual memory management is too complex when design-
ing an open-ended software framework that has to be both effi-
cient and extensible at the same time. We therefore decided to
evaluate several programming languages in terms of their sup-
port for assisted or automated memory management.3 We nar-
rowed down the candidates to 3 languages: C++ because of its
support for safe reference counting, and Go and Java, because of
their support for concurrent, parallel garbage collection. Other
languages were discarded early on because they were missing
other features we needed to implement elPrep, for example, spe-
cific support for synchronization between threads.3

We implemented a nontrivial subset of elPrep in all 3 lan-
guages, and careful benchmarking reveals that Go yields the

Comparing Ease of Programming in C++, Go, and Java
for Implementing a Next-Generation Sequencing Tool

Pascal Costanza* , Charlotte Herzeel* and Wilfried Verachtert
ExaScience Lab, IMEC vzw, Leuven, Belgium.

ABSTRACT: elPrep is an extensible multithreaded software framework for efficiently processing Sequence Alignment/Map (SAM)/Binary
Alignment/Map (BAM) files in next-generation sequencing pipelines. Similar to other SAM/BAM tools, a key challenge in elPrep is memory
management, as such programs need to manipulate large amounts of data. We therefore investigated 3 programming languages with support
for assisted or automated memory management for implementing elPrep, namely C++, Go, and Java. We implemented a nontrivial subset of
elPrep in all 3 programming languages and compared them by benchmarking their runtime performance and memory use to determine the
best language in terms of computational performance. In a previous article, we motivated why, based on these results, we eventually selected
Go as our implementation language. In this article, we discuss the difficulty of achieving the best performance in each language in terms of
programming language constructs and standard library support. While benchmarks are easy to objectively measure and evaluate, this is less
obvious for assessing ease of programming. However, because we expect elPrep to be regularly modified and extended, this is an equally
important aspect. We illustrate representative examples of challenges in all 3 languages, and give our opinion why we think that Go is a
reasonable choice also in this light.

KEywoRdS: Next-generation sequencing, sequence analysis, SAM/BAM files, C++, Go, Java

RECEIVEd: June 27, 2019. ACCEPTEd: July 3, 2019.

TyPE: Commentary

FuNdING: The author(s) received no financial support for the research, authorship, and/or

publication of this article.

dEClARATIoN oF CoNFlICTING INTERESTS: The author(s) declared no potential
conflicts of interest with respect to the research, authorship, and/or publication of this
article.

CoRRESPoNdING AuTHoR: Pascal Costanza, ExaScience Lab, IMEC vzw, Kapeldreef
75, 3001 Leuven, Belgium. Email: pascal.costanza@imec.be

CommENT oN: Costanza P, Herzeel C, Verachtert W. A comparison of three
programming languages for a full-fledged next generation sequencing tool. BMC
Bioinformatics. 2019;20(1):301. doi:10.1186/s12859-019-2903-5. PubMed PMID: 31159721.
PubMed Central PMCID: PMC6547519.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547519/.

869015 EVB0010.1177/1176934319869015Evolutionary BioinformaticsCostanza et al
article-commentary2019

* Pascal Costanza and Charlotte Herzeel contributed equally.

https://uk.sagepub.com/en-gb/journals-permissions
mailto:pascal.costanza@imec.be
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6547519/

2 Evolutionary Bioinformatics

best balance between runtime performance and peak memory
use.3 Briefly, our benchmarks show that the Java version runs
slightly faster than the Go version, but uses significantly more
memory, and that the C++ version runs significantly slower
than both the Go and Java versions. Because of these objec-
tively quantifiable performance measurements, we decided to
base elPrep since version 3 on Go.1

However, runtime performance and peak memory use were
not the only important aspects for choosing a programming lan-
guage for a project such as elPrep. elPrep is designed as an open-
ended framework which we expect to be regularly modified and
extended.2 Therefore, an essential question for us when choosing
a programming language is to determine how easy it is to express
effective solutions to particular programming tasks, whether
related to performance, or other programming problems. Even if
a particular programming language would allow us to achieve the
best runtime performance and the smallest memory footprint, it
may simply be too much effort to reach that goal.

In the rest of this article, we present some of the challenges
we encountered while implementing elPrep and illustrate how
easy or difficult it was to solve them by focusing on how to
design data structures to represent the contents of the SAM/
BAM file format in each language. The SAM file format has a
number of characteristics, like character encoding, size of par-
ticular entries, and representation of optional information,
which requires careful data structure design to efficiently deal
with them. Different programming languages have different
strengths and weaknesses to support such data structures.
Although ease of programming is much harder to objectively
assess, we argue that Go, which we have shown to yield the best
performance,3 also has excellent language support to imple-
ment a sequencing tool, and is therefore a good choice as a
basis for elPrep also in this light.

