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Abstract: Robot manipulators should be able to quickly detect collisions to limit damage due to
physical contact. Traditional model-based detection methods in robotics are mainly concentrated on
the difference between the estimated and actual applied torque. In this paper, a model independent
collision detection method is presented, based on the vibration features generated by collisions.
Firstly, the natural frequencies and vibration modal features of the manipulator under collisions are
extracted with illustrative examples. Then, a peak frequency based method is developed for the
estimation of the vibration modal along the manipulator structure. The vibration modal features are
utilized for the construction and training of the artificial neural network for the collision detection
task. Furthermore, the proposed networks also generate the location and direction information about
contact. The experimental results show the validity of the collision detection and identification
scheme, and that it can achieve considerable accuracy.

Keywords: manipulator; model independent method; collision detection; collision identification;
vibration analysis; artificial neural network

1. Introduction

Industrial robots play an important role in the modern manufacturing industry, and human-
friendly robots will soon become flexible and versatile coworkers in the industrial setting [1]. One of
the core problems in human–robot interaction is the detection of collisions between robots and the
industrial environment, including humans and other manufacturing structures. Indeed, industrial
robots should be able to operate in very dynamic, unstructured, and partially unknown environments,
sharing the workspace with the human user, and preventing upcoming and undesired collisions [2].

Furthermore, researchers are getting more interested in gathering the maximum amount of
information from the impact event, such as the contact position, direction and intensity, in order to
let the robot react in the most appropriate fashion. Related concepts include collision avoidance [3],
and collision isolation, identification, classification and reaction [2]. Particularly, the concept collision
isolation aims at localizing the contact point, or at least which link out of the n-body robot collided.
Furthermore, collision identification is to determine the directional information of the generalized
collision force [2].

Different approaches for detection of robot collisions have been presented in the literature. A first
intuitive approach is to monitor the current transient in robot electric drives, looking for shock changes
within currents caused by collisions [4–7]. A second approach is based on the tactile sensors laying
inside robot skins. The more common approach is the so-called model-based method (the state
observer or Kalman filter method), and the detection algorithms are mainly based on the evaluation
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of monitoring signals (motor currents, difference between actual and predicted torques, etc.), which
should be below some setting values, otherwise collision alarms are generated.

A major practical problem in these methods is the selection of thresholds for the monitoring
signals, since the modeling error and sensor noise affect the monitoring signal in the same way as
collision disturbance. A good detection algorithm therefore must distinguish the effect of modeling
error and sensor noise on monitoring signal from that of a real collision. For this reason, it usually
leads to a tradeoff between sensitivity and false alarm rate, with a risk of excessively conservative
threshold [2,5]. To overcome this problem, some different methods are proposed. A dynamic threshold
is defined in [4] to represent the residual dependence on the state of the robot (position, velocity,
acceleration) using fuzzy logic rules. Furthermore, in [6], authors propose an adaptive detection
algorithm based on a state-dependent dynamic threshold. In recent years, some extended state
observer [8] and sliding mode observer [9] methods are proposed to obtain more effective detection
performance.

Most of these evaluation algorithms mainly concentrate on the time domain information of motor
torque deviation (The motor currents can be considered as another form of torque). A considerable
alternative is to use frequency domain features for detection purposes.

This paper describes a novel detection method based on vibration modal feature generated by
collision. The natural frequency and vibration modal features of collision experiments are extracted
for the constructing and training of several structures of Back Propagation (BP) neural network.
The research result shows that this method can be used for the detection of collision with considerable
accuracy, not only for the detection of collision occurrence, but also for the positioning and direction
determination.

A remarkable contribution of this paper is to introduce frequency and vibration information for
the detection of robot collision. The vibration information is independent of the dynamic model and
can be easily acquired with acceleration sensor, which has greatly developed in recent years. Since the
occurrence of collision can happen anywhere along the robot structure, the acceleration sensor is easy
to stall and suitable for the detection use. Furthermore, the industrial robots are not usually equipped
with torque sensor because of cost and structural constraints, and this research provides an opportunity
for MEMS accelerometer.

