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ORIGINAL ARTICLE

A support vector machine model provides an accurate
transcript-level-based diagnostic for major depressive disorder

JS Yu', AY Xue', EE Redei® and N Bagheri'

Major depressive disorder (MDD) is a critical cause of morbidity and disability with an economic cost of hundreds of billions of
dollars each year, necessitating more effective treatment strategies and novel approaches to translational research. A notable
barrier in addressing this public health threat involves reliable identification of the disorder, as many affected individuals remain
undiagnosed or misdiagnosed. An objective blood-based diagnostic test using transcript levels of a panel of markers would provide
an invaluable tool for MDD as the infrastructure—including equipment, trained personnel, billing, and governmental approval—for
similar tests is well established in clinics worldwide. Here we present a supervised classification model utilizing support vector
machines (SVMs) for the analysis of transcriptomic data readily obtained from a peripheral blood specimen. The model was trained
on data from subjects with MDD (n = 32) and age- and gender-matched controls (n =32). This SYVM model provides a cross-validated
sensitivity and specificity of 90.6% for the diagnosis of MDD using a panel of 10 transcripts. We applied a logistic equation on the
SVM model and quantified a likelihood of depression score. This score gives the probability of a MDD diagnosis and allows the
tuning of specificity and sensitivity for individual patients to bring personalized medicine closer in psychiatry.
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INTRODUCTION

Undiagnosed cases of major depressive disorder (MDD) pose a
major detriment to society by contributing to disability,' comorbid
health conditions,” and, in many cases, suicide.®> Approximately
16.2% of the US population suffers from MDD at least once in a
lifetime,? with significant percentages left undiagnosed, misdiag-
nosed, and/or untreated.* Individuals with MDD are identified by
self-reported changes in behavior, mood, and clinical examina-
tion.> However, certain subpopulations—such as children,®
adolescents,” and elderly individuals®>—prove difficult to diagnose
with these methods. This difficulty may be attributed to comorbid
mood disorders, trouble in communicating with doctors,® and
unwillingness to seek clinical help because of social stigma.'®
Alternatively, the subjective clinical screening tools employed for
making the diagnosis—such as the Hamilton Depression Rating
Scale, Beck Depression Inventory, or Patient Health Questionnaire-
9—and the observed heterogeneity in Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition symptom profiles'" call
into question the reliability of diagnosing depression using
subjective, symptom-based methods.

In addition, most depression is treated in primary care; it is
estimated that 12.5% of primary care patients have had MDD in
any given year, but only 47% of those cases are recognized
clinically." Undiagnosed cases of depression can lead to a variety
of social, economic, and emotional problems' and the longer the
diagnostic delay (estimated at 2-40 months), the more difficult it
is to treat depression.'® The health and safety of depressed and
non-depressed individuals can be compromised if mood disorders
are not recognized and treated.' Thus, an accurate and objective
diagnostic method would be of great benefit to doctors, patients,
and society as a whole.

Although depression is clearly a heterogeneous disorder,
identifying biomarkers indicative of the most common symptom
profiles’’ is a road toward objectifying a subjective diagnosis.
Finding molecular biomarkers in the blood provides a particularly
useful source of information, as blood can be easily isolated and
assayed in most clinical laboratories. In previous studies, Redei and
colleagues discovered and measured the levels of 20 blood
transcriptomic markers proposed to be associated with MDD:
CMAS, MARCKS, ATP11C, CDR2, CD59, CADM1, AMFR, FAMA46A,
DGKA, MAF, NAGA, RAPH1 PTP4A3, TLR7, ADCY3, ASAH1, ZNF291,
PSME1, KIAA1539 and SLC4A1.'*'® These transcriptomic markers
were first identified in the blood of two etiologically differing
animal models of depression by genome-wide transcriptomic
analyses.''® The unique blood and brain genome-wide expres-
sion profiles of the genetic depression model compared with its
genetically close control strain were analyzed in conjunction with
another study employing four different strains of rats exposed to
chronic restraint stress versus non-stressed controls. Based on the
differentially expressed genes in these two studies, blood
transcriptomic markers where selected. The marker selection
criteria included (i) simultaneous differential expression of markers
in the blood and the brain in the genetic model, (i) simultaneous
differential expression of genes in the blood of all of the strains in
the stress model, and (iii) conservation of the marker expression
between the rat models and humans."”

