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Abstract

The marker density, the heritability level of trait and the statistical models adopted are critical to the accuracy of genomic prediction (GP)
or selection (GS). If the potential of GP is to be fully utilized to optimize the effect of breeding and selection, in addition to incorporating
the above factors into simulated data for analysis, it is essential to incorporate these factors into real data for understanding their impact on
GP accuracy, more clearly and intuitively. Herein, we studied the GP of six wool traits of sheep by two different models, including Bayesian
Alphabet (BayesA, BayesB, BayesCp, and Bayesian LASSO) and genomic best linear unbiased prediction (GBLUP). We adopted fivefold
cross-validation to perform the accuracy evaluation based on the genotyping data of Alpine Merino sheep (n¼821). The main aim was to
study the influence and interaction of different models and marker densities on GP accuracy. The GP accuracy of the six traits was found to
be between 0.28 and 0.60, as demonstrated by the cross-validation results. We showed that the accuracy of GP could be improved by in-
creasing the marker density, which is closely related to the model adopted and the heritability level of the trait. Moreover, based on two
different marker densities, it was derived that the prediction effect of GBLUP model for traits with low heritability was better; while with the
increase of heritability level, the advantage of Bayesian Alphabet would be more obvious, therefore, different models of GP are appropri-
ate in different traits. These findings indicated the significance of applying appropriate models for GP which would assist in further explor-
ing the optimization of GP.
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Introduction
The advancement in the field of quantitative genetics and molec-
ular biology has improved the selection and breeding methods of
domestic animals (Rabier et al. 2016). Meuwissen et al. (2001) pro-
posed a more advantageous selection method, known as genomic
selection (GS) or genomic prediction (GP; Meuwissen et al. 2001).
This method combines the genome-wide single nucleotide poly-
morphism (SNP) with phenotypic data and implicates them for
genetic evaluation (Goertzel et al. 2006; Iwata and Jannink 2011;
Su et al. 2012; Taylor et al. 2016). It was first applied to the dairy
cows (Taylor et al. 2016) and is now widely used in other model
animals such as beef cattle (Taylor et al. 2012), pigs (Cleveland
and Hickey 2013), goats (Carillier-Jacquin et al. 2018), and sheep
(Werf 2009), aquatic animals like Atlantic salmon (Tsai et al.
2015), rainbow trout (Vallejo et al. 2016), and plants (Legarra et al.
2008; Desta and Ortiz 2014), such as wheat (Poland et al. 2012)
and alfalfa (Jia et al. 2018). GS has made a substantial

contribution to the modern breeding process, as compared with
traditional methods; the main advantages of this method include
improved estimation accuracy of breeding value (BV; Sun et al.
2014; Weller et al. 2017), increased genetic progress, and reduced
breeding costs (Miglior et al. 2017; Wiggans et al. 2017). With the
successive publication of various livestock genome sequences
and the continuous upgrade of commercial SNP microarrays, dif-
ferent types and densities of microarrays have been adopted in
the GP of different livestock (Singh et al. 2019). Accuracy and cost
are generally the most critical factors in GP, compared with low-
density SNP microarrays, the high-density SNP microarrays could
accommodate more SNP sites that may lead to higher coverage
of the genotype data (Di et al. 2005). However, the cost of the
high-density microarray was comparatively higher. In contrast,
although the low-density SNP microarrays have fewer SNP sites,
it is more applicable in population breeding with a huge dataset
due to its lower cost. Both the methods have their own pros and
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cons and therefore, it is difficult to conclude which density mi-
croarray is best suitable for GP.

For the first time, Meuwissen et al. (2001) proposed a GS based
on Bayes method, which includes BayesA and BayesB
(Meuwissen et al. 2001). Based upon this approach, several other
methods were also derived such as BayesCp method (Habier
2011), Bayesian least absolute shrinkage and selection operator
(Bayesian LASSO) method (Park and Casella 2008). Subsequently,
Gianola (2013) summarized these methods as the Bayesian
Alphabet method. In fact, the assumptions and strategies
adopted by these methods are different. The BayesA assumes
that all SNPs have genetic effects and the variance of marker
effects should obey the t-distribution, whereas BayesB assumes
that only a small proportion of SNPs have an effect. Furthermore,
the BayesCp is similar to BayesB, and estimates the proportion of
sites with no effect of p in the model. The Bayesian LASSO
method assumes that all markers have effects, and the variance
of marker effects obeys the double exponential distribution also
known as Laplace distribution (Gianola 2013). VanRaden (2008),
proposed another calculation method for GP and named it as ge-
nomic best linear unbiased prediction (GBLUP). It calculates the
relationship matrix of individuals via genome-wide genotype in-
formation instead of traditional pedigree information. Herein, the
matrix denoted as G is applied to replace the A matrix in BLUP, to
estimate the BVs according to the BLUP method (VanRaden 2008).
Another novel approach known as single-step GBLUP (SSGBLUP
or HBLUP) has been developed based on GBLUP (Aguilar et al.
2010). This method integrates the phenotype, pedigree and geno-
mic information into a model, and combines the traditional kin-
ship matrix A with the genome relationship matrix G according
to different weights to construct a new relationship matrix H,
then simultaneously estimate the genetic effects of all individu-
als (including individuals with and without genotypes). Although
there are various GP methods available, no method could be suit-
able for all traits. Therefore, in this study, two methods based on
Bayes and GBLUP models were adopted to study the prediction
accuracy of real data for different wool traits, aiming to screen
ideal GP models.

