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Simple Summary: Feathers contain around 90% of keratin which compose of unbalanced amino
acids with low digestibility and limiting the usage in monogastric animal diets. To improve the
nutrient value of feather through fermentation using keratinase-producing microbes pose a high
economic potential. This study investigates the effects of two-stage fermented feather-soybean meal
product (TSFP) on growth performance, blood characteristics, and immunity of finishing pigs. In
growth performance, 2.5–5% TSFP promotes the average daily feed intake and feed conversion rate
with a best performance of 5%. In blood characteristics, 5% TSFP increased HDL-C, and decreased
LDL-C and blood urea nitrogen content. In immunity, 5% TSFP increased lymphoblastogenesis
stimulated by lipopolysaccharide and concanavalin A, and promoting IFN-γ, IgA productions, and
phagocytic cells oxygen burst capacity. It appears that TSFP improves the growth performance and
immunity of finishing pigs.

Abstract: This study investigates the effects of two-stage fermented feather meal-soybean meal
product (TSFP) on growth performance, blood characteristics, and immunity of finishing pigs. Firstly,
feather meal-soybean meal is subjected to aerobic fermentation with Bacillus subtilis var. natto N21,
B. subtilis Da2 and Da15, B. amyloliquefaciens Da6, Da16 for two days, and anaerobic fermentation with
B. coagulans L12 for three days. Then, the fermented product is air-dried into an end product—TSFP.
Eighty hybrid pigs (Duroc x KHAPS) with equal numbers of both sexes are randomly assigned into
3% fish meal, 0%, 2.5%, or 5.0% TSFP groups with five replicates per group. Our results show that the
average daily feed intake and feed conversion rate of TSFP groups are significantly better than the
other groups at 0–3 weeks (p < 0.05). The 5% TSFP group significantly increased HDL-C in the blood
(p < 0.05), and decreased LDL-C and blood urea nitrogen content (p < 0.05). The lipopolysaccharide
(LPS) and concanavalin A (ConA) in 5% TSFP group and interferon-γ (IFN-γ) content in 2.5% and
5% TSFP groups are significantly higher than the other groups (p < 0.05). The phagocytic oxygen
burst capacity and serum IgA content of the 5% TSFP group are significantly higher than those of
the fishmeal group (p < 0.05). The CD3, CD4, and CD4 + CD8 + T cells subsets in 2.5% and 5% TSFP
groups are significantly higher than the control group (p < 0.05). In conclusion, TSFP has a positive
effect on the growth performance and immunity of finishing pigs with the best performance on
5% TSFP.

Keywords: finishing pig; growth performance; immunity; blood biochemicals; feather meal; fermen-
tation; probiotics
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1. Introduction

Feathers contain up to 85% of crude protein (CP) with primarily (around 90%) ker-
atin which enriched disulfide bond and hydrophobic properties with unbalanced amino
acid composition impacted on digestibility [1–6]; therefore, limiting usage of feathers in
monogastric animal diets. Pressurized cooking processing to hydrolyzed feather meal
is the primary processing method currently. The process has often resulted in denature
and loss of available amino acids and further impact its nutritional value for monogastric
animals [5,6]. It, therefore, has been recommended to limit the use of feather meal to a
maximum of 5% in growing pig diets [7].

Process feather meal using microbial fermentation not only promotes the nutritional
value of matrix by decreasing anti-nutritional factors and degrading complex proteins
and carbohydrates [8–10], but also improves feed palatability and preservation period;
hence, it has been widely adopted in animal feed for many years [11–13]. Moreover,
Nudda et al. (2019) have reported that to use of agriculture by-products in animal health
promotion, reduction of agri-waste are important strategies in sustainable agriculture [14].
However, fermentation in feather meal for pig feeds is relatively rare and not available
in the literature. Some of our previous studies reported that using keratinase-producing
microbes can improve the value of feather meal to be similar to soybean meal [15–17].

Our previous broilers study has reported that the complete poultry feed ration under
the first stage 2-days aerobic fermentation with Bacillus subtilis var. natto N21 (N21) and
second stage 3-days anaerobic fermentation with Bacillus coagulans L12 (L12) fed chicken
had significantly improved growth performance as compared with the control group on
the unfermented feed [18]. In a pig study, Huang et al. (2014) mixed feather meal and
soybean meal at a ratio of 2:3 to as fermentation substrate, and using the same method as
Yeh et al. (2018) to produce a two-stage fermented product [18,19]. Adding 5% two-stage
fermented product in growing pigs feed, which affects promoting growth performance,
and completely replaces high-quality fish meal [19].