Accurate analysis of natural frequency and modal shape is fundamental for mechanical design,
dynamic identification and control of high-speed manipulator [10,11]. In recent years, the acceleration
and vibration analysis method has been gradually used for the status monitoring of manipulator robot.
In [12], the authors propose a fault detection method for industrial welding robot. In their study,
joint acceleration of robot is considered as evaluation criteria and their evaluation algorithm is based
on neural network. The article [13] presents a method for processing and analyzing the measurement
signals used in the problem of diagnosing the state of a manipulator’s tool. The analysis algorithm is
performed within the time and frequency domain. The signal utilized in the research is the mechanical
vibrations and the rotation speed of the tool. In the work [14], frequency domain analysis method
is researched for the event classification in robot assisted deburring. Power spectrum density (PSD)
of sensor data acquired between certain sample rates is calculated, and it is then used for classifying
vibration signal generated by the spindle from the vibration signal acquired during the deburring
process. The paper [15] presents a signal fusion method based on accelerometer and encoder in serial
robots. Besides, a number of studies have presented the data-based method for mechanical system
monitoring based on vibration signals [16–20]. In most of this research, specific forms of artificial
neural network are proposed and implemented [21–25].

The rest of this paper is organized as follows. Section 2 describes the frequency domain features
and parameters of vibration of manipulator in case of collisions. Section 3 presents the architecture
of our detection neural network, together with vibration modal analysis method; Section 4 presents
some results and experiments obtained with the proposed method; and finally, Section 5 addresses the
main conclusion and future work.
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2. Vibration Modeling and Feature Extraction

This section address the vibration presentation and its characteristics. First, the modeling method
of vibration response is proposed with dynamic equations and transfer functions. Then, the typical
features are analyzed based on the mathematical model, together with illustrative examples.

2.1. Vibration Response under Collision and Its Mathematical Modeling

In this paper, our research focuses on the vibration response of multiple test points along
manipulator structure under several experiments. An effective method for dealing with vibration
of kinematic chain mechanism is the elastodynamic modeling and analysis [10,11]. In this method,
each critical mechanical structure and component is simplified with stiffness, viscous and mass
parameter. As for a n−dof manipulator, it is composed of a series of motors, gears, links and joints,
some of which will generate deformation and vibration under collision. For this reason, the dominant
vibration structures can be considered as elastic bodies with certain stiffness and viscous coefficients.

We consider a n−dof manipulator with m dominant vibration structures. Its axis displacement
vector can be defined as:

q =

[
qD
qM

]
∈ RN (1)

where qD = [q1, q2, · · · , qm]
T is the vibration deviation, and qM = [qm+1, qm+2, · · · , qm+n]

T denotes
the joint displacements. Furthermore, we assume the equilibrium points of qD is qD = [q1, · · · , qm]

T .
The dynamic equation of manipulator can be written as:

M(q)q̈ + C(q, q̇)q̇ + G(q) =

[
τD

τM + τf

]
(2)

the variable τM, τf and τD denotes the joint torque generated by motor, friction and structure
deformation respectively. We denote τD = [τ1, · · · , τm]

T , and τM = [τm+1, · · · , τm+n]
T . The subscript

D denotes the dominant vibration structures, and M denotes the drive motor of manipulator.
On the other hand, the torque generated by the deformation of vibration structures can be

given by:
τD = Kp(qD − qD)− KvqD (3)

where Kp = diag(kp1, kp2, · · · , kpm), Kv = diag(kv1, kv2, · · · , kvm) is the vibration dynamic coefficient
matrix. Furthermore, kpi, kvi denotes the stiffness and vicious coefficient of ith dominant vibration
structure respectively.