Implications of the SAM File Format
The sequence alignment map (SAM) format is the de facto
standard for representing aligned sequencing data.4 The format
is specified in a community-maintained reference.5

The text format consists of a (relatively small) number of
header lines, followed by a (typically large) number of lines each
representing one read and its alignment to a reference sequence.
The header lines contain meta-information, like format version
number, sorting/grouping order, program information, and com-
ments; and common data that can be referenced in alignments,
like reference sequence and read group information.

The text format is based on ASCII encoding (with a few
places allowing for UTF-8 representation for purely descriptive
purposes). When elPrep reads a SAM file into main memory, it
has to find a good internal representation for its contents. Many
entries in a SAM file can be converted to primitive data types
(like integer and floating point) which are well supported in
most programming languages, including C++, Go, and Java.
Some entries remain as text strings, including among others the
sequence read itself and the associated qualities per base pair.

As the header of a SAM file is typically only on the order of
a couple of dozen text lines, it is not important to find particu-
larly efficient representations for their contents. On the con-
trary, the number of alignment lines is significantly larger, so
representing their contents efficiently is very important. Each
alignment line consists of 11 required entries separated by tab-
ulators, followed by an arbitary number of additional optional
entries also separated by tabulators. The required entries are as
follows:

1. The unique name for the read (string).
2. A flag field indicating some characteristics (integer).
3. The name of a reference sequence (string).
4. The mapping position (integer).
5. The mapping quality (integer).
6. The CIGAR string.
7. The mate’s reference sequence (string).
8. The mate’s mapping position (integer).
9. The length of the alignment (integer).
10. The sequence read (string).
11. The sequence qualities (string).

An optional entry consists of a mnemonic identifier (2 charac-
ters), a type (1 character), and the entry value, which can be a
character, an integer, a floating point number, a string, a byte array,
or a numeric array, depending on the previous type character.

As the last 2 required entries, ie, the sequence reads and quali-
ties, make up a large part of a SAM file, it is important that
strings have a memory-efficient representation in main memory.
With C++ and Go, and with current versions of Java, this is not
a issue, because ASCII strings are represented in all 3 languages
in a way that uses 1 byte per character in a string. (Before Java
JDK 9, all strings in Java were represented using 2 bytes per char-
acter, to allow for representing extended character sets like
Unicode. However, since Java JDK 9, the Java runtime dynami-
cally recognizes compact strings that can be represented more
efficiently with just 1 byte per character. Java JDK 9 was released
in September 2017.)

However, we observed that for efficiency, it is not sufficient
on its own to have a straightforward ASCII string representa-
tion, but it is important to also have an efficient representation
for substrings, which is less obvious to achieve. We discuss in
the next subsection the implications for each of the 3 program-
ming languages.

A second issue that we encountered is the representation of
optional fields. An obvious implementation choice would be
to use a hashtable per alignment that maps mnemonic identi-
fiers to values, which are commonly available in modern pro-
gramming languages. However, it is known that for small
maps consisting of a few dozen entries, hashtables have an
unnecessary overhead both in terms of memory use and access
times. A simpler search list is usually not only more compact
but also faster in such a case.6 We discuss the implications for
the 3 programming languages in the second subsection below.

Costanza et al 3

Representation of substrings

Sequence reads and quality score strings in SAM files are rela-
tively large in size. For example, for reads of length 150 base
pairs, the sequence reads and quality strings are 150 characters
each.

When a SAM file is parsed by elPrep, it is first split up into
separate text lines. It is difficult to avoid the splitting into text
lines before parsing the required and optional entries in an
alignment line. This is due to the fact that in elPrep, the parsing
of alignment lines is parallelized over several CPUs. However,
splitting up alignment lines into their tabulator-separated
entries before the parallel phase wastes a relevant opportunity
for efficient parallel execution.

When each text line is then parsed into a data structure rep-
resentation for the corresponding alignment, a naive approach
would create another copy of both the read data and the quality
scores. This additional copying turns out to be a performance
bottleneck and leads to unnecessary additional memory
allocations.

It is therefore better to keep the alignment text line
unchanged and instead refer to the positions and lengths in the
text line where the corresponding information resides from
within the alignment data structure.

Go. This kind of representation has first-class support in Go in
the form of slices. For example, if s is a variable containing a
string, and pos and length are variables containing a starting
position and a length describing a desired substring of s, then the
slice expression s[pos:pos+length] yields that substring.
Instead of creating a freshly allocated string of size length and
copying the relevant portion from s into that new string, the
slice expression returns a data structure internally containing 3
entries: the reference to s, and pos and length. This data
structure otherwise behaves like a regalur string, with index
accesses being automatically mapped to the original string after
index adjustment.