Using the transcript levels measured for all 20 markers in the 64
subjects, three supervised machine-learning classification models
—logistic regression,'® random forests,'® and support vector
machines (SVMs)?%?'—were built to identify a subset of these
markers that are predictive of MDD diagnosis. The utility and
accuracy of these models were evaluated based on their ability to
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accurately distinguish subjects with MDD from the control no-
disorder (ND) group. These models are commonly used in the
bioinformatics and systems biology fields to predict certain
phenotypic outcomes in large biological data sets?* We refer
readers to Ressom et al.>* for a more comprehensive summary of
machine-learning models used to make diagnostic predictions
with DNA microarray and protein mass spectrometry data.

This study integrates supervised machine learning with
transcript-level data to identify features of RNA expression in
peripheral blood that are predictive of MDD. We found that a SVM
model with a linear classification boundary and a logistic
probability distribution function offers high accuracy in identifying
subjects with MDD. In addition to classifying MDD versus the ND
control group, our model also provides a quantitative score that
predicts the probability of a subject having MDD. We termed this
probabilistic prediction the likelihood of depression (LiD) score.
The high sensitivity (true-positive rate) and high specificity (true-
negative rate) of our resulting model lay the foundation for a
revolutionary, subjective, blood RNA expression-based diagnostic
test for MDD. Such a test could improve the statistical significance
of clinical trials for antidepressant treatments, enhance the rate of
market approval and relieve the suffering for the many individuals
who are adversely affected by undiagnosed depressive disorder.

MATERIALS AND METHODS

Clinical diagnosis and RNA expression profiles are collected from
MDD and control subjects

Subjects were recruited as described.' Subjects met criteria for MDD
based on the Mini International Neuropsychiatry Interview®®> and had a
Hamilton Depression Rating Scale®* score > 16. Depression severity was
evaluated by self-report using the Patient Health Questionnaire-9 (PHQ-9)
for all subjects. No-disorder (ND) controls matched by age, race, and sex
were included if they did not meet criteria for depression and scored <4
on PHQ-9.

Venous blood (2.5 ml) was collected into PAXgene Blood RNA tubes
(Qiagen, Germantown, MD, USA) from 32 subjects with MDD and from 32
ND controls. Blood RNA was extracted using the PAXgene Blood RNA Kit
(Qiagen), according to the manufacturer protocol. The yield and quality of
extracted RNA were assessed using the NanoDrop 1000 spectrophot-
ometer (NanoDrop Technologies, Wilmington, DE, USA). ¢cDNA was
prepared using random primers and the TagMan RT reagents (Applied
Biosystems, Foster City, CA, USA). Expression levels of the 20 markers for
each of the 64 subjects were measured using the quantitative real-time
polymerase chain reaction (QPCR) method as described previously.'*'®
qPCR was carried out using SYBR Green and the ABI 7900 (Applied
Biosystems), with 18s rRNA as the internal control and primers as
published.”® The ACT values from gPCR characterized transcript abun-
dance, where ACT is the cycle threshold difference between the target
gene and the housekeeping gene.

Supervised machine learning classifies MDD and control subjects

A supervised machine-learning model is a type of classification model that
uses an explanatory variable, x, to predict a known response, y. Supervised
models are trained on a subset of the known data and the corresponding
predictive accuracy is assessed using held-out validation, or test, data. This
process is known as cross-validation. Accuracy is defined as the percentage
of correctly classified samples. In the matrix form, the explanatory variables
are defined as X, a measure of the abundance of RNA transcripts of specific
genes from whole blood, and the response variables as y, a set of binary
values corresponding to the diagnosis of the subject. In this study, the
binary diagnostic categories are subjects with MDD, Class 1, or subjects in
the control group, Class 0. The general form of the predictive model is y=f
(X;p), where the function f defines a mapping of the input (RNA expression)
values to a response (MDD diagnosis) based on specified model
parameters, p.

The following three predictive models were used: logistic regression,'®
random forests,'® and SVMs.2%?! All models were implemented in Matlab
2016a (Mathworks, Natick, MA, USA). Logistic regression was built using
the mnrfit function and default parameters. Random Forests was built
using the TreeBagger function with 100 trees and otherwise default
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parameters. SVM models were implemented using either svmtrain or
fitcsvm with settings to match svmtrain defaults (i.e., solver = Sequential
Minimal Optimization, cache size = 5000). The SVM models were tested
using linear, quadratic, polynomial, and radial kernel functions. Leave-one-
out cross-validation was performed by omitting each of the 64 samples
sequentially, training on the remaining 63 samples, and testing model
prediction performance on the one left-out sample.?>2°

Backward selection improves predictive power and identifies
optimal variable set

Backward selection iteratively removes the least predictive features and
regenerates new models to improve prediction.”**” The least predictive
variable is identified by removing each variable and retraining a model on
the reduced data set. The variable resulting in the smallest decrease in
classification accuracy is considered the least predictive and permanently
removed, and the process is repeated until a single feature remains.
Backward selection was used for all three machine-learning methods to
identify the feature set resulting in the highest predictive accuracy.?®?’

