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Introduction
elPrep is an open-source, multithreaded software tool for pro-
cessing Sequence Alignment/Map (SAM)/Binary Alignment/
Map (BAM) files to efficiently execute the time-consuming 
phases of typical next-generation sequencing pipelines.1 It can 
be used as a drop-in replacement for many of the tools pro-
vided by GATK, Picard, and SAMtools, producing identical 
results, albeit considerably faster. elPrep has been designed with 
performance and extensibility in mind. It has a unique software 
architecture which allows combining the processing of multi-
ple pipeline steps into a single program run, whereas the stand-
ard approach is to spread out the steps over several tool 
invocations. Our approach allows us to merge and parallelize 
the resulting computations, which we have shown to be signifi-
cantly more efficient at reducing the overall runtime of a pipe-
line compared with optimizing individual steps in isolation.2

For example, elPrep executes a 4-step pipeline from the 
Broad Best Practices (sorting, marking duplicates, base quality 
score recalibration and application) up to 7.4× faster for 
whole-genome data, and up to 13× faster for whole-exome 
data while needing fewer compute resources compared with 
using GATK4.1

To achieve this level of efficiency, we faced multiple perfor-
mance challenges when developing elPrep. For example, a 
major effort went into developing more efficient algorithms for 
particular pipeline steps (duplicate marking, base quality score 

recalibration, etc) that still produce identical results compared 
with their reference implementations in GATK, Picard, and 
SAMtools.1,2 This included introducing parallelization into 
these computations in such a way that their calculations can be 
combined to maximize CPU usage.

In a recent article, we showed that memory management is 
another major performance bottleneck when implementing a 
sequencing tool such as elPrep.3 In general, sequencing soft-
ware needs to manipulate large amounts of data as SAM/BAM 
files are in the range of hundreds of gigabytes of data. elPrep 
additionally tries to keep as much data as possible in main 
memory while processing multiple pipeline steps. This allows 
elPrep to avoid unnecessary file I/O and eliminates synchroni-
zation bottlenecks for parallelization, which are both key rea-
sons for elPrep’s efficiency.2

Manual memory management is too complex when design-
ing an open-ended software framework that has to be both effi-
cient and extensible at the same time. We therefore decided to 
evaluate several programming languages in terms of their sup-
port for assisted or automated memory management.3 We nar-
rowed down the candidates to 3 languages: C++ because of its 
support for safe reference counting, and Go and Java, because of 
their support for concurrent, parallel garbage collection. Other 
languages were discarded early on because they were missing 
other features we needed to implement elPrep, for example, spe-
cific support for synchronization between threads.3

We implemented a nontrivial subset of elPrep in all 3 lan-
guages, and careful benchmarking reveals that Go yields the 
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best balance between runtime performance and peak memory 
use.3 Briefly, our benchmarks show that the Java version runs 
slightly faster than the Go version, but uses significantly more 
memory, and that the C++ version runs significantly slower 
than both the Go and Java versions. Because of these objec-
tively quantifiable performance measurements, we decided to 
base elPrep since version 3 on Go.1

However, runtime performance and peak memory use were 
not the only important aspects for choosing a programming lan-
guage for a project such as elPrep. elPrep is designed as an open-
ended framework which we expect to be regularly modified and 
extended.2 Therefore, an essential question for us when choosing 
a programming language is to determine how easy it is to express 
effective solutions to particular programming tasks, whether 
related to performance, or other programming problems. Even if 
a particular programming language would allow us to achieve the 
best runtime performance and the smallest memory footprint, it 
may simply be too much effort to reach that goal.

In the rest of this article, we present some of the challenges 
we encountered while implementing elPrep and illustrate how 
easy or difficult it was to solve them by focusing on how to 
design data structures to represent the contents of the SAM/
BAM file format in each language. The SAM file format has a 
number of characteristics, like character encoding, size of par-
ticular entries, and representation of optional information, 
which requires careful data structure design to efficiently deal 
with them. Different programming languages have different 
strengths and weaknesses to support such data structures. 
Although ease of programming is much harder to objectively 
assess, we argue that Go, which we have shown to yield the best 
performance,3 also has excellent language support to imple-
ment a sequencing tool, and is therefore a good choice as a 
basis for elPrep also in this light.

Implications of the SAM File Format
The sequence alignment map (SAM) format is the de facto 
standard for representing aligned sequencing data.4 The format 
is specified in a community-maintained reference.5

The text format consists of a (relatively small) number of 
header lines, followed by a (typically large) number of lines each 
representing one read and its alignment to a reference sequence. 
The header lines contain meta-information, like format version 
number, sorting/grouping order, program information, and com-
ments; and common data that can be referenced in alignments, 
like reference sequence and read group information.