As an important domestic animal, sheep is one of the earliest
domestic animals reared by humans (Wang et al. 2014) and pro-
vides diverse resources such as mutton, wool, skin, and milk.
Merino and Merino-derived sheep breeds are distributed globally
(Ciani et al. 2015). As the object of this study, the Alpine Merino
sheep has Australian Merino and Tibetan sheep lineage. Thanks
to their adaptation in high-altitude hypoxia and excellent wool
quality, they quickly adapted to the freezing Qinghai-Tibet
Plateau, living in high altitude and cold conditions for genera-
tions (Zhu et al. 2020). The length and strength of the staple and
fiber diameter (FD) are closely related to the wool quality and are
the important economic traits of fine-wool sheep. Therefore,
adopting genome analysis to explore wool traits is crucial for the
selection and development of this population. However, the ap-
plication of GP in the Alpine Merino sheep population is still at
the initial stage. According to the genomic information obtained
by SNP microarray, combined with the phenotypic dataset closely
related to wool traits, different methods can be used to conduct
GP research and comparing the results, including the genetic
effects of GP markers and GP methods for research. This has
made an important contribution to the application of GP in the
Alpine Merino sheep population.

In this study, two different densities of SNPs including low
(50 K) and high (630 K) were applied to estimate the genetic vari-
ance components of the Alpine Merino sheep datasets. Further,

based upon the SNP genotypes data, different models were
adopted for GP and cross-validated to compare the accuracy of
different GP methods. The main purpose of this study is to inves-
tigate the impact of different densities of SNP genotypes and dif-
ferent GP methods (Bayesian Alphabet and GBLUP) on the
accuracy and optimization methods of GP in Alpine Merino sheep
populations.

Materials and methods
Ethics statement
All animal work carried out in this study was performed per the
guidelines for the care and use of laboratory animals promul-
gated by the State Council of the People’s Republic of China. The
study was approved (License Number: 2019-008) by the Animal
Management and Ethics Committee of Lanzhou, Institute of
Animal Husbandry and Veterinary Sciences, Chinese Academy of
Agricultural Sciences.

Animal resources and phenotypic data
The original phenotypic dataset was obtained from the Sheep
Breeding Technology Extension Station of Gansu Province. These
datasets consisted of 11,500 individuals based on 7 different
herds with information such as region (herd), sex, and date of
birth. The individuals in this study included 821 Alpine Merino
sheep (563 ewes and 258 rams) from HuangCheng pasture in
Gansu Province, China, the pasture was under the jurisdiction of
the Gansu Sheep Breeding Technology Extension Station which
has a rigorously standardized system of breeding and manage-
ment, to ensure that all the individuals have uniform feeding and
management conditions. The average age of each individual with
phenotypic data was about 12–14 months. The wool traits in-
volved in this study were staple length (SL), clean fleece weight
rate (CFWR), average FD, coefficient of variation of average FD
(FD_CV), staple strength (SS), and fleece extension rate (FER). The
wool from individuals was collected and evaluated according to
the Agricultural Industry Standards of the People’s Republic of
China (NO. NY/T 1236-2006). Wool samples (�250–300 g) col-
lected from the abdomen of each individual, were weighed and
stored in ziplock bags (Xingdeli Packaging Material Company Ltd.,
Shenzhen, China). Within one week, the samples were sent to the
National Animal and Rural Ministry of Animal and Fur Quality
Supervision and Inspection Center (Lanzhou, China) for weighing,
screening, and quality identification of wool. Blood samples
(�5 ml) were also collected from each sheep from the jugular
vein and immediately transferred to the vacutainer blood collec-
tion tube (Yuli Medical Equipment Company Ltd., Jiangsu
Province, China). Blood samples were stored at �20�C for further
genotyping (Ma et al. 2019). The statistics used to estimate vari-
ance components and GP of each wool trait are presented in
Table 1.