Gene ontology analysis identifies molecular functions associated

with the most predictive features

The eight genes found in the optimal model in both logistic regression and
the linear SVM were defined as highly predictive. Enrichr was used to
identify molecular functions enriched in these highly predictive genes.”®
These functions were ordered by the negative log;, of the adjusted P-value
quantifying the probability that a function was associated with the list of
eight genes.

RESULTS

The samples in this study consisted of 32 subjects with MDD and
32 age- and gender-matched ND controls.'”> We employed
supervised machine-learning techniques to predict subject MDD
diagnosis. These classification models were independently opti-
mized and compared based on classification accuracy, specificity,
and sensitivity. With the many explanatory variables common in
large-scale genomic studies, models often “overfit” the parameters
to the training set, leading to perfect classification of training data
and poor classification of validation data. Therefore, a model with
a high accuracy on training data can still suffer from poor predictive
power. For this reason, we use a cross-validated accuracy to
quantify predictive power. We chose leave-one-out cross-validation,
where a single sample is removed and the model is trained on the
remaining samples. The classification of the left-out sample is then
predicted. Cross-validated accuracy is defined as the sum of the
number of correctly classified left-out samples (true-positives and
true-negatives) divided by the total number of samples.

We tested a number of predictive models that have previously
been used successfully with similar data sets** and compared their
relative performance. The purpose of model fitting and analysis is
to identify a model (or set of models) that can accurately predict
whether a subject suffers from MDD based on a simple blood
sample. For clinical relevance and impact, the model must also
ensure both high sensitivity and high specificity. Sensitivity, or the
true-positive rate, quantifies the proportion of subjects with MDD
who are correctly identified; specificity, or the true-negative rate,
quantifies the proportion of ND control subjects who are correctly
identified. 262’

Logistic regression accurately classifies subjects with MDD
Classification models are often developed based on the assump-
tion that a linear relationship exists between explanatory variables
and responses. This assumption is formalized by the following
equation:

y=pX

where B is a vector containing coefficients that represent the
linear relation between explanatory variables X and response y.
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Figure 1.

A linear boundary SVM and logistic regression outperform random forests in identifying subjects with MDD. Three supervised

machine-learning methods were applied to discriminate MDD subjects from control subjects: (left) logistic regression, (center) random forests,
and (right) support vector machines. To improve model prediction and identify an optimal transcript set, backward selection was performed.
Backward selection removes transcripts from the explanatory variables in the classification model individually; for each iteration, we
recalculate model accuracy, sensitivity, and specificity. The transcript associated with the lowest accuracy is permanently removed from the set
of predictive variables and the process is repeated. Random forests had less accuracy than logistic regression or SVMs, suggesting that
nonlinear contributions of the explanatory variables did not provide additional accuracy to the model. Logistic regression and SVMs with a
linear boundary both had high accuracy, 92.2% and 90.6%, respectively. MDD, major depressive disorder; SVM, support vector machine.

For a response with two classes, the predicted response will be
assigned to Class 1 if y is above a set threshold, and assigned to
Class 0 if y is below the threshold. The function, X, forms a hyper-
plane, or boundary, that separates the two classes of responses.
Logistic regression assigns a relationship between the explanatory
variables and the response using the logistic equation:

1

Y =9 e

The logistic curve has an S-shape with the inflection point of the
curve at the inferred boundary between the two classes. This
model has the advantages of being both highly interpretable and
easy to implement. In addition, logistic regression quantifies a
probability that a sample exists in a given class, which is a function
of the distance of the sample from the inferred boundary. For
example, a subject who expressed genes that fall near the
boundary would have a 50% probability of being in Class 0 or
Class 1. A subject whose transcriptomic panel falls far from the
boundary may have a probability of 99% of belonging to Class 1
and a 1% probability for belonging in Class 0. We applied logjistic
regression to predict the probability of a new subject belonging to
the MDD class, given the expression of blood transcript levels of
the 20 genes.'*"®