We assume that the gravity and friction is compensated by feedback control loop, and the
Coriolis and centrifugal effect generated by structure deformation is relatively small. In most cases,
the displacement of qD is much smaller than qM, and the inertia matrix M(q) is mainly determined by
joint displacement. Furthermore, the torque vector generated by collision is assumed as fext. Then we
get the dynamic function of manipulator as follows[

0
τM

]
= M(qM)

[
q̈D
q̈M

]
+

[
Kv CD(qM, q̇M)

0 CM(qM, q̇M)

] [
q̇D
q̇M

]
+

[
Kp

0

]
(qD − qD) +

[
JD

T

JM
T

]
fext (4)

where JD
T and JM

T is the associated geometric contact Jacobian matrix to m vibration structures and n
robot motors, respectively. However, the collision torque vector fext and contact Jacobian JD

T , JM
T is

typically unknown.
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Denoting x1 =

[
q̇D

qD − qD

]
, y1 = qD − qD, and x2 =

[
q̇M
qM

]
, y2 = q̇M, an n inputs and m + n

outputs state-space equation is obtained
ẋ1 = A1x1 + B11y2 + B12 fext

ẋ2 = A2x2 + B21u + B22 fext

y1 = C1x1

y2 = C2x2

(5)

where u is the active motor torque, and fext is torque vector generated by collision, and the related
parameter matrix is given by:

A1 =

[
−M(qM)−1Kv −M(qM)−1Kp

I 0

]
,

B11 =

[
−M(qM)−1CD(qM, q̇M)

0

]
, B12 =

[
JD

T

0

]
, C1 =

[
0
I

]T

A2 =

[
−M(qM)−1CM(qM, q̇M) 0

I 0

]
,

B21 =

[
−M(qM)−1

0

]
, B22 =

[
JM

T

0

]
, C2 =

[
I
0

]T

Then we get the modal analyzed transfer function from collision torque fext to vibration
deformation y1 as follows

P(s) =
Y1(s)
Fext(s)

= C1(sI − A1)
−1[B12 + B11C2(sI − A2)

−1B22] (6)

We considered the structure of system matrix A1 and A2, and we got that rank(A1) = 2m and
rank(A2) = n. Let λDi, λDi(i = 1, 2, · · · , m) be 2m eigenvalues of A1, and λ0(= 0), λMi(i = 1, 2, · · · , n)
be the n + 1 eigenvalues of A2.

From the partial fraction expansion, the modal analyzed transfer function P(s) becomes

P(s) =
m

∑
k=1

Φk
s2 + 2ξkωDks + ωDk

2 + P1(s) (7)

By modal analysis, P(s) can be expressed as a linear sum of m + n vibration modes, m modes of
which are generated from the m dominant vibration structures. Furthermore, the other n poles which
come from A2, correspond to the n-dof active dynamic of manipulator.

Then the natural frequency of vibration along manipulator can be obtained by ωDi = |λDi|(i =
1, 2, · · · , m) and ωMj = |λMj|(j = 1, 2, · · · , n).

The matrix Φk corresponds to the rigid body vibration mode and is positive semidefinite, and it
has the following structure

Φ··i =


φ11i φ12i · · · φ1ni
φ21i φ22i · · · φ2ni
· · · · · · · · · · · ·
φl1i φl2i · · · φlni

 (8)

For any φkji ∈ Φ··i, the subscript k ∈ (1, 2, · · · , l) denotes the serial number of vibration test
position, j ∈ (1, 2, · · · , n) denotes the serial number of collision torque in vector fext, and i ∈
(1, 2, · · · , m) is the number of vibration modes.
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We considered the structure of system matrix A1 =

[
−M(qM)−1Kv −M(qM)−1Kp

I 0

]
, it is

mainly determined by inertia matrix M(qM), vibration dynamic coefficient matrix Kp and Kv, of which
the latter two remain nearly unchanged. That means the natural frequencies ωDi(i = 1, 2, · · · , m) will
vary with joint displacement qM.

As the stiffness coefficients kpi(i = 1, 2, · · · , m) of manipulator structure are usually considerably
large, there exist several eigenvalues of A1 relatively larger than that of A2, which comes from the
active dynamic of robot and reflects the normal working frequency of manipulator. For this reason,
there exist several natural frequencies of vibration that are obviously bigger than the frequency band
of active dynamic of robot, i.e., ∃ωDi(i = 1, 2, · · · , m), and ωDi > ωMj(j = 1, 2, · · · , n) hold.

So we get an important conclusion: the dominant natural frequency of vibration under collisions is
independent of the dynamic property of robot. When the inertia matrix is given, the natural frequency
under collision should remain the same during different dynamic processes or static statuses.