Genotypic data and population structure
assessment
The customized Affymetrix HD 630K microarray was employed
as the datasets for the genotype of high-density SNP genotypes
(H-datasets) for the Alpine Merino sheep. The genotyping plat-
form for analysis was based on the array plate processing work-
flow of GeneTitan system (Santa Clara, CA, USA) from Thermo
Fisher (Affymetrix). The sites in the Illumina Ovine SNP 50K
microarray were screened out from the Affymetrix HD 630K mi-
croarray and used as the datasets of low-density SNP genotypes
(L-datasets). The H- and L-datasets were preprocessed using
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PLINK v1.9b4 software prior to the statistical analysis and vari-
ance component estimation (Purcell et al. 2007). The SNPs were
eliminated with call rate (geno) below 95%, minor allele fre-
quency (MAF) below 0.01, which seriously deviated from the
Hardy Weinberg Equilibrium with a P-value below 10E-6. Here,
the X, Y chromosomes and mitochondrial markers were excluded
from the analysis. Beagle software (version number; 12Jul19.0df)
was used to impute the sporadic missing alleles (Browing and
Browing 2009; Wang et al. 2019). After quality control and imputa-
tion, a total of 821 individuals with 460,656 autosomal SNPs were
retained for H-datasets, and 35,379 autosomal SNPs for L-data-
sets. In addition, based on the genotypic data, we adopted
TASSEL 5.2.43 software (Bradbury et al. 2007) to perform PCA
analysis on all the individuals involved in the study, then con-
structed and drew the principal component analysis plot.

Statistical methods for GP
We explored the application of SNP datasets of different densities
in genome evaluation and further compared the accuracy of GP
adopting 5 different models, including Bayesian Alphabet
(BayesA, BayesB, BayesCp, and Bayesian LASSO) and GBLUP. Six
wool traits from 821 samples were used to first, estimate the vari-
ance of each component, including the additive and residual vari-
ance; second, five different models were adopted to perform GP,
and its accuracy was compared via fivefold cross-validation, and
all these models were evaluated in SNP datasets of H- and L-data-
sets. Replicate measurements were not available for the individu-
als so that the effects of permanent environmental were not
modeled. The samples involved were from different herds and
sex. These factors altered the phenotype in a fixed pattern, and
hence the system environmental effects were added to the
framework.

The statistical methods of Bayesian Alphabet involved can be
written as:

y ¼ Xbþ
Xn

j

Zijaj þ e (1)

Here, y represents the corrected phenotypic value of individu-
als, Xb refers to a fixed term, and b contains a vector of three
effects, including herds, sex, and mean of population. Zij repre-
sents the genotype of individual i at site j, and aj represents the
effect value of site j, and therefore

Pn
j

Zijaj refers to the BV corre-
sponding to individual i, e to the vector of residual effects.
According to the method from Meuwissen et al. and Habier et al
(Meuwissen et al. 2001; Habier 2011), we adopted the R package
“BGLR” to estimate the effect of markers (Pérez and de los
Campos 2014). The hypothetical distribution of all markers’
effects in different Bayes methods and the formula of effect dis-
tribution are shown in Table 2.

The methods of GBLUP involved in this study correspond to a
linear model.

y ¼ Xbþ Zuþ e (2)

In Bayesian Alphabet model, in equation (2), y, b, e, and X rep-
resent the same parameters as those defined in equation (1), u is
the vector of individuals BV, Z is the design matrix corresponding
to the BV. The covariance matrix of additive effects is represented
by Var uð Þ ¼ Gr2

a, where G is the matrix of relationships between
individuals obtained from genomic information, calculated
according to the approach of VanRaden (VanRaden 2008; equa-
tion 3) and also implemented through the R package “BGLR”
(Pérez and de los Campos 2014).

G ¼ WaWT
a

2
Pm

f¼1 pf ð1� pf Þ
; (3)

where Wa represented the matrix of additive genetic effect
markers, with dimension of the number of individuals (n) by the
number of loci (m), and pf is the MAF value of locus f .