Backward selection increases predictive power with fewer
transcript variables
We employed backward selection to fit subject diagnosis of
increasingly smaller transcript sets and calculated cross-validated
accuracy, sensitivity, and specificity for each selection step
(Figure 1, left). The logistic regression model exhibited maximum
accuracy with the inclusion of 14 transcript variables, suggesting
that this subset of transcripts has the most predictive ability. The
14 genes are RAPH1, CDR2, CMAS, DGKA, AMFR, NAGA, ZNF291,
PSME1, TLR7, PTP4A3, ATP11C, CADM1, MAF, and ASAH1. The 14-
variable model had a high classification accuracy of 92.2%,
demonstrating that the data had significant power to accurately
predict MDD in subjects outside of the training data. In addition,
the model had a high cross-validated sensitivity and specificity of
93.8% and 90.6%, respectively.

Although logistic regression yielded a highly accurate and
interpretable result, it assumes that there is a linear relationship

between the input variables and the output. We therefore
inquired whether nonlinear effects can improve the accuracy of
the model. We applied random forests, which allow for nonlinear
relationships between transcripts.'®

A random forests classification model predicts MDD with
moderate accuracy

Random forests uses an ensemble of decision trees to classify a
response variable based on a matrix of explanatory variables."
Random forests perform well on diverse data sets as it makes few
assumptions on the structure of the data; it does not require a
linear relationship between the input variables and the response.
The model minimizes overfitting by taking random subsets of data
samples and explanatory variables and aggregating the predicted
responses in a process known as Bootstrap Aggregating.'® The
predicted class of the response is the majority vote over all of the
bootstrap-aggregated trees.

In this study, we applied random forests to classify MDD
subjects from controls. As random forests can create nonlinear
relations between input variables and responses, the order of
variable importance had little overlap with the logistic regression
model. This difference may reveal nonlinear relationships between
transcripts, which include synergistic or antagonistic contributions
of multiple explanatory variables. In order to investigate this
hypothesis, we compared the accuracy of random forests to
logistic regression. Backward selection was repeated iteratively
(Figure 1, center). Random forests performed worse than logistic
regression in all 20 backward selection steps, suggesting that the
nonlinear relationships were not meaningful or underpowered
and did not add additional predictive power to the model.

SVMs offer similar accuracy to logistic regression using fewer
transcript variables

To further improve upon the predictive accuracy of our
classification model, we implemented a third model, known as
SVMs.2%3% SVMs infer a multidimensional decision boundary that
separates classes of variables. Similar to logistic regression, SVMs
are interpretable; the multidimensional boundary can be visua-
lized as projections on two-dimensional coordinates. SVMs also
require less computational power than both random forests and
logistic regression by using only the data points, termed support
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Figure 2.

Combinations of RNA measurements have high predictive power, though individual measurements can be non-predictive. The heat

maps contain the cross-validated accuracy, specificity, and sensitivity of pairwise combinations of the top five predictive transcripts from
backward selection with linear SVMs. Even though AMFR had high predictive value for classifying MDD in conjunction with other variables, it
had no predictive power on its own, as demonstrated by a specificity of 0%. Combinations of transcripts can inform a useful SVM boundary
even if single transcripts have no ability in isolation, suggesting that depression is associated with combinations of genes. Note that backward
selection does not comprehensively explore all transcript combinations and the complex relationships among transcripts suggest that a more
predictive combination may still remain. MDD, major depressive disorder; SVM, support vector machine.

vectors, that define the boundary between classes. This computa-
tional strategy allows the model to be less sensitive to outliers
than logistic regression, as the model is built only using samples
close to the classification boundary.

SVMs may identify linear or nonlinear relationships depending
on the type of boundary that is used to separate subject classes. A
common boundary is an n—1 dimensional hyperplane that
separates classes in an n-dimensional space. This type of
classification boundary is linear as the hyperplane collapses to a
line when projected into 2D space. Backward selection was
applied to improve predictive power and identify predictive
variables (Figure 1, right). SVMs had an optimal accuracy with the
following 10 transcript abundances: DGKA, CDR2, PSME1, ZNF291,
AMFR, RAPH1, CMAS, NAGA, CD59, and SLC4A1. The linear SVM
model had a classification accuracy of 90.6% with 10 transcript
variables, four fewer variables than logistic regression. This result
corresponds to a desirable sensitivity and specificity of 90.6% and
90.6%, respectively, suggesting that the linear SYM model may be
most promising for clinical application. Other SVM variations
employing nonlinear boundaries®® are described in Supple-
mentary Figure 1. The linear boundary outperformed all nonlinear
boundaries tested, further suggesting that the assumption of
linearity is valid and that a linear relationship truly exists between
the levels of specific RNA transcripts in the blood and MDD
diagnosis.