Java. In Java, the String class of the standard library sup-
ports a method substring which, similar to slice expres-
sions in Go, expects a start and end position. Up until Java
JDK 7 update 5, this method behaved similar to Go slice
expressions, returning an object that internally only referred
to a view of the original string. However, since Java JDK 7
update 6 (released in August 2012), substring actually
creates a freshly allocated string and copies the relevant por-
tion from the original string.

This means that for elPrep, we had to implement our own
custom string class to emulate the previous behavior of sub-
string, which adds to the complexity of the Java implemen-
tation of elPrep.

C++. In principle, C++ implements the desired behavior in
the form of the std::string_view class in its standard library. It

has a constructor that can be passed a string address and a
length, and yields an object that refers to that string address
and length rather than copying a string. The string address can
point to a position in the middle of a string and can therefore
express an offset into a string as well. Unfortunately, the
std::string_view class is not compatible with reference
counting as implemented in the C++std::shared_ptr
template, which we need for managing memory in the open-
ended elPrep software framework.

Therefore, like in Java, we had to implement our own cus-
tom string class that supports the desired behavior for refer-
ence-counted strings. On top of that, we also had to implement
a wrapper around file input routines, to be able to use our own
custom string class as a result of reading strings from a file,
due to other restrictions resulting from the design of the C++
standard library. Defining new classes requires substantially
more care and effort in C++ than in Java, due to the need to
specify several special cases for default constructors, copy con-
structors, and destructors. This is an arduous and error-prone
task which added substantially to the development time of the
C++ implementation of elPrep.

Representation of search lists

A search list is a simple implementation of a mapping from a
set of keys (typically strings) to values. It can be implemented
either as a linked list data structure or as a growable array, with
entries mapping each key to its associated value. Retrieving the
value for a particular key is implemented by searching the list
from front to back for an entry that matches this key; setting a
new value for an existing key is also implemented this way, fol-
lowed by a modification of the value in the found entry; and
adding a brand new key/value mapping is implemented by
appending it to the end of the search list. For a few dozen key/
value mappings, such an implementation is more efficient than
a general-purpose hashtable, because it avoids the memory
overhead of having more buckets for storing key/value lists
than there are actual key/value mappings, and because it avoids
computing hash values for keys, which only pays off if it helps
to avoid searching through a very large search list.6

None of the 3 programming languages have direct support
for such a search list, which is why we had to implement it
ourselves in each case. The implementations differ in several
regards, as discussed next.

Go. The Go implementation of a search list was the most
straightforward. A search list is represented as a slice of key/
value entries. Each key/value entry is a data structure that con-
tains a key, represented as a string, and a value represented by
the Go type interface{}. This Go type is called an empty
interface and is treated specially in Go in that it can store val-
ues of any type that is supported by the Go programming lan-
guage. The value that is currently stored in a variable of type
interface{} can be retrieved, along with the type of that

4 Evolutionary Bioinformatics

value. That makes this type ideal for storing the different
optional field types of the SAM file format. An advantage of
the empty interface type in Go is that values of primitive types
(like small integer types and floating point numbers) may be
represented as immediate values rather than stored separately
in heap memory.7 This means that empty interfaces in Go do
not incur an unnecessary overhead with regard to memory use.

Adding new key/value mappings to a slice is also straight-
forward in Go, because slices support an append function for
this purpose, which silently grows the slice if necessary.

Java. The Java implementation of a search list was slightly
more complex than the Go version. The main reason for this
is that Java has no type for storing any type of value. Java has
the type java.lang.Object which can be used for stor-
ing any kind of class instance, but it does not support storing
immediate primitive types (like integers or floating point
numbers). Instead, primitive types would be silently converted
into boxed objects, which are instances of corresponding
classes. This would require additional storage on the heap in
the general case. As primitive types for optional fields in SAM
files are very common, this would be a too large price to pay.

We therefore opted instead to design a flat class hierarchy,
with the root of the class hierarchy containing only the key for
each key/value entry, and each subclass additionally containing
the corresponding value type. This value type can then be a
primitive type, depending on the supported optional field type,
which avoids the additional heap storage.

Contrary to the Go and C++ implementations, though,
each key/value entry is still itself an object stored separatedly
on the heap, whereas in Go and C++, key/value entries can be
stored immediately in the corresponding container types (slices
for Go, and vectors for C++).

The search list functionality itself is straightforwardly
implemented using the java.util.ArrayList class
which supports all needed operations, including silent growth
if necessary when appending new key/value entries.

C++. The C ++ implementation of a search list is very simi-
lar to the Go implementation. A search list is represented as a
std::vector of key/value entries, which supports all neces-
sary operations, including silent growth if necessary. Each key/
value entry is a data structure that contains a key represented as
a string, and a value represented by the C++ type std::any,
which can store values of any type that is supported in the
C++ programming language.