Furthermore, the modal matrix Φk depends on the value of geometric contact Jacobian matrix JD
T

and JM
T . For this reason, the contact position information can be induced by the value of vibration

mode matrix Φk.

2.2. Vibration Features Analysis and Illustrative Example

This section illustrates the characteristics of vibration modal shape of manipulator under collisions
with example. The test data were collected on the STR6-05 robot arm (see Figure 1), a 6-DOF heavy-load
manipulator. Four consecutive collision experiments were conducted while the end-effector moved in
line; the collision conditions are listed in Table 1.

Table 1. Experiment conditions for vibration modal test.

Experiment Index Contact Position Contact Direction Contact Material

1 Near end-effector X Aluminum impact hammer
2 Near end-effector Z Aluminum impact hammer
3 Near base Y Aluminum impact hammer
4 Near end-effector X Human hand

Figure 1. Experiment setup.

The joint displacement and motor current signals of joint 1, 2 and 3 are shown in Figure 2. We label
the contact time of corresponding collision events on the figure. We find that there are some shock
changes in the motor currents but little change in joint displacements. However, it is hard to detect



Sensors 2019, 19, 1080 6 of 17

collision events from current signals directly because of dynamic change and the noise involved in
signals, particular for heavy-load manipulator. As shown in the figure, we cannot find some obvious
features for collision 1.
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Figure 2. Joint displacement and current during the experiment.

For vibration signal measuring, the 1A113E and 1A114A industrial accelerometer (made by
Donghua Testing Technology) with NI-9232 data acquisition module is used. The 1A113E accelerometer
(uniaxial) is mounted beside joint 2, perpendicular to the direction of joint 1 and joint 2. The 1A114A
accelerometer (triaxial) is equipped beside the end-effector of manipulator.

The vibration acceleration and vibration modal is shown in Figure 3. The first signal comes from
1A113A located beside joint 2, and the latter comes from 1A114A beside end-effector, corresponding to
two perpendicular directions.

Figure 3. Vibration modes in experiment.

The frequency characteristic of each accelerometer within sliding windows is shown in Figure 3.
There are four obvious frequency charts corresponding to four collisions in each vibration signal.
The peak frequencies, i.e., the natural frequencies of three accelerations corresponding to one collision
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are approximately the same, with different energy densities. The magnitudes of all the peak frequencies
constitute the modal matrix Φ in Equation (8).

Figure 3 shows that the vibration modes of different parts along robot structure have the
following characteristics:

1. The contact position information can be analyzed with vibration modes of different sensors.
The main vibration frequency of nearer sensors is usually higher than sensors far from contact
position. That is because manipulator structure can be seen as a low-pass filter, the higher
frequency vibration signal is reduced during the propagation process. For example, the magnitude
of the 3rd collision in the 1st sensor is comparatively higher than that in the 2nd sensor signals.
That is because the 3rd collision is conducted near the base, which is much nearer to the 1st signal.

2. Similarly, the contact direction can also be determined with vibration modes. The relative energy
density value of different directions in the triaxial accelerometer can be used to detect the contact
direction. Generally speaking, the vibration of collision direction may have the comparatively
higher energy density. For example, the 1st and 2nd collision took place at the same part with
different directions, the 2nd magnitude is higher than the 1st one in the 2nd signal while the 2nd
magnitude is smaller than the 1st one in the 3rd signal, as is shown in the figure.

3. Furthermore, contact material information can also be reflected by vibration modal. The band
width of the 4th collision is much lower than the other 3. That is because the frequency band of
human hand contact force is comparatively narrow.

Limiting the range of magnitude below 1 dB, we got the frequency characteristic of normal
dynamic comparative to collisions in Figure 4. It shows that the natural frequency of active dynamic
appears at low frequency segment (always below 50 Hz), while the vibration frequency by collision
appears at intermediate segment. That means the eigenvalues of A2 is much smaller than that of A1 in
Equation (5), and the dynamics of normal operation do not affect the natural frequencies of collisions.

Figure 4. Low magnitude segment of vibration modes in experiment.

Obviously, the natural frequencies and modal is mainly dependent on the inertia matrix,
and independent of the robot dynamic. This means that the detection algorithm can be designed
without considering the dynamic property of the robot, and the training and test samples for the model
independent method can be collected in some simple or static scenarios.