Accuracy of GP by K-fold cross-validation
Fivefold cross-validation was performed to compare the accuracy
of different methods of GP. During K-fold cross validation, the
population should be divided randomly (de los Campos et al.
2009). The datasets consisting of 821 individuals were divided
into five approximately equally sized subgroups (each subgroup
contained around 165 individuals). For fivefold cross-validation,
four subgroups which retain the phenotype and genotype, were
regarded as training population (reference population) to esti-
mate the parameters. The remaining subgroup that is, candidate
population was used to verify the samples, and correspondingly,
the phenotype of this group of samples was set as missing (Not
applicable, NA).

GP accuracy is represented by the Pearson Correlation
Coefficient between GEBV and the corrected phenotypic value
(y�) (Waldmann 2019). It calculates the correlation between two
continuous variables, and the result is between [�1,1], where
Cov GEBV; y�ð Þ represents the covariance of GEBV and y�,
VarðGEBVÞ and Var y�ð Þ represent the variance of GEBV and cor-
rected phenotypic value, respectively. The larger the value of
Correlation Coefficient, the higher the accuracy of prediction.

COR GEBV; y�ð Þ ¼ Cov GEBV; y�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðGEBVÞ � Var y�ð Þ

p (4)

According to the above mentioned five models, the cross-
validation was performed based on two types of genotypic data
(H- and L-datasets), with different densities and the BVs of the
validation group (candidate population) were predicted. In

Table 1 Descriptive statistics of phenotypic values of traits

Trait Abbreviation SE Mean 6 SD Numbers

Clean fleece weight rate (%) CFWR 0.25 63.58 6 7.10 817
Staple strength (N/ktex) SS 0.28 33.81 6 7.98 813
Fleece extension rate (%) FER 0.18 19.67 6 5.07 811
Mean fiber diameter (mm) FD 0.07 20.81 6 2.11 811
Coefficient of variation of FD FD_CV 0.11 20.22 6 3.26 816
Staple length (mm) SL 0.46 90.63 6 13.16 812

SE, standard error; SD, standard deviation.
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addition, the above cross-validation was performed in triplicates

in order to ensure the randomness of individuals in the validation

group. Finally, the GP accuracy values were calculated for each

validation, averaged, and then recorded as the final accuracy.

Data availability
Genotype and phenotype data are available, they could be

obtained at Figshare (https://figshare.com/projects/Evaluation_

about_GP_for_821_AMS/112614). The script adopted in this study

can be obtained on GitHub (https://github.com/gdlc/BGLR-R).

Results
Phenotypic statistics and genotypic
characteristics
A total of six wool traits were collected and the descriptive sta-

tistics of individual wool phenotype data were presented in

Table 1, including the abbreviation of each trait, the corre-

sponding standard error (SE), the average value (represented by

mean 6 SD), and the number of individuals that were effec-

tively recorded (Numbers). For the wool traits, the SD ranged

from 2.11 (FD) to 13.16 (SL), and the SE ranged from 0.07 (FD) to

0.46 (SL). In addition, the structure of the population is drawn

based on the top three eigenvectors using principal component

1 (PC1), 2 (PC2), and 3 (PC3), the PCA plot (Supplementary

Figure S1) showed that only a few of individuals have popula-

tion stratification, it suggested that population structure has

good homogeneity.

The polygenic heritability and the GP accuracy
Estimate the phenotypic variation and additive variation of the

six wool traits based on the L- and H-datasets, and calculates the

heritability (h2) of each trait based on the ratio of the additive var-

iance to the total phenotypic variance (Va/Vp). For L-datasets,

heritability ranged from 0.37 (FER) to 0.70 (SL); and for H-datasets,

heritability ranged from 0.29 (FER) to 0.68 (SL). The estimated

results of heritability (expressed as the proportion of additive var-

iance in phenotypic variance) shown in Table 3, states that SL

was the highest and the FER was the lowest irrespective of the L-

or H-datasets. Moreover, the heritability estimated by L-datasets

was slightly higher than that of H-datasets for these six wool

traits.
The GP accuracy was calculated using five methods based on

two marker density datasets (Table 4). For L-datasets, the GP ac-

curacy of SL was the highest (0.59 for Bayesian LASSO model);

and the GP accuracy of FER was the lowest (0.28 for BayesA

model). Correspondingly, for H-datasets, the trait with the high-

est GP accuracy was also SL (0.58 for BayesA, BayesB, and

Bayesian LASSO model), and the trait with the lowest GP accu-
racy was FER (0.31 for BayesA model; Figures 1 and 2) .