N21 is mainly used to decompose plant protein. In addition to the N21 originally
selected for plant protein sources, the selected keratinase producing Bacillus subtilis strains
Da2 (Da2), Da15 (Da15), and Bacillus amyloliquefaciens strains Da6 (Da6), Da16 (Da16)
were serially composed together into a bacterial mixture of five-Bacillus strains for a first
stage production. The purpose of this study was to examine the effects of feather under
hydrolysis and keratinase activity of the Bacillus-mixture fermentation in the first stage
production. Secondly, to investigate the effects of two-stage mixed fermented products
of feather-soybean meal on growth performance, blood characteristics, and immunity of
finishing pigs.

2. Materials and Methods
2.1. Feathers Degradability

Adding 50 mL TSB medium (Tryptone Soya Broth, HIMEDIA®, Shenzhen, China)
and 3% feathers into a 250 mL flat-bottomed Erlenmeyer flask. After sterilization (121 ◦C,
20 min), inoculate 0%, 5% Bacillus subtilis var. natto N21 (N21) and mixed strains culture
(N21, B. subtilis Da2 (Da2) and Da15 (Da15), B. amyloliquefaciens Da6 (Da6), Da16 (Da16))
(109 cfu/mL), and incubate at 37 ◦C, 100 rpm, for 0, 24, 48 and 72 h. The hydrolysate was
passed through a filter paper (No. 1 filter paper, ADVANTEC®, Tokyo, Japan) to remove
unhydrolyzed feathers at different times. The feather degradability was calculated using
the following formula:

Feather degradation rate (%) = (A − B − C)/A × 100 (1)

where A is the dry weight of the feathers before degradation, B is the dry weight of the
feathers and filter after degradation, and C is the dry weight of the filter.
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2.2. Keratinolytic Activity Assay

The extracted culture broth was filtered with a 0.2 µm Analytical filter funnel
(NALGENE®, Shanghai, China). Mixed 700 µL of the filtrate with 6.3 mL of 10 mM
acetate buffer (pH 5.5) and used ultra-concentrated centrifuge tube (Amicon Ultra-15 Cen-
trifugal Filter Units, 10 kDa, Millipore) to concentrate at 3500× g for 30 min. The filtrate
was concentrated to a volume of 250 µL, and diluted 4-fold into an enzyme solution (ES).
Mix 70 µL of the substrate solution (2.1 mg Azokeratin + 14 µL 0.5 M phosphate buffer +
56 µL of 2D water) with 40 µL of ES. The reaction was incubated at 50 ◦C for 60 min. The
reaction was terminated by adding 25 µL of 4 M NaOH and was centrifuged at 8000× g
for 20 min; then, 100 µL of the supernatant was added to the wells of the ELISA plate
sequentially, and the absorbance at 450 nm was measured. Using 200 µL of 1N NaOH
solution as blank, and the enzyme activity was calculated using the following Formula (2):

Keratinolytic activity (U/mL) = (OD − Blank)/(Reaction time × 0.001) × concentrated fold (2)

2.3. Two-Stage Fermented Product (TSFP) Preparation

The TSFP preparation and analysis followed the description of Yeh et al. [18] with a
minor modification. Da2, Da6, Da15, Da16, and N21, having strong protein decomposition
ability, were used as the first-stage fermentation strains, and then B. coagulans L12 (L12) with
strong acid-producing ability was added as the second-stage fermentation strain. Mixed
soybean meal and feather meal at a ratio of 1:1 was supplied as fermentation substrate.
The substrate was sterilized at 121 ◦C for 30 min, and cooled it down to 45 ◦C. Each
of five Bacillus strains at 106 CFU/g of substrate was premixed and inoculated together
with 50% w/w sterilized water to ferment aerobically at 37 ◦C for 2 days at the first stage;
subsequently, the L12 at 106 CFU/g of the substrate was added to ferment anaerobically at
28 ◦C for additional 5 days at the second stage. The fermented product was dried using an
oven. The moisture content of the final product (TSFP) was below 12%, and 3 batches were
produced for the current study.