Since collision will generally cause shock vibration, and its natural frequencies are mainly
contained in the high-frequency domain, several symptom parameters in the frequency domain
can be selected to represent the collision event. Extracting collision information from frequency
domain signal requires proper understanding of the process. For frequency features, such as natural
frequencies, the vibration modal shown in the spectrum often has direct or indirect connection to
certain dynamic events.
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3. Collision Detection and Identification Method Based on Vibration Features

Based on the vibration features discussed above, we proposed a learning-based algorithm for the
detection, isolation and identification of collisions.

The proposed method mainly contains three parts: vibration mode analysis, collision detection,
and collision identification. As shown in Figure 5, the vibration signals are first recorded by
accelerometer sensors. The vibration mode related features are then extracted from the vibration
signals. Any change in the vibration mode from normal condition can indicate the occurrence of
collision. Three different Back Propagation neural networks are developed for the detection of collisions
(BP1), the isolation of contact part (BP2), and identification of direction (BP3). BP2 and BP3 should
be activated only if some collisions are detected by BP1, and the input of BP3 varies with the output
of BP2.
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Figure 5. Vibration signal based detection framework.

3.1. Vibration Mode Estimation

The main objective of vibration mode estimation is to determine the main natural frequencies
ωDi(i = 1, 2, · · · , m), and the values of vibration mode corresponding to each natural frequency
φkji ∈ Φ··i, where k denotes the serial number of sensors, j denotes the serial number of collision force,
and i ∈ (1, 2, · · · , m) denotes the number of vibration modes.

In the collision experiment, the result of measurement is strings of acceleration values in discrete
moments. The acceleration signal should be properly processed in order to build the collision classifier.
For the discrete string a1(k), a2(k), and a3(k), fast Fourier transform (FFT) is used to determine
vibration spectrum within a sliding window which has lower computational cost and better accuracy
performance. In our research, the sampling rate is 3.2 k Hz, and the width of sliding window is 320
samples with 50% overlap. Furthermore, the cycle time of detection algorithm is 0.1 s.

For the spectrum of each sampling window, we proposed a peak frequency-based method to
determine the natural frequency ω̂Di(i = 1, 2, · · · , m), the estimation of ωDi. For each, the proposed
approach consists of the following steps:

Step 1: For acceleration signal k ∈ (1, 2, · · · , l), set a tolerance error ∆ and δ for spectrum analysis;
Step 2: Find all the local maximum power and local minimum power from start frequency f0 to cut-off

frequency fe, such that there is no other power value larger than current maximum value between the two
adjacent local minimum powers, and there is no other power value less than current minimum value between the
two adjacent local minimum power densities; The difference between adjacent maximum and minimum power
density should be larger than ∆;

Step 3: Collect all the local maximum power values and corresponding frequencies;
Step 4: Calculate Num, the number of local maximum power density;
Step 5: If Num > m, then ∆ = ∆− δ, repeat step 2 to step 4;
Step 6: Record current local maximum power values Pki(i = 1, 2, · · · , m) and corresponding

frequencies fki(i = 1, 2, · · · , m);



Sensors 2019, 19, 1080 9 of 17

Step 7: For other acceleration signal k ∈ (1, 2, · · · , l), repeat step 1 to step 6;
Step 8: Rank all the frequency values fki(k = 1, 2, · · · , l; i = 1, 2, · · · , m), and divide them into m groups

with maximum intervals.
Step 9: Calculate the average frequencies within each group, these values are the estimation of modal

frequency, ω̂Di(i = 1, 2, · · · , m).
With the estimation of modal frequencies, the vibration modal matrix Φ̂ can be determined

by extracting the magnitude of corresponding frequency in the spectrum chart, as it shows in
Figure 6. In this figure, we get 6 natural frequencies ω̂D1, ω̂D2, · · · , ω̂D6 from the measurements
of three acceleration signals in collision experiment j. The magnitude values at each characteristic
frequency are the estimation of vibration modal. Obviously, there is little error of estimation, e.g.,
the estimation φ̂2j5. However, this error has limited influence on the final detection result because this
detection is based on the synthesis of multiple vibration modal. In this way, we get the estimation of
vibration modal matrix of experiment j:

Φ̂·j· =

 φ̂1j1 φ̂1j2 · · · φ̂1j6
φ̂2j1 φ̂2j2 · · · φ̂2j6
φ̂3j1 φ̂3j2 · · · φ̂3j3

 (9)
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Figure 6. Joint displacement and current during the experiment.