The text format is based on ASCII encoding (with a few 
places allowing for UTF-8 representation for purely descriptive 
purposes). When elPrep reads a SAM file into main memory, it 
has to find a good internal representation for its contents. Many 
entries in a SAM file can be converted to primitive data types 
(like integer and floating point) which are well supported in 
most programming languages, including C++, Go, and Java. 
Some entries remain as text strings, including among others the 
sequence read itself and the associated qualities per base pair.

As the header of a SAM file is typically only on the order of 
a couple of dozen text lines, it is not important to find particu-
larly efficient representations for their contents. On the con-
trary, the number of alignment lines is significantly larger, so 
representing their contents efficiently is very important. Each 
alignment line consists of 11 required entries separated by tab-
ulators, followed by an arbitary number of additional optional 
entries also separated by tabulators. The required entries are as 
follows:

1. The unique name for the read (string).
2. A flag field indicating some characteristics (integer).
3. The name of a reference sequence (string).
4. The mapping position (integer).
5. The mapping quality (integer).
6. The CIGAR string.
7. The mate’s reference sequence (string).
8. The mate’s mapping position (integer).
9. The length of the alignment (integer).
10. The sequence read (string).
11. The sequence qualities (string).

An optional entry consists of a mnemonic identifier (2 charac-
ters), a type (1 character), and the entry value, which can be a 
character, an integer, a floating point number, a string, a byte array, 
or a numeric array, depending on the previous type character.

As the last 2 required entries, ie, the sequence reads and quali-
ties, make up a large part of a SAM file, it is important that 
strings have a memory-efficient representation in main memory. 
With C++ and Go, and with current versions of Java, this is not 
a issue, because ASCII strings are represented in all 3 languages 
in a way that uses 1 byte per character in a string. (Before Java 
JDK 9, all strings in Java were represented using 2 bytes per char-
acter, to allow for representing extended character sets like 
Unicode. However, since Java JDK 9, the Java runtime dynami-
cally recognizes compact strings that can be represented more 
efficiently with just 1 byte per character. Java JDK 9 was released 
in September 2017.)

However, we observed that for efficiency, it is not sufficient 
on its own to have a straightforward ASCII string representa-
tion, but it is important to also have an efficient representation 
for substrings, which is less obvious to achieve. We discuss in 
the next subsection the implications for each of the 3 program-
ming languages.

A second issue that we encountered is the representation of 
optional fields. An obvious implementation choice would be 
to use a hashtable per alignment that maps mnemonic identi-
fiers to values, which are commonly available in modern pro-
gramming languages. However, it is known that for small 
maps consisting of a few dozen entries, hashtables have an 
unnecessary overhead both in terms of memory use and access 
times. A simpler search list is usually not only more compact 
but also faster in such a case.6 We discuss the implications for 
the 3 programming languages in the second subsection below.
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Representation of substrings

Sequence reads and quality score strings in SAM files are rela-
tively large in size. For example, for reads of length 150 base 
pairs, the sequence reads and quality strings are 150 characters 
each. 

When a SAM file is parsed by elPrep, it is first split up into 
separate text lines. It is difficult to avoid the splitting into text 
lines before parsing the required and optional entries in an 
alignment line. This is due to the fact that in elPrep, the parsing 
of alignment lines is parallelized over several CPUs. However, 
splitting up alignment lines into their tabulator-separated 
entries before the parallel phase wastes a relevant opportunity 
for efficient parallel execution. 

When each text line is then parsed into a data structure rep-
resentation for the corresponding alignment, a naive approach 
would create another copy of both the read data and the quality 
scores. This additional copying turns out to be a performance 
bottleneck and leads to unnecessary additional memory 
allocations.

It is therefore better to keep the alignment text line 
unchanged and instead refer to the positions and lengths in the 
text line where the corresponding information resides from 
within the alignment data structure.

Go. This kind of representation has first-class support in Go in 
the form of slices. For example, if s is a variable containing a 
string, and pos and length are variables containing a starting 
position and a length describing a desired substring of s, then the 
slice expression s[pos:pos+length] yields that substring. 
Instead of creating a freshly allocated string of size length and 
copying the relevant portion from s into that new string, the 
slice expression returns a data structure internally containing 3 
entries: the reference to s, and pos and length. This data 
structure otherwise behaves like a regalur string, with index 
accesses being automatically mapped to the original string after 
index adjustment.

Java. In Java, the String class of the standard library sup-
ports a method substring which, similar to slice expres-
sions in Go, expects a start and end position. Up until Java 
JDK 7 update 5, this method behaved similar to Go slice 
expressions, returning an object that internally only referred 
to a view of the original string. However, since Java JDK 7 
update 6 (released in August 2012), substring actually 
creates a freshly allocated string and copies the relevant por-
tion from the original string.