2.4. Animal Management and Experimental Design

All the procedures used in this experiment were approved by the Institutional Animal
Care and Use Committee of Kaohsiung Animal Propagation Station (IACUC, protocol
number 101005). Eighty hybrid pigs (Duroc x KHAPS) [20] with equal numbers of both
sexes were randomly assigned into 3% fish meal, 0% (as control), 2.5% or 5.0% TSFP groups.
Each treatment had 5 replicates. The experimental period was 9 weeks. The hybrid pigs
were raised in floor pens (3.84 m × 2.56 m) during the entire experiment. Proximate feed
analysis and amino acid analyses followed the description of Yeh et al. [18] to analyze
the moisture, crude protein, calcium, phosphorus, lysine, and methionine of feed. Feed
composition is shown in Table 1. Feed and water were provided ad libitum throughout
the experimental period. Bodyweight and feed intake were recorded and monitored the
weight gain and feed conversion weekly throughout the experiment.
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Table 1. Composition of experiment diets (as-fed basis).

Ingredient, % 3% Fish Meal
TSFP, %

0 2.5 5

Corn meal 76.44 73.84 74.95 75.71
Soybean meal, 44% 17.96 22.84 18.98 15.50

Fish meal (Peru), 65% 3.00 0.00 0.00 0.00
TSFP, 62% 0.00 0.00 2.50 5.00

Ground limestone 0.85 0.90 0.90 0.90
Dicalcium phosphate 0.64 1.00 1.04 1.05

Soybean oil 0.56 0.82 0.98 1.14
Salt 0.25 0.25 0.25 0.25

Choline chloride 50% 0.10 0.10 0.10 0.10
L-Lys·HCl (78%) 0.00 0.02 0.07 0.11

DL-Met 0.00 0.03 0.03 0.04
Vitamin premix 1 0.10 0.10 0.10 0.10

Micromineral premix 2 0.10 0.10 0.10 0.10
Total 100.0 100.0 100.0 100.0

Analysis
CP, % 15.39 15.56 15.57 15.52
Ca, % 0.63 0.66 0.67 0.67

Total P, % 0.49 0.51 0.51 0.52
Lys, % 0.81 0.85 0.85 0.84
Met, % 0.30 0.31 0.32 0.32

1 Vitamin supplied the following per kilogram of premix: Vitamin A, 5000 IU; vitamin D3, 1500 IU; vitamin E,
40 mg; vitamin K, 3 mg; vitamin B1, 2.6 mg; vitamin B12, 0.04 mg; niacin, 35 mg; pantothenic acid, 23 mg. 2 Mineral
supplied the following per kilogram of premix: Fe (FeSO4·7H2O, 20.09% of Fe), 217 mg; Cu (CuSO4·5H2O, 25.45%
of Cu), 125 mg; Mn (MnSO4·H2O, 32.49% of Mn), 40 mg; Zn (ZnSO4, 80.35% of Zn), 110 mg; Se (NaSeO3, 45.56%
of Se), 0.36 mg; Co (CoSO4·H2O, 32% of Co), 0.7 mg.

2.5. Hematology and Blood Biochemistry

At the end of the experiment, blood samples were obtained from the jugular vein
with an EDTA vacutainer (BD VacutainerTM, Avenue Broken Bow, NE, USA). The blood
samples were stored at 4 ◦C until ready for analysis. The hematology, including white
blood cells (WBC), neutrophils (NE), lymphocytes (LY), monocytes (MO), eosinophils
(EO), basophils (BA), red blood cells (RBC), hemoglobin (Hb), hematocrit (Hct), mean
corpuscle volume (MCV), mean red blood cell hemoglobin (MCH), mean red blood cell
hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet count
(PLT), and mean platelet volume (MPV), was determined using an automatic hematological
analyzer (HEMAVET, USA). Plasma was obtained by centrifugation at 2500× g for 30 min
at 4 ◦C and stored at −20 ◦C for later determination of the blood biochemistry. The
blood biochemistry of the plasma, including total protein (TP), cholesterol (CHOL), high-
density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C),
glucose (GLU), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline
phosphatase (ALP) and blood urea nitrogen (BUN), was determined using a Blood Analyzer
(Express Plus, Bayer, MA, USA). The total cholesterol (CHOL), high-density lipoprotein-
cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) determinations
used the method of Rifai et al. [21]. The serum glucose was estimated by the oxidase
method reported by a previous study [22]. The serum urea was assayed by the method of
Tomas et al. [23], and serum AST and ALT were assayed using the method of Moss and
Henderson [24].