3.2. Proposed Artificial Neural Network

In our method, 3 BP networks are implemented for the collision detection, positioning and
direction identification respectively. The collision detection artificial neural network together with
the modal analysis algorithm should be executed within each sliding window. Once a collision event
is detected, the collision positioning artificial neural network is launched with the current vibration
modal data. In addition, the input of the 3rd network is dependent on the output of collision position
information. The operation process of relevant algorithms is displayed in Figure 7.
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Collision 
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Direction 
Identification ANN

Main Loop of Algorithms

 Sliding Window

Figure 7. Procedure of detection algorithm.

B-P ANN consists of an input layer, hidden layers, and an output layer of neurons. A neuron
serves as a processing unit in which output is a linear or nonlinear transformation of its inputs.
The neurons, as a group, serve to map the input vibration modal features to the desired collision
patterns. The structure of BP network is shown in Figure 8.

The output signal of hidden layer and output layer can be described in the following equations:

mj(t) = f (
10

∑
j=1

wij(t)t + bj) (10)

where mj(t) is the output of current neurons, wij is the weight of the connection between current layer
neurons and its input layer neurons, bj is the bias of the jth neuron of current layer. The activation
function of output layer is linear function, while the hidden layer uses sigmoid function

f (t) =
1

1 + e−t (11)

Figure 8. Back Propagation (BP) artificial neural network structure.

Considering the characteristic of vibration modes discussed in Section 2, we selected the most
important features for each kind of detection task, as shown in Tables 2–4.

As the natural frequencies are mainly dependent on inertia matrix MqM, we selected the
displacement of joint 2 and joint 3 as input features of detection. The displacements of other joints
have little influence on inertia matrix.
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Table 2. The features used for the detection of collisions.

Features Function Equation

Geometric Appearance qM2, qM3
vibration Frequencies ω̂Di (i = 1, 2, · · · , m)
vibration modal φ̂kji (k = 1, 2, · · · , l; j = 1, 2, · · · , n; i = 1, 2, · · · , m)

The contact position and direction of collision can affect the comparative vibration magnitude of
sensor on different positions and directions. We select relative modal between test position for the
positioning of contact, and relative modal between test direction beside contact position for direction
identification.

Table 3. The features used for the isolation of contact position.

Features Function Equation

Geometric Appearance qM2, qM3
Vibration Frequencies ω̂Di (i = 1, 2, · · · , m)
Vibration modal of end-effector φ̂1ji, φ̂1ji(i = 1, 2, · · · , m)

Relative modal between test position φ̂k,j,i/φ̂k−1,j,i (k = 2, 3, · · · , k; i = 1, 2, · · · , m)

Table 4. The features used for the identification of collision direction.

Features Function Equation

Geometric Appearance qM2, qM3
Vibration Frequencies ω̂Di (i = 1, 2, · · · , m)
Relative modal between test direction of contact position φ̂cx,j,i/φ̂cy,j,i, φ̂cx,j,i/φ̂cz,j,i, (i = 1, 2, · · · , m)

4. Experiment and Discussion

4.1. Experiment Dataset Preparation and Training Procedure

The experiment dataset is collected on the platform in Figure 1. The robot is controlled with PD
control law during the experiment. An uniaxial accelerometer is mounted beside joint 2, perpendicular
to the direction of joint 1 and joint 2. In addition, a triaxial accelerometer is equipped beside the
end-effector of manipulator. All acceleration data is recorded by NI-9232 data acquisition module.
Our experiments are conducted with an aluminum impact hammer, which is also connected to NI-9232
data acquisition module. In this way, the collision time and force data is recorded, as shown in Figure 9.