SVMs can separate subjects with MDD from controls with high
classification accuracy

To further explore the predictive power of the SVM model, the five
most important explanatory variables, as determined by the final
five variables in backward selection, were used pairwise to build
SVMs. The resulting boundaries separating MDD from controls are
illustrated in Supplementary Figure 2. Accuracy, sensitivity, and
specificity for each pairwise combination of these top five
transcript variables are shown in Figure 2. Single transcripts, such
as DGKA and CDR2, have predictive power in classifying depressed
subjects without being combined with other explanatory vari-
ables. Conversely, AMFR and ZNF291 were found to be important
when in combination with other transcripts, but had little
predictive power in isolation. It is possible for an individually
non-predictive variable to have high predictive power in
combination3' For example, AMFR has a specificity of 0%,
meaning the SVM classified all subjects with MDD. However, both
specificity and sensitivity increase in combination with PSMET
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(81.2 and 62.5%), which is higher than PSMET alone (68.8 and
56.2%). This difference suggests that depression diagnosis may
not be associated with the expression of a single gene, but rather
the expression dysregulation of a combination of genes. Whereas
levels of transcript variable pairs could have significant informative
value in classifying depression, backward selection demonstrated
that 10 transcript abundances had the highest accuracy with a
sensitivity and specificity of 90.6% and 90.6%, respectively.
This result underlines the complexity of MDD, suggesting that
the heterogeneous nature of the illness and its etiology may be
reflected in the expression patterns of combinations of
specific genes.

SVMs with a logistic equation fit provide an LiD score: the
probability that a subject has MDD

As both logistic regression and SVM classification models had high
accuracies in predicting MDD, we hypothesized that a combina-
tion of these two methods may be more useful than either in
isolation. The SVM model is more robust to outliers and has fewer
explanatory variables; however, logistic regression is able to assign
a quantitative probability of being correctly classified depending
on the distance that a new data point falls from the inferred
boundary. We therefore used SVMs to infer the boundary and
then set the inflection point of the logistic equation to this
boundary to form a quantitative score for the probability that a
new subject has MDD.?'

For interpretive purposes, we selected the pairwise combination
of the expression levels of the genes CDR2 and DGKA to
demonstrate the relationship between the SVM boundary and
the logistic contours.

Zexample = —1.714 - [DGKA] + 0.968 - [CDR2] + 9.401

1
1 + e 1-215Zexample—0.007

Prexample =
I-iDexampIe =10- Prexample

Z contains the weighted linear combination of the two RNA
transcripts. This equation defines the hyperplane separating MDD
from the control class. Pr is the probability of a subject having
MDD as a function of the distance from the boundary calculated
using a logistic equation. The LiD equation converts the
probability to an interpretable number ranging from 0 to 10. This
pair of transcripts had the highest accuracy in predicting MDD.
Figure 3 shows a scatterplot of these two representative transcript
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LiD threshold Accuracy Sensitivity Specificity
o >1 0.672 0.923 0.608
>2 0.812 0.955 0.738
>3 0.844 0.958 0.775
>4 0.953 0.968 0.939
>5 0.922 0.909 0.935
>6 0.875 0.816 0.962
& >7 0.875 0.800 1.000
8 >8 0.719 0.640 1.000
>9 0.703 0.627 1.000
Abbreviation: LiD, likelihood of depression score.
the ND control class. If the model predicts that a patient has a 50%
probability of being in the MDD class, the corresponding LiD score
18 O Control is 5.0. The full model includes the 10 gene transcripts from the
o MDD linear SVM with LiD equations:
15 16 17 18 19 20