2.6. Blood Immunoglobulin Level

Total porcine immunoglobulin was determined in the serum as previously described
by Mizumachi et al. [25]. The jugular blood was collected in an EDTA vacutainer tube and
then centrifuged at 10,000× g for 2 min after clotting and stored individually at −80 ◦C.
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The serum antibodies containing immunoglobulin M (IgM), immunoglobulin G (IgG), and
immunoglobulin A (IgA) were measured by a sandwich enzyme-linked immunosorbent
assay (ELISA). Briefly, microtiter plate wells (Maxisorp; Nunc, Roskilde, Denmark) were
coated overnight at 4 ◦C with goat anti-porcine IgM, IgG, or IgA (Bethyl Laboratories,
Montgomery, TX, USA). The coated wells were washed with phosphate-buffered saline
(PBS) containing 0.05% Tween 20 (PBST) and blocked with 1% bovine serum albumin (BSA)
in PBS for 30 min. After washing with PBST, the properly diluted samples were added
and incubated for 2 h at room temperature (RT). Subsequently, the wells were treated with
horseradish peroxidase-conjugated goat anti-porcine IgM, IgG, or IgA (Bethyl Laboratories,
USA) for 1 h at RT. The wells were washed, and a 3,3′,5,5′-tetramethylbenzidine (TMB)
solution (KPL, Gaithersburg, MD, USA) was added to each well as a substrate. After
30 min of incubation at RT, the reaction was stopped by adding 1 M dihydrogen phosphate
(H2PO3). The absorbance was measured at 450 nm using a microplate reader (Original
multi scan, Thermo, Waltham, MA, USA).

2.7. Cytokine Production

Determination of cytokine production in whole blood was described by Edfors-
Lilja et al. [26]. Heparinized whole blood was diluted to 1:50 for the detection of interferon-γ
(IFN-γ) by the culture medium (Roswell Park Memorial Institute-1640; RPMI-1640) con-
taining 50 µM 2-mercaptoethanol, 10 Mm 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid (HEPES), 10 U/mL penicillin and 100 µg/mL streptomycin. The diluted whole blood
samples were seeded into 24-well plates and cultured in a humid incubator. The incu-
bator was maintained at 37 ◦C and 5% CO2 gas. The culture supernatant was collected
after 72 h for determination of IFN-γ. The cytokine levels were determined by commer-
cial ELISA reagents (R&D Systems, Minneapolis, MN, USA and IFN-γ; PharMingen, San
Diego, CA, USA) according to the manufacturer’s procedures. Color changes were detected
at OD = 450 nm and 550 nm with a microplate reader (Multiskan Ex Microplate Reader,
Thermo, Waltham, MA, USA).

2.8. Isolation of Peripheral Blood Mononuclear Cells and Granulocytes

The jugular blood collected in the EDTA tube was centrifuged at 400× g for 10 min at
4 ◦C, and the plasma was then removed for the later assays. The cell portion was diluted
with RPMI-1640 (1:2) and layered onto Ficoll (Histopaque-1077, Sigma-Aldrich, St. Louis,
MO, USA) for the density gradient separation. After 30 min, the samples were centrifuged
at 450 × g at room temperature, and the peripheral blood mononuclear cells (PBMCs) were
collected. After a wash with cold PBS, the cells were subjected to a live/dead count by
a trypan blue exclusion method with a hemocytometer under a microscope as described
elsewhere. After removal of the PBMCs from the samples, the red blood cell portions were
subsequently lysed by commercial RBC-lysis buffer (BioLegend, San Diego, CA, USA) to
remove red blood cells and harvest granulocytes with centrifugation. Purified granulocytes
were then counted as described and subjected to a later assay.

2.9. Phagocytosis of Granulocyte

DioC18 (0.25 mg/mL; Invitrogen, Waltham, MA, USA) labeled Escherichia coli (ATCC
25922) was suspended in 0.5 mL of Hank’s balanced salt solution (HBSS) and used for the
analysis of phagocytosis. Granulocytes of 1 × 106 each were preseeded in a 96-well plate
and then cocultured with fluorescently labeled bacteria at 1 × 107 DioC18-labeled E. coli in
a PBS solution at 37 ◦C for 90 min. By the end of the coincubation, 100 µL of trypan blue
(1.25 mg/mL) were added to quench the residual DioC18-labeled E. coli. Phagocytosis of
the granulocytes was determined by flow cytometry (Becton Dickinson FACSCaliburTM,
Franklin Lakes, NJ, USA).
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2.10. Oxidative Burst Measurement

At a similar setting as described in the phagocytosis, the granulocytes were coincu-
bated with unlabeled E. coli in a 37 ◦C incubator for 90 min, and the intracellular ROS
was determined by adding 2′,7′-dichlorofluorescin-diacetate (DCF-DA) as described by
Ciapetti et al. [27]. The generated DCF was directly proportional to the reactive oxygen
species (ROS) as the process of the oxidative burst of the granulocytes was measured by
flow cytometer.