Figure 9. Data acquisition module for collision experiment.
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The collision experiments are performed with eight selected contact points, with different direction
and force intensity. As the natural frequencies of vibration are mainly dependent on inertial matrix and
joint displacement (see Section 2.1), we select five typical working patterns (see Figure 10) as testing
standard. Our collision experiments are performed while the robot is transforming randomly from
one pattern to another.

Collision Part 1

Collision Part 2

Triaxial 
Accelerometor

Uniaxial 
Accelerometor

Figure 10. Five testing patterns of manipulator.

Hundreds of collision experiments are performed on the platform. The vibration modal data
of acceleration signals during these experiments are analyzed with the sliding-window method
introduced above. Typical vibration modal data sets with corresponding experiment conditions are
collected for classification research. Meanwhile, we also collect the vibration modal data during
collision-free operations. We get in total 800 experiment samples, of which 50 percent are collision
samples performed on 8 different contact positions along robot structure. Eighty-five percent of these
samples are selected randomly for training and the remaining are used for testing.

4.2. Detection and Identification Results

In this subsection, several test divisions of experiment data are utilized to evaluate the efficiency
of the proposed method. Our BP-ANN algorithms are taken from the Neural Network toolbox in
Matlab. At the training stage, we optimize the weights and bias parameters by minimizing mean
squared error, according to Levenberg-Marquardt optimization.

For the detection of collisions, BP networks with different architecture are constructed and trained.
Table 5 lists the accuracy of detection ANN of different architectures (The structure i− j− k− o means
a network with i input neurons and o output neurons, and j and k stands for the number of neurons in
hidden layers ). It is clear to see from the table that the proposed method has considerable accuracy for
collision detection, and an average accuracy of 0.95 can be obtained with 1 or 2 hidden layers.
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Table 5. Accuracy of collision detection.

Network Architecture Actual Status Number of Samples
Detection Result

Collision Non-Collision Accuracy

27-5-1 Collision 53 51 2 0.962
Non-collision 59 3 56 0.949

27-10-1 Collision 53 51 2 0.962
Non-collision 59 4 55 0.932

27-6-4-1 Collision 53 50 3 0.943
Non-collision 59 3 56 0.946

All the vibration modal data of actual collision are used for the training and testing of positioning
neural networks. Considering the geometric layout of the STR6-05 robot, the moveable structure is
divided as two parts, i.e., one part is link 3, and the other contains link 4, link 5 and link 6, as shown in
Figure 10. Table 6 lists the accuracies of different layers of positioning networks. In addition, the BP
networks with 2 hidden layers are suitable for the positioning task.

Table 6. Accuracy of collision positioning.

Network Architecture Actual Position Number of Samples
Positioning Result

Part 1 Part 2 Accuracy

27-10-1 Part 1 23 18 5 0.783
Part 2 31 5 26 0.838

27-5-5-1 Part 1 23 20 3 0.870
Part 2 31 4 27 0.871

27-10-5-1 Part 1 23 21 2 0.913
Part 2 31 4 27 0.871

27-15-10-3-1 Part 1 23 20 3 0.870
Part 2 31 2 29 0.936

As the vibration modal features of collision direction are mainly reflected by the acceleration
signals nearby the collision point, the input of direction identification network is determined by the
output of positioning network. Table 7 lists the accuracy of network of 3 architectures. The training
and testing samples come from the vibration data of collisions on link 4, link 5 and link 6, which is
near to the acceleration sensors on end-effector. It is obvious that the BP network with 2 hidden layers
can obtain comparative stabilization accuracy.

Table 7. Accuracy of direction identification.

Network Architecture Actual Direction Number of Samples
Identification Result

X-Direction Z-Direction Y-Direction Accuracy

33-8-2
X-direction 18 14 3 1 0.778
Z-direction 10 3 7 0 0.700
Y-direction 3 1 0 2 0.667

33-10-6-2
X-direction 18 15 2 1 0.833
Z-direction 10 1 9 0 0.900
Y-direction 3 1 0 2 0.667

33-15-10-2
X-direction 18 15 3 0 0.833
Z-direction 10 2 8 0 0.800
Y-direction 3 0 0 3 1.000
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Considering all the results comprehensively, the proposed method can be utilised for the detection,
positioning and identification of collisions with considerable accuracy. By analyzing, we find that
the positioning error and identification error is mainly derived from boundary samples, that is the
collisions near joint 3. One more accelerometer located beside joint 3 may be used for the enhancement
of accuracy.