DGKA

Figure 3. SVMs combined with a logistic equation provides
quantitative LiD score corresponding to the probability of a MDD
diagnosis. A logistic equation was fit on the boundary inferred by
the linear SVM from the 10 most predictive transcripts. For
illustrative purposes, we show the same method on the two most
predictive pairwise genes, DGKA and CDR2; the full predictive model
uses 10 transcripts and would be impractical to visualize. The thick
line corresponds to the logistic regression inflection point and the
thin lines correspond to deciles of probability of a MDD diagnosis
fitted from logistic regression. The LiD score range is shown for each
region. The overlaps in transcript measurements between MDD and
ND control subjects highlights the inherent noise in MDD diagnoses
as well as biological experiments. However, the probabilistic
interpretation from logistic regression offers a diagnostic tool useful
for clinicians. LiD, likelihood of depression; MDD, major depressive
disorder; ND, no-disorder; SVM, support vector machine.

variables in 2D space. The thicker boundary line in the figure
shows the central boundary as determined using the SVM. The
inflection point of the logistic equation was set at this boundary
and the slope of the distribution was fit to the distribution of data
surrounding the boundary. The probability of depression is
predicted as a function of the transcripts’ weighted distance from
the SVM-defined boundary. This method allows the assignment
of a quantitative score of 0 to 10 for each subject. We termed
this score the LiD score, which quantifies the probability of
having MDD.

The contours show the divisions between the deciles of
probability of MDD. For example, subject samples that fall in the
upper left part of the plot have a 90-100% probability of having
MDD, whereas those that fall in the lower right have 0-10%
probability. A subject falling on the central boundary would have a
50% chance of having MDD using this approach. As this figure
demonstrates, the orthogonal distance from the central boundary
can be mapped to a quantitative score for MDD using a logistic
distribution. The LiD score can be useful for clinicians to
determine, on a patient-by-patient basis, whether higher sensitiv-
ity or specificity is more important. The tolerance for false-
positives and false-negatives may change depending on other
clinical evidence, including medical comorbidities or treatments.
This score may lead to a more informed, personalized diagnosis
for MDD. At the 50% decision boundary, this combined model has
a classification accuracy of 92.2%, sensitivity of 90.9% and
specificity of 93.5%.

The LiD score ranges from 0 to 10 and corresponds directly to
the percentage that a patient is in the MDD class as opposed to

Z = —0.926 - [DGKA] + 1.635 - [CDR2] — 1.418 - [PSMET]
+0.380 - [ZNF291] + 1.888 - [AMFR] — 1.215 - [RAPH1]
— 0.834 - [CMAS] — 0.350 - [NAGA] + 0.765 - [CD59)]

—0.176 - [SLCAA1] + 1.932
1
T 1+ e-1369Z+0.108

LiD=10-Pr

Similar to the example equations, Z describes the most predictive
linear SVM model composed of the weighted linear combinations
of 10 RNA transcripts; Pr is the probability of an MDD diagnosis,
and LiD is an interpretable score ranging from 0 to 10.

Depending on prior knowledge, a clinician may select different
tolerances for possible false-positives (misdiagnosis of MDD) and
false-negatives (failure to diagnose MDD) for the patient. The
corresponding sensitivities and specificities for different thresh-
olds are given in Table 1. These values are for the full data set and
are therefore slightly higher than the cross-validated sensitivities
and sensitivities given in Figure 1. A threshold of 4 yields the
highest sensitivity and specificity of 96.8% and 93.9%, respectively,
and would be appropriate across a wide range of subjects with
minimal false-positives or false-negatives. The performance of this
model also suggests that a 10-transcript abundance sample from
whole blood may be highly effective, widely adaptable, and easily
scalable to a large subject population at risk for suffering
from MDD.

Pr

Predictive transcripts suggest mechanisms associated with MDD

The most predictive variables may also give mechanistic insight
into the etiology of depression. Both logistic regression and SVMs
had a high overlap in the predictive variables. The most accurate
SVM model consisted of 10 transcripts and the most accurate
logistic regression model consisted of 14 transcripts, with eight
transcripts in common between the two models (Figure 4a). We
used these eight genes to infer molecular functions that may be
associated with MDD.