Discussion
Genomic information and individual relationship
matrix
The analyses involved in this study are all based on genomic in-
formation obtained from genotyping through microarrays, GP
has replaced the traditional phenotype and pedigree information
with the dense markers, providing a new method to estimate ge-
netic variance, which improves the accuracy of prediction and se-
lection (Daetwyler et al. 2012). Genomic information is not only
suitable for a population with pedigree information, but can also
be applied to populations without pedigree information or incor-
rect, incomplete and even missing genealogical records (Visscher
et al. 2010; Yang et al. 2010), and this is also the main reason for
adopting GBLUP model in this study. Due to the lack of pedigree
information in the population involved in this study, in order to
ensure the reliability of the estimation of individual relationship
matrix, we have performed microarray genotyping for all individ-
uals and constructed a G matrix, but did not adopted single-step
method (SS-BLUP) to construct H matrix (Guo et al. 2015), which
will be more conducive to the subsequent heritability and GEBV
estimation accuracy. In the GBLUP model, the traditional individ-
ual relationship matrix A constructed by pedigree was replaced
by the genome matrix G, which represents the relationship be-
tween individuals more accurately, as it is based on a dense
genome-wide markers. More importantly, this may capture the

Table 2 Different GS methods and effects distribution in this study

Method Assumed distribution of effect Formula of effect distribution

GBLUP Normal bi � Nð0;r2
j Þ

BayesA t bi � tð0; m;r2
j Þ

BayesB Point-t
bi ¼ 0 with probability p

bi � v�2 m; Sð Þ with probability ð1� pÞ

�

BayesCp t mixture bi � pt 0; m;r2
j

� �
þ ð1� pÞ tð0; m; 0:01r2

j Þ

Bayesian LASSO Double exponential or Laplace bi � DEð0; hÞ

Table 3 Estimates of additive and residual components of
variance obtained under GBLUP methodology using BGLR
package for different datasets

Traits Dataset type r2
a ðSE) h2 ðSE)a r2

e ðSE)

CFWR L-Datasets 26.47 (0.33) 0.56 (0.01) 20.77 (0.24)
H-Datasets 23.04 (0.26) 0.46 (0.01) 27.06 (0.25)

SS L-Datasets 28.64 (0.42) 0.46 (0.01) 33.46 (0.35)
H-Datasets 23.20 (0.43) 0.35 (0.01) 42.53 (0.38)

FER L-Datasets 9.04 (0.17) 0.37 (0.02) 16.75 (0.16)
H-Datasets 7.57 (0.18) 0.29 (0.01) 18.77 (0.18)

FD L-Datasets 1.91 (0.03) 0.45 (0.02) 2.26 (0.02)
H-Datasets 2.04 (0.03) 0.44 (0.01) 2.46 (0.02)

FD_CV L-Datasets 5.46 (0.06) 0.56 (0.01) 4.13 (0.05)
H-Datasets 5.75 (0.08) 0.55 (0.01) 4.65 (0.06)

SL L-Datasets 89.63 (0.72) 0.70 (0.01) 37.73 (0.55)
H-Datasets 106.99 (0.86) 0.68 (0.01) 50.64 (0.76)

CFWR, clean fleece weight rate; SS, staple strength; FER, fleece extension rate;
FD, mean FD; FD_CV, coefficient of variation of FD; SL, staple length

a Polygenic heritability, the proportion of the additive effect variance to the
total phenotypic variance.
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Table 4 Comparison of prediction accuracies of six traits based on two datasets via five models

Traita Prediction Accuracyb

Modelc BA BB BC BL GB

Dataset L H L H L H L H L H

CFWR 0.47 (0.01) 0.47 (0.03) 0.48 (0.02) 0.49 (0.02) 0.52 (0.01) 0.50 (0.03) 0.51 (0.02) 0.51 (0.03) 0.52 (0.01) 0.53 (0.02)
SS 0.33 (0.01) 0.34 (0.01) 0.31 (0.02) 0.32 (0.03) 0.32 (0.02) 0.33 (0.02) 0.29 (0.02) 0.33 (0.04) 0.35 (0.03) 0.35 (0.02)
FER 0.28 (0.01) 0.31 (0.03) 0.30 (0.03) 0.32 (0.02) 0.32 (0.01) 0.33 (0.03) 0.32 (0.01) 0.34 (0.02) 0.34 (0.01) 0.36 (0.01)
FD 0.49 (0.01) 0.48 (0.04) 0.44 (0.02) 0.45 (0.06) 0.44 (0.02) 0.44 (0.04) 0.56 (0.01) 0.53 (0.01) 0.52 (0.02) 0.53 (0.01)
FD_CV 0.45 (0.02) 0.45 (0.03) 0.52 (0.01) 0.53 (0.00) 0.47 (0.02) 0.48 (0.02) 0.50 (0.02) 0.52 (0.01) 0.51 (0.01) 0.55 (0.02)
SL 0.59 (0.02) 0.58 (0.01) 0.60 (0.01) 0.58 (0.01) 0.59 (0.01) 0.53 (0.02) 0.59 (0.02) 0.58 (0.02) 0.60 (0.03) 0.57 (0.02)

a Abbreviations of traits explained in Table 3
b SE are in parenthesis
c BA, BayesA; BB, BayesB; BC, BayesCp; BL, Bayesian LASSO; GB, genomic best linear unbiased prediction, GBLUP.