This means that for elPrep, we had to implement our own 
custom string class to emulate the previous behavior of sub-
string, which adds to the complexity of the Java implemen-
tation of elPrep.

C++. In principle, C++ implements the desired behavior in 
the form of the std::string_view class in its standard library. It 

has a constructor that can be passed a string address and a 
length, and yields an object that refers to that string address 
and length rather than copying a string. The string address can 
point to a position in the middle of a string and can therefore 
express an offset into a string as well. Unfortunately, the 
std::string_view class is not compatible with reference 
counting as implemented in the C++std::shared_ptr 
template, which we need for managing memory in the open-
ended elPrep software framework.

Therefore, like in Java, we had to implement our own cus-
tom string class that supports the desired behavior for refer-
ence-counted strings. On top of that, we also had to implement 
a wrapper around file input routines, to be able to use our own 
custom string class as a result of reading strings from a file, 
due to other restrictions resulting from the design of the C++ 
standard library. Defining new classes requires substantially 
more care and effort in C++ than in Java, due to the need to 
specify several special cases for default constructors, copy con-
structors, and destructors. This is an arduous and error-prone 
task which added substantially to the development time of the 
C++ implementation of elPrep.

Representation of search lists

A search list is a simple implementation of a mapping from a 
set of keys (typically strings) to values. It can be implemented 
either as a linked list data structure or as a growable array, with 
entries mapping each key to its associated value. Retrieving the 
value for a particular key is implemented by searching the list 
from front to back for an entry that matches this key; setting a 
new value for an existing key is also implemented this way, fol-
lowed by a modification of the value in the found entry; and 
adding a brand new key/value mapping is implemented by 
appending it to the end of the search list. For a few dozen key/
value mappings, such an implementation is more efficient than 
a general-purpose hashtable, because it avoids the memory 
overhead of having more buckets for storing key/value lists 
than there are actual key/value mappings, and because it avoids 
computing hash values for keys, which only pays off if it helps 
to avoid searching through a very large search list.6

None of the 3 programming languages have direct support 
for such a search list, which is why we had to implement it 
ourselves in each case. The implementations differ in several 
regards, as discussed next.

Go. The Go implementation of a search list was the most 
straightforward. A search list is represented as a slice of key/
value entries. Each key/value entry is a data structure that con-
tains a key, represented as a string, and a value represented by 
the Go type interface{}. This Go type is called an empty 
interface and is treated specially in Go in that it can store val-
ues of any type that is supported by the Go programming lan-
guage. The value that is currently stored in a variable of type 
interface{} can be retrieved, along with the type of that 
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value. That makes this type ideal for storing the different 
optional field types of the SAM file format. An advantage of 
the empty interface type in Go is that values of primitive types 
(like small integer types and floating point numbers) may be 
represented as immediate values rather than stored separately 
in heap memory.7 This means that empty interfaces in Go do 
not incur an unnecessary overhead with regard to memory use.

Adding new key/value mappings to a slice is also straight-
forward in Go, because slices support an append function for 
this purpose, which silently grows the slice if necessary.

Java. The Java implementation of a search list was slightly 
more complex than the Go version. The main reason for this 
is that Java has no type for storing any type of value. Java has 
the type java.lang.Object which can be used for stor-
ing any kind of class instance, but it does not support storing 
immediate primitive types (like integers or floating point 
numbers). Instead, primitive types would be silently converted 
into boxed objects, which are instances of corresponding 
classes. This would require additional storage on the heap in 
the general case. As primitive types for optional fields in SAM 
files are very common, this would be a too large price to pay.

We therefore opted instead to design a flat class hierarchy, 
with the root of the class hierarchy containing only the key for 
each key/value entry, and each subclass additionally containing 
the corresponding value type. This value type can then be a 
primitive type, depending on the supported optional field type, 
which avoids the additional heap storage.

Contrary to the Go and C++ implementations, though, 
each key/value entry is still itself an object stored separatedly 
on the heap, whereas in Go and C++, key/value entries can be 
stored immediately in the corresponding container types (slices 
for Go, and vectors for C++).

The search list functionality itself is straightforwardly 
implemented using the java.util.ArrayList class 
which supports all needed operations, including silent growth 
if necessary when appending new key/value entries.

C++. The C ++ implementation of a search list is very simi-
lar to the Go implementation. A search list is represented as a 
std::vector of key/value entries, which supports all neces-
sary operations, including silent growth if necessary. Each key/
value entry is a data structure that contains a key represented as 
a string, and a value represented by the C++ type std::any, 
which can store values of any type that is supported in the 
C++ programming language.