ZNF291, RAPH1, PSMET1, NAGA, DGKA, CMAS, CDR2 and AMFR
were found to be common significant explanatory variables
between the two models. TLR7, PTP4A3, MAF, CADM1, ATP11C and
ASAH1 were selected solely by logistic regression. SLC4AT and
CD59 were unique to the SVM. The Enrichr suite®® was used to
identify molecular functions, as defined by the Gene Ontology
(GO) database, which may be associated with MDD. Four
molecular functions were identified as significant (adjusted
P-value < 0.05) with these eight genes (Figure 4b): hexosamidinase
activity (GO:0015929), diacylglycerol kinase activity (GO:0004143),

Translational Psychiatry (2016), 1-8



Supervised classification of depressive disorder
JS Yu et al

Logistic SVM (linear) b

GO Molecular Function

TLR7
PTP4A3

MAF SLC4A1
CADM1 CD59
ATP11C

ASAH1

hexosaminidase activity (GO:0015929)
diacylglycerol kinase activity (GO:0004143)
NAD+ kinase activity (GO:0003951)
cytidylyltransferase activity (GO:0070567)
peptidase activator activity (GO:0016504)
hydrolase activity, hydrolyzing O-glycosyl compounds (GCP:0004553)
hydrolase activity, acting on glycosyl bonds (GO:0016798)
nucleotidyltransferase activity (GO:0016779)
endopeptidase regulator activity (GO:0061135)
peptidase regulator activity (GO:0061134)

0.5 1.0 1.5
-logyo(adjusted p-value)

Figure 4. Some genes were highly predictive for diagnosing MDD, suggesting the biological processes underlying the etiology of major
depression. Logistic regression and SVMs both identified genes with significant ability to predict MDD. (a) Maximum predictive power was
achieved in logistic regression with 14 transcripts and in SVMs with 10 transcripts, with eight in common. These eight genes are hypothesized
to have importance in explaining the biological processes underlying MDD. (b) Enrichr was used to find biological processes enriched in the
eight common variables between logistic regression and SVMs. Four processes, as defined by the Gene Ontology (GO) database, were found to
be significantly enriched (GO:0015929, GO:0004143, GO:0003951, and GO:0070567). The dotted line indicates the significance cutoff (adjusted
p-value of 0.05). Together, these results suggest that multiple converging pathways may have independent roles in contributing to the
depressive phenotype, and that MDD may have independent causal factors. MDD, major depressive disorder; SVM, support vector machine.

NAD+ kinase activity (GO0003951) and cytidylyltransferase activity
(GO:0070567). Notably, hexosamidinase deficiency occurs in late-
onset Tay-Sachs disease,*> where some individuals experience
psychiatric disturbances including depression and diacylglycerol
kinase has been implicated in bipolar disorder.®® Cytidylyltrans-
ferases catalyze a rate-limiting step in the production of neural
membrane glycerophospholipids, which are implicated in major
depression and anxiety disorders>*** It is of interest that all of
these molecular functions are related to enzyme activity. It has
been suggested previously that inborn or acquired errors of
metabolism are often accompanied by psychiatric symptoms,
whether as a consequence or a cause, only future research can
tell.3® These molecular characterizations also suggest that there
may be multiple converging causes that lead to depression
through altering the availability of proteins, perhaps specifically
enzymes, central to the etiology of MDD.

DISCUSSION

This is the first report to our knowledge that describes in complete
detail different classification models for future diagnostic pur-
poses built using a panel of transcript abundances. We compared
several classification models to identify the most predictive model
in discriminating subjects with and without MDD. Models were
selected who had previously been shown to predict diagnostics in
DNA microarray and protein mass spectrometry data.?? The
logistic regression and SVM models offer high sensitivity and
specificity in predicting subjects with MDD. Both models have
their advantages: logistic regression can assign a probability of a
subject having MDD and the SVM model has fewer explanatory
variables and is less sensitive to outliers.

We therefore combined both methods to create an accurate
and quantitative score to assign a probability of a patient having
MDD from 10 biomarker measurements in the blood. This score,
which we termed the LiD score, directly corresponds to the
probability of a patient having MDD. Varying threshold can be
applied for the LiD score depending on prior information about
the patient or the risk involved in misdiagnosis. Given the
subjective nature of MDD diagnosis, obtaining a true-positive
(correct diagnosis of MDD) is likely more important than
identifying a true-negative (correct diagnosis of no MDD), which
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suggests using a lower LiD threshold to improve sensitivity. In
certain cases, such as with soldiers returning from active duty who
have a high risk of having undiagnosed MDD and suicide,*” it may
be appropriate to set the diagnosis threshold even lower to
minimize the high cost of a false-negative. On the other hand, a
higher threshold may be used with patients who have an existing
relationship with a psychiatrist, minimizing the chance of a
incorredt diagnosis of MDD leading to unnecessary therapy. A
clinician’s expertise can be combined with the LiD score to bring
more accurate and personalized diagnosis to each patient. In
addition, LiD score thresholds can be tuned in accordance with
the distribution of MDD among a population.>® Because the non-
MDD population is greater than the MDD population, the LiD
score threshold can be raised to increase specificity and reduce
false-positives.