Figure 1 Comparison of GP accuracy based on different density genotype datasets. The six traits were CFWR, SS, FER, mean FD, FD_CV, and SL.

Figure 2 GP accuracy of five models in different heritability level. On the left is the result for the H-datasets, and on the right is the result for the
L-datasets. The six traits were CFWR, SS, FER, mean FD, FD_CV, and SL. The five models were: BayesA (BA); BayesB (BB); BayesCp (BC); Bayesian LASSO
(BL); and GBLUP (GB).
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genetic connections from unknown common ancestors, because
it represents confirmed gene sharing, and has advantages over
presumed or conceptualized ancestral sharing (Su et al. 2012). In
GBLUP model, it was assumed that each SNP has an effect, and
the cumulative effect of SNPs obey a normal distribution (de los
Campos et al. 2009), the assumption might only be applicable to
certain specific groups or traits. According to the hypothesis of
Habier et al. (2011), for some traits, only a few markers have a
larger effect, while most markers have little or no effect (Liu et al.
2018). Therefore, GBLUP may not be suitable for such trait, in
other words, the GP accuracy of GBLUP will be lower than other
models, like the FD trait this study, the GP accuracy (0.56 based
on L-datasets) of the Bayesian LASSO model was higher than that
(0.52 based on L-datasets) of the GBLUP model. From the above
results, GBLUP may not be applicable to FD traits and its predic-
tive ability may not achieve satisfactory results. Hence, it is nec-
essary to adopt different GP models. In the Bayesian Alphabet
method, models such as BayesB and BayesCp assume that most
of the SNPs in the genome are located in regions without quanti-
tative trait locus (QTL) and have no effect (Park and Casella
2008). whereas a small number of other SNPs existed in linkage
disequilibrium (LD) together with QTL, and accounts for most of
the effect (de los campos et al. 2009; Hayes et al. 2009). According
to reports, different Bayesian Alphabet methods put forward a
variety of prior hypotheses on the distribution of SNP effects
(Table 2; de los campos et al. 2009). In this study, in addition to
the GBLUP method, four typical Bayesian Alphabet methods
(BayesA, BayesB, BayesCp, and Bayesian LASSO) were also used
to compare the GP accuracy of the six wool traits.

In most cases, GP suffers limitations while adopting the high-
or low-density SNP genomic information, i.e., the number of
marker effects that need to be estimated is often greater than the
number of individuals to be recorded. In this study, both the L-
and the H-datasets showed that the number (35,379 and 460,656)
of markers was much larger than the number (821) of individuals.
Although many advanced statistical methods (Erbe et al. 2012;
Cheng et al. 2018) have been proposed to overcome this challenge,
the true distribution of QTL and SNP effects were unclear for
many quantitative traits (de Los Campos et al. 2009). Moreover, in
contrast to L-datasets, the H-datasets microarrays contain more
genomic information, but it also involves more complex matrices
and larger computation, which will undoubtedly increase the
cost of time and economy (Hayes et al. 2009).

Phenotypic statistics and estimation of
heritability
In this study, the collected phenotypic statistics of wool traits
were compared with the results in previous reports: Moghaddar
et al. collected 3000–8000 phenotypic records of various wool
traits from different breeds of sheep in 2014, including the Poll
Dorset, White Suffolk, and Border Leicester. In their report, the
statistical mean values of FD and FD_CV were 19.93 6 5.39 and
19.26 6 2.86 (mean 6 SD), respectively. The statistical mean of SS
and SL was 33.82 6 9.82, 80.93 6 13.06, respectively (Moghaddar
et al. 2014). In addition, according to the study by Hamadani et al.
(2019) on Rambouillet sheep, where they collected and recorded
the wool traits of 4108 samples from 1998 to 2007, the statistical
mean value of FD and SL was 21.26 6 0.03 (mean 6 SE),
56.1 6 0.05, respectively. The above comparison showed that the
phenotypic statistics of this study were consistent with the ear-
lier studies. It could be suggested that although the number of
phenotypes collected in this study was not as large as their study

(over 3000 individuals), the statistical values of phenotype mea-
surement were still reliable.