By analysing the training and test procedure, we can find that an experiment of 300 collision
samples is enough for the artificial network training for any 6− do f manipulator with different sensor
placement scheme, and it can be accomplished in half or one hour with well designed scenarios and
test procedures.

4.3. Rapid Prototyping System Design

In order to realize the online test of the proposed method, the computation complexity and
detection time of the related algorithms should be estimated. As discussed above, the main calculation
consumption includes three parts, namely, the fast Fourier transform of vibration acceleration data,
the estimation of natural frequency and modal, and the node outputs update of neural network.

It can be seen from Section 2.2 that the collision vibration frequency of the robot is mainly between
50 Hz and 1500 Hz, and we set the sampling rate to 3200 samples/second. On the other hand, in order
to ensure the spectral characteristics have a sufficient resolution, we select a sliding window of 0.1 s for
each cycle, and the number of sampling points N = 320 for Fourier transform, as shown in Figure 11.
The overlap amount of the sliding window is 50 percent, that is, the calculation cycle of the proposed
algorithm is 0.05 s. Within each computing period, Butterfly fast Fourier transform is adopted, and the
total number of real multiplications required by FFT of N points is 2N ∗ log2(N), and the total number
of real numbers added is 2N ∗ log2(N) for each vibration signal.

5.55 5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95

time(s)
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0

0.5

V
ib

ra
ti
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n
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2
)

acceleration 1

acceleration 2

acceleration 3

Sliding Window

Figure 11. Sliding window for online vibration detection test.

For the natural frequency and modal estimation algorithm, the main computational cost of the
algorithm is the sorting algorithm of spectrum amplitude, and the computational complexity of the
algorithm is O(N ∗ log2(N)) [26], that means, the computational cost of the frequency and modal
estimation algorithm can be ignored relative to the fast Fourier transform.

For the status update of the neural network, each neuron includes multiple addition operations,
multiplication operations and exponential operations, and the exponential operation can be converted
into a number of addition and multiplication operations. For the collision detection neural network
with typical structure of 27-6-4-1, the addition calculation times of a single update is 278, and the total
number of multiplication is 98. For the positioning and direction identification neural network with
one or two hidden layers, the calculation cost is of the same magnitude.
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Therefore, the main computational cost of this method is derived from the fast Fourier transform.
In addition, within a single update cycle (50 ms), the addition and multiplication times of the algorithm
is about 22,000 and 21,000 respectively. The total computation consumption of this method is about the
same size as the traditional state observer method with Newton-Euler Function, as discussed in [27].

Based on the above analysis, we use Simulink/Data Acquisition Toolbox to develop a rapid
prototyping system, as shown in Figure 12. The vibration data within each sliding window is
buffered, and then used for FFT, modal estimated, and neural network status updates. The system is a
slower-than-real-time system due to data caching and operating system. It shows that the collision
detection time is about 0.1 s, and the isolation and identification time will be a little longer.

Figure 12. A Rapid Prototyping System.

5. Conclusions and Discussion

In this work, we present a model independent method for robot collision detection, positioning
and identification. The vibration signals are analyzed and used for the construction and training of BP
neural network. The test results of the experiment confirm that it is possible to build a monitoring
algorithm with considerable accuracy. The conclusions may be summarized as follows:

1. With a small amount of training samples (about 300–500 samples), the proposed method can
provide considerably high accuracy, and it can be conducted in half an hour or one hour with
any kind of manipulators. Therefore, this method has the potential to be implemented in real
application scenarios.

2. The detection and identification method is mainly dependent on the frequency domain features
of collision, the time-domain features can also be added to improve detection accuracy and
computational efficiency in further research.

3. The bandwidth of collisions on heavy load manipulator is mainly below 1500 Hz, and the
bandwidth of light robot should be much less than that value. This means some high-performance
MEMS accelerometers may be utilised on some occasions.

4. The main calculation consumption of the proposed method comes from the FFT of vibration
signal, some dedicated FFT chips can be utilized to improve detection performance.
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