A seemingly obvious alternative for representing the value in
each key/value entry would be to use the C++ template
std::variant and enumerate the possible types for that
template. A std::variant object imposes the restriction on
the stored values that they can be only any of the explicitly enu-
merated types. As the number of optional field types in the
SAM file format is finite, this would not only be possible, but

would also have the advantage of increasing the static type
safety of the representation, which is significantly harder to
achieve in Go and Java. However, the downside of
std::variant is that its implementation is not allowed to
represent primitive types as immediate values, but has to allo-
cate space on the heap for any possible value type. The
std::any type does not have this disadvantage, because it
allows primitive types to be represented immediately inside the
storage already allocated for the std::any type, which avoids
the additional heap storage.

Conclusions
The issues we discussed above are by far not the only chal-
lenges we encountered during our evaluation, but we think
these are good examples to give an overall impression of the
different programming languages when implementing a soft-
ware tool for SAM/BAM processing such as elPrep.

Overall, the C++ implementation incurred the most devel-
opment effort, significantly more than both the Go and Java
implementations. This is due to having to explore significantly
more design choices (like the choice between std::any and
std::variant discussed above, for example), the permeation
of low-level design choices (like the choice between stack alloca-
tion and heap allocation, which is explicit in C++ and typically
affects large parts of the source code), the choice between differ-
ent memory managers (as discussed in our other publication on
this topic),3 and so on.

The complexity of the Go and Java implementations, on the
contrary, are roughly comparable. For example, the paralleliza-
tion framework in elPrep was easiest to implement in Java, due
to its excellent support for functional-style operations on
streams of elements, including parallel operations, in the java.
util.stream package introduced in JDK 8. In fact, this
inspired us to add a number of similar operations to a library for
parallel programming in Go, called Pargo,8 that we develop and
also use in elPrep. On the contrary, Go has direct language sup-
port for slices, for example, which makes the Go implementa-
tion significantly easier in this regard, as discussed above.

Our other article shows that the Go implementation has
the best balance of runtime and memory use compared with
the Java and C++ implementations.3 This article shows that
Go fares extremely well with regard to ease of programming
and is therefore a good choice for the official elPrep implemen-
tation also in this light. Had the Java implementation shown
better performance than it did, it would have been a defensible
implementation language for elPrep with regard to ease of pro-
gramming as well.

Acknowledgements
The authors are grateful to the imec.icon GAP project mem-
bers, and especially Western Digital for providing the com-
pute infrastructure for performing benchmarks. The authors
also thank Thomas J. Ashby and Tom Haber for in-depth

Costanza et al 5

discussions about memory management techniques in various
programming languages.

Author Contributions
PC designed and performed the study, participated in the Go
implementation of elPrep, implemented the C++ and Java ver-
sions of elPrep, and drafted the manuscript. CH designed the
elPrep software architecture, participated in the Go implemen-
tation of elPrep, and drafted the manuscript. PC, CH, and WV
contributed to the final manuscript. All authors read and
approved the final manuscript.

ORCID iD
Pascal Costanza https://orcid.org/0000-0001-8894-3238

ReFeRenCeS
1. Herzeel C, Costanza P, Decap D, Fostier J, Verachtert W. elPrep 4: a multi-

threaded framework for sequence analysis. PLoS ONE. 2019;14:e0209523.
doi:10.1371/journal.pone.0209523.

2. Herzeel C, Costanza P, Decap D, et al. elPrep: high-performance preparation of
sequence alignment/map files for variant calling. PLoS ONE. 2015;10:e0132868.
doi:10.1371/journal.pone.0132868

3. Costanza P, Herzeel C, Verachtert W. A comparison of three programming lan-
guages for a full-fledged next-generation sequencing tool. BMC Bioinformatics.
2019;20:301. doi:10.1186/s12859-019-2903-5.

4. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 2009;25:2078-2079. doi:10.1093/bioinformatics/
btp352.

5. SAMtools organization. SAM/BAM and related specifications. http://samtools.
github.io/hts-specs/.

6. Seibel P. Practical Common Lisp. New York, NY: Apress; 2005.
7. Cox R. Go data structures: interfaces. https://research.swtch.com/

interfaces.
8. Costanza P. pargo—a library for parallel programming in Go. https://github.

com/ExaScience/pargo.

https://orcid.org/0000-0001-8894-3238
http://samtools.github.io/hts-specs/
http://samtools.github.io/hts-specs/
https://research.swtch.com/interfaces
https://research.swtch.com/interfaces
https://github.com/ExaScience/pargo
https://github.com/ExaScience/pargo