The additive and residual variance, and the heritability of the
six wool traits of the Alpine Merino sheep population were esti-
mated, and we compared with previous studies in order to ensure
the rationality of the estimation results. Daetwyler et al. (2010)
and Moghaddar et al. (2014) conducted the genetic parameter es-
timation and GP studies based on pedigree information, the study
involves multiple sheep breeds including Merino, Border
Leicester, and White Suffolk. The results showed that estimated
heritabilities of SS and SL were in the range from 0.37 to 0.55 and
0.56 to 0.67, respectively, and the estimated heritabilities of FD
and FD_CV were between 0.62–0.75 and 0.47–0.57, respectively;
Fogarty (1995) and Safari et al. (2005) collected and summarized
the genetic parameters of nine wool traits. Their results showed
that the estimated heritabilities of SS, SL, CFWR, FD, FD_CV were
0.34, 0.46–0.48, 0.34–0.51, 0.51–0.59, and 0.52, respectively; In ad-
dition, Bolormaa et al. (2017) conducted GP and genome-wide as-
sociation study in Australian Merino sheep population based on
SNP data. In their study, a total of 22 wool traits were collected,
the estimation results of genetic parameters showed that the es-
timated heritabilities of SL and SS were 0.62 and 0.38, respec-
tively; and the estimated heritabilities of FD and FD_CV were 0.84
and 0.60, respectively (Bolormaa et al. 2017). Moreover, according
to the variance components estimation results of the H and L-
datasets, the estimation results of FD and FD_CV were more con-
sistent, and the results of other traits showed that the residual
variance of the H-dataset was higher, it suggest that the high-
density microarray data contained more sites, which brought
more marker information and the number of QTLs (Ala Noshahr
et al. 2017), leading to a more detailed division of genetic variance.
However, in this study, except for the slightly lower estimated
value of FD (0.42–0.47), the other four wool traits (Table 3) were
close to the results reported in the previous literature, especially
for the SS (0.33–0.46) and FD_CV (0.55–0.56) were very close to
them. The comparison with the previous studies suggested that
the heritability results estimated from the Alpine Merino dataset
in this study were reliable.

GP results and accuracy of prediction
In order for GS to be effectively applied to the breeding programs
of livestock populations, it is necessary to fulfill a prediction
study to deeply understand the factors that affect the prediction
accuracy of the datasets before actual population selection,
which is especially important for local breeds such as Alpine
Merino sheep. Therefore, we collected 821 samples from the
breeding program to investigate the influence and interaction of
marker density and GP on the accuracy of prediction. Previous
studies suggested that the density of markers has an essential
impact on the accuracy of GP (Calus et al. 2008; Boustan et al.
2013). Solberg et al. (2008) adopted simulation to analyze the cor-
relation between accuracy and marker density, their results
showed that increasing the density of SNPs from 1 to 8/centimor-
gan (cM) could improve the accuracy of GP by 25% (Solberg et al.
2008), but this did not mean that the accuracy could always im-
prove with the increase of marker density, in other words, there
is a limit to this improvement. Heffner et al. (2011a, 2011b) con-
ducted a study using a wheat dataset and showed that with the
increased density from 192 to 1158 markers, the accuracy of GP
could be improved by 10%. However, when the marker density in-
creased from 192 to 384, it caused only a small increase in accu-
racy (Heffner et al. 2011a, 2011b). Most of the 10% improvement
mentioned above occurred in the interval from 192 to 384
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markers, and the increase of the remaining markers did not sig-
nificantly affect the accuracy. These results indicate that marker
density has a positive effect on the accuracy of GP, while the re-
sponse of accuracy to density will eventually stabilize (de Los
Campos et al. 2013).