A seemingly obvious alternative for representing the value in 
each key/value entry would be to use the C++ template 
std::variant and enumerate the possible types for that 
template. A std::variant object imposes the restriction on 
the stored values that they can be only any of the explicitly enu-
merated types. As the number of optional field types in the 
SAM file format is finite, this would not only be possible, but 

would also have the advantage of increasing the static type 
safety of the representation, which is significantly harder to 
achieve in Go and Java. However, the downside of 
std::variant is that its implementation is not allowed to 
represent primitive types as immediate values, but has to allo-
cate space on the heap for any possible value type. The 
std::any type does not have this disadvantage, because it 
allows primitive types to be represented immediately inside the 
storage already allocated for the std::any type, which avoids 
the additional heap storage.

Conclusions
The issues we discussed above are by far not the only chal-
lenges we encountered during our evaluation, but we think 
these are good examples to give an overall impression of the 
different programming languages when implementing a soft-
ware tool for SAM/BAM processing such as elPrep.

Overall, the C++ implementation incurred the most devel-
opment effort, significantly more than both the Go and Java 
implementations. This is due to having to explore significantly 
more design choices (like the choice between std::any and 
std::variant discussed above, for example), the permeation 
of low-level design choices (like the choice between stack alloca-
tion and heap allocation, which is explicit in C++ and typically 
affects large parts of the source code), the choice between differ-
ent memory managers (as discussed in our other publication on 
this topic),3 and so on.

The complexity of the Go and Java implementations, on the 
contrary, are roughly comparable. For example, the paralleliza-
tion framework in elPrep was easiest to implement in Java, due 
to its excellent support for functional-style operations on 
streams of elements, including parallel operations, in the java.
util.stream package introduced in JDK 8. In fact, this 
inspired us to add a number of similar operations to a library for 
parallel programming in Go, called Pargo,8 that we develop and 
also use in elPrep. On the contrary, Go has direct language sup-
port for slices, for example, which makes the Go implementa-
tion significantly easier in this regard, as discussed above.

Our other article shows that the Go implementation has 
the best balance of runtime and memory use compared with 
the Java and C++ implementations.3 This article shows that 
Go fares extremely well with regard to ease of programming 
and is therefore a good choice for the official elPrep implemen-
tation also in this light. Had the Java implementation shown 
better performance than it did, it would have been a defensible 
implementation language for elPrep with regard to ease of pro-
gramming as well.

Acknowledgements
The authors are grateful to the imec.icon GAP project mem-
bers, and especially Western Digital for providing the com-
pute infrastructure for performing benchmarks. The authors 
also thank Thomas J. Ashby and Tom Haber for in-depth 



Costanza et al 5

discussions about memory management techniques in various 
programming languages.

Author Contributions
PC designed and performed the study, participated in the Go 
implementation of elPrep, implemented the C++ and Java ver-
sions of elPrep, and drafted the manuscript. CH designed the 
elPrep software architecture, participated in the Go implemen-
tation of elPrep, and drafted the manuscript. PC, CH, and WV 
contributed to the final manuscript. All authors read and 
approved the final manuscript.

ORCID iD
Pascal Costanza  https://orcid.org/0000-0001-8894-3238

ReFeRenCeS
1. Herzeel C, Costanza P, Decap D, Fostier J, Verachtert W. elPrep 4: a multi-

threaded framework for sequence analysis. PLoS ONE. 2019;14:e0209523. 
doi:10.1371/journal.pone.0209523.

2. Herzeel C, Costanza P, Decap D, et al. elPrep: high-performance preparation of 
sequence alignment/map files for variant calling. PLoS ONE. 2015;10:e0132868. 
doi:10.1371/journal.pone.0132868

3. Costanza P, Herzeel C, Verachtert W. A comparison of three programming lan-
guages for a full-fledged next-generation sequencing tool. BMC Bioinformatics. 
2019;20:301. doi:10.1186/s12859-019-2903-5.

4. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and 
SAMtools. Bioinformatics. 2009;25:2078-2079. doi:10.1093/bioinformatics/
btp352.

5. SAMtools organization. SAM/BAM and related specifications. http://samtools.
github.io/hts-specs/.

6. Seibel P. Practical Common Lisp. New York, NY: Apress; 2005.
7. Cox R. Go data structures: interfaces. https://research.swtch.com/

interfaces.
8. Costanza P. pargo—a library for parallel programming in Go. https://github.

com/ExaScience/pargo.

https://orcid.org/0000-0001-8894-3238
http://samtools.github.io/hts-specs/
http://samtools.github.io/hts-specs/
https://research.swtch.com/interfaces
https://research.swtch.com/interfaces
https://github.com/ExaScience/pargo
https://github.com/ExaScience/pargo