A further advantage of the LiD score is its reproducibility and
quantitative nature. The high prevalence of MDD motivates
pharmaceutical companies to pursue effective treatments for
MDD. The LiD score can be used as a quantitative measure of
baseline and improvement in clinical trials. A small increase in the
statistical significance of a change in efficacy among new drug
candidates can be the deciding factor between a failed clinical
trial and FDA approval for the launch of new life-saving
medications.

The small number of gene transcripts suggests that not only is it
possible to detect MDD from a blood sample alone, but also that
such a test can be applied with low cost on a large scale. Blood
RNA can be easily stabilized, stored, and transported without the
need of complicated protocols or expensive refrigeration during
transport. Blood draws and qPCR are already widely accessible in
clinical settings and therefore the cost can be controlled across
populations currently not equitably served by specialized psy-
chiatric care.3®*° The infrastructure for qPCR-based tests is already
in place and would allow quick and widespread implementation
to clinics across the country.

This RNA-based diagnostic has several advantages over other
biomarker-based diagnostics for depression. gPCR is a highly
sensitive and high-throughput method, allowing for rapid, reliable
quantification of biomarker levels. Blood samples collected for
RNA isolation could be transferred from the collection to the
laboratory sites, which is particularly useful in geographic areas



less served by psychiatric health-care providers. The use of cDNA
standards for each of the transcript markers could eliminate the
differences in gPCR results between the different laboratories, as is
the case for any other clinical quality-controlled measurements. A
commercially available test, using a combination of serum-based
biomarkers, has been proposed to identify the probability of
depression in a subject by giving an MDD score.*' The serum-
based measures include alpha 1 antitrypsin, apolipoprotein ClIl,
myeloperoxidase, soluble tumor necrosis factor a receptor Il
cortisol, epidermal growth factor, prolactin, resistin, and brain-
derived neurotrophic factor*' This study relies on protein
biomarkers and specialized proprietary laboratories, where the
MDD score is calculated. The algorithm for this MDD score is not
publicly available. In addition, the protein-based study had a lower
sensitivity and specificity (91.7 and 81.3%).*' We were able to
achieve a higher sensitivity of 96.8% and a specificity of 93.9% at
an LiD threshold of 4, suggesting a lower chance of misdiagnosis.

In addition to creating a blood-based diagnostic for depression,
our approach also identified novel genes with expression
differences in MDD that are either the consequence of, or are
involved in, the etiology of MDD. Transcripts with the highest
predictive power may be critical to the etiology of depression.
Using the eight transcript variables that were in common in the
most important variables for logistic regression and SVMs, we
performed gene ontological analysis and identified four significant
(adjusted p-value < 0.05) molecular functions. These functions
are all related to enzymes, including several having shown
relevance with mental health diseases: hexosaminidase and
Tay-Sachs disease,®*  diacylglycerol kinase and bipolar
disorder®®* and cytidylyltransferases and neural membrane
glycerophospholipids.3**> These cross-relations are unsurprising
given the complex nature of mental health diseases and suggest
that MDD may have multiple independent causes that can occur
in isolation or combination in patients. Future large-scale studies
using these markers together with the SVM classifier would greatly
facilitate identifying the subtype of depression that best describes
each patient, bringing treatment to a personal level.

An accurate and objective blood-based diagnostic test for
depression has societal value by (i) decreasing the number of
undiagnosed individuals who suffer from MDD, (ii) providing
clinicians a quantitative probability of MDD diagnosis to inform
personalized therapy, and (i) improving the statistical significance
of clinical trials for new antidepressant medications. We propose a
SVM-based technique that offers highly accurate MDD diagnosis
and the LiD score that corresponds to the probability that a
patient has MDD. This study further suggests multiple, indepen-
dent processes that may be involved in the etiology of depression,
which could inform new research directions and possible drug
targets. The success of SVMs in identifying subjects with MDD also
demonstrates a computational means by which to identify
subgroups of subjects that may respond to specific treatments,
further facilitating the speed, ease, and accuracy with which
doctors may treat patients with depression. In summary, the SVM-
based LiD score derived from an RNA-based blood test may
revolutionize the treatment of depression to greatly benefit
pharmaceutical companies, clinicians, and ultimately the indivi-
duals suffering from undiagnosed MDD.
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