Herein, we adopted the genome datasets based on the level of
50K and 630K microarray, respectively. Table 1 shows that with
the marker density increases, the improved accuracy of GP for
most traits, especially in SS and FER, model Bayesian LASSO and
BayesA increased by 12% and 11%, respectively, whereas in other
traits the accuracy was not significantly improved, such as CFWR
and FD_CV, the accuracy of GBLUP and BayesB increased only by
1%; SS and FER benefited more from the increase in marker den-
sity than other traits, which could be explained by the fact that
quantitative genetic characteristics require more markers to ac-
curately estimate their many small effects of QTL (Zhang et al.
2015). Interestingly, there are exceptions in this study, for some
traits, the accuracy may even decrease: in FD trait, the accuracy
of BayesA and Bayesian LASSO models were reduced by 3% and
5%, respectively. Two reasons that may explain why increasing
number of markers on each chromosome led to a decrease in GP
accuracy. First, the number of markers in the microarray is much
larger than the number of samples, which may be due to exces-
sively high density of markers leading to the model overfitting
(Heslot et al. 2012). Second, the increases in the number of
markers will lead to the addition of more unknown variables
(marker effects) and a lack of accurate estimation. The study
from Fatemeh Ala Noshahr et al. (2017) also showed that with the
number of SNPs increased from 2000 to 3000, both BayesA and
GBLUP model indicated a decrease in the accuracy of GP. Our
results suggest that increasing the density of markers could in-
deed improve the GP accuracy, but it is closely related to the trait
itself. For traits with low heritability levels (FER and SS), a small
part of the phenotypic variation was explained by additive effects
(Medeiros et al. 2016), and the increase of marker density may im-
prove the accuracy of GP more obviously; correspondingly, for
those traits with high heritability levels (CFWR and FD), increas-
ing the marker density has little benefit on the GP accuracy,
sometimes it even has a negative impact on accuracy.

Among the six wool traits studied here, SL and FD_CV had the
highest heritability (h2 ¼ 0.53 and ¼ 0.58, respectively), and their
corresponding accuracy of GP was also the highest, which ranged
from 0.53–0.60 to 0.45–0.55, respectively. While for two traits with
the lowest heritability, SS (h2 ¼ 0.33) and FER (h2 ¼ 0.28), the ac-
curacy was 0.29–0.38 and 0.28–0.36, respectively, which was
lower than SL and FD_CV. For those traits with lower heritability,
the correlation between phenotypic value and genetic value will
be lower, the effect value of markers distributed across the ge-
nome may be estimated with lower accuracy (Habier 2011), it
suggested that higher heritability has a positive effect on the ac-
curacy of GP. Bolormaa et al. (2013) also reported that the predic-
tion of the trait with the highest heritability was more accurate
(Bolormaa et al. 2013), and also several studies have shown that
the accuracy of GP increases with the improved heritability
(Daetwyler et al. 2008, 2010), the results of this study agreed with
them. In addition, we found that for traits with low heritability,
GBLUP had a better prediction effect, whether it is adopting L- or
H-datasets, but with the increase of heritability, the advantage of
GBLUP is not obvious. From Table 4, it could be observed that for
the trait SL with high heritability, the estimation accuracy of
BayesB (0.58–0.60) and Bayesian LASSO (0.58–0.59) models per-
formed better, this may indicate that for some traits with high
heritability, BayesB and Bayesian LASSO assumes more

reasonable distribution in marker effect, which leads to higher

prediction accuracy. Similar results were obtained in the study of

Honarvar and his coworkers, based on simulation data of three

different levels of heritability, they compared the accuracy of the

RRBLUP and Bayesian-LASSO models, and the results showed

that the GP accuracy of the Bayesian-LASSO model is higher than

that of the RRBLUP model for these traits, but the former has a

more obvious advantage in traits with high heritability (Honarvar

2013), and it should be noted that GBLUP was equivalent to

RRBLUP. In addition, the accuracy of GP was also related to the

size and structure of the reference group (Heffner et al. 2011a,

2011b; Dreisigacker et al. 2014). We will collect and organize a

larger dataset in future and try to take the above factors into con-

sideration in subsequent studies for better conclusive results.

Conclusions
To summarize, this study was based on two different densities of

microarray genotyping data (50K and 630K), adopting Bayesian

Alphabet (including BayesA, BayesB, BayesCp, and Bayesian LASSO)

and GBLUP model to perform the GP. The heritability of six wool

traits of Alpine Merino sheep was estimated, and the accuracy of the

BVs prediction of these traits under different conditions was evalu-

ated through fivefold cross-validation. To the best of our knowledge,

this was the first study of optimization of GP which has been applied

to the domesticated Alpine Merino sheep populations. We have ob-

served that for traits with low heritability (SS and FER), increasing

the density of markers could improves the GP accuracy, but it has

little impact on traits with high heritability (SL), and even decreases

the accuracy (FD). The accuracy of the GBLUP model is generally

higher than that of the Bayesian Alphabet model for SS and FER,

while with the improvement of heritability, the advantage of GBLUP

is no longer obvious. Therefore, from this study, we conclude that

different GP models are applicable to different traits: GBLUP is more

suitable for traits with lower heritability (FER and SS), and for

Bayesian Alphabet, especially BayesB and Bayesian LASSO, have bet-

ter GP effects for traits with high heritability (FD and SL).
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