2.11. Assessment of Lymphoblastogenesis

As described by Weng et al. [28], briefly, isolated live PBMCs were diluted in 1 × 106/mL
and seeded onto a 96-well plate. Specific mitogens, all purchased from Sigma, USA,
including 25 µg/mL concanavalin A, 20 µg/mL lipopolysaccharide, or 50 ng/mL phorbol
12-myristate 13-acetate plus 250 ng/mL ionomycin, were added to stimulate specific
lymphocyte proliferation. Alamar Blue (Serotec Co., Oxford, UK) was added in the last
24 h of an entire 72 h culture at 37 ◦C in a 5% CO2 humidified incubator. The changes of
specific fluorescence were measured by a microplate reader (FLX800, Bio-Tek Instruments,
Inc., Winooski, VT, USA).

2.12. Lymphocyte Subpopulation Analysis

Fluorescence-labeled primary antibodies were used for the swine lymphocyte subpop-
ulation, including the total T cells, T helper cells, and cytotoxic T cells, and the CD4CD8
double positive population by a flow cytometry. All the fluorescence-labeled monoclonal
antibodies were purchased from Serotec Company (Oxford, UK). Briefly, each of 1 × 106

PBMCs samples was incubated with 10 µL of specific fluorescence-conjugated monoclonal
antibodies in refrigeration avoiding light for 90 min, and procedures were followed as rec-
ommended by the manufacturer. The lymphocyte subpopulations were then determined
by flow cytometry and analyzed by CellQuest software (Becton Dickinson FACS CaliburTM,
CA, USA).

2.13. Statistical Analysis

For analyses of feather degradation and keratinase activity, each test had 3 replicates.
For analysis of growth performance, a single pen (n = 5) was considered as the experimental
unit. For analyses of hematology, blood biochemistry, and immune characteristics of blood,
individual pigs (n = 20) were considered as experimental units.

The data were calculated using the General Linear Model (GLM) procedure [29], and
the groups were compared using a one-way ANOVA with a Tukey post hoc test, where
p < 0.05 indicated a statistically significant difference.

3. Results
3.1. Feather Degradation and Keratinase Activity by the Bacillus-Mixture Fermentation at
Stage One

Table 2 present the results of fermentation on feather hydrolysis and keratinase activity.
Fermentation with N21 alone had significantly (p < 0.05) increased feather degradation
rate and keratinase activity, while the fermentation of mixed Bacillus strains group resulted
in the highest (p < 0.05) feather degradation rate and keratinase activity over a 72-h
period time.
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Table 2. The effect of liquid fermentation on feather degradation rate and keratinase activity.

Time Control N21 Mix SEM p-Value

Feather degradation rate, %

24 h 2.85 c 30.6 b 61.6 a 0.35 <0.0001
48 h 3.35 c 60.2 b 74.2 a 0.42 <0.0001
72 h 4.33 c 68.1 b 79.1 a 0.36 <0.0001

Keratinase activity, U/mL

24 h 22.4 c 414 b 634 a 4.54 <0.0001
48 h 17.9 c 409 b 555 a 6.26 <0.0001
72 h 23.6 c 401 b 539 a 3.03 <0.0001

n = 3. a,b,c Means in the same row with different superscripts are significantly different (p < 0.05).

3.2. The Physiochemical Characterizations and Nutrient Composition of TSFP

Table 3 shows the results of the TSFP physiochemical analysis. The pH value and
bacterial counts showed a significant increase in the first stage fermentation, then reduced
to 5.83 in the pH value, and increased to 8.52 log CFU/g in the total Lactobacillus number,
respectively, during the subsequently 3-days secondary anaerobic fermentation. Then the
Bacillus-like bacteria further reduced to 7.52 log CFU/g after dehydration (dry powder),
while the total lactic acid bacteria remained high counts at 7.32 log CFU/g. The nutrients
composition did not show any effect by fermentation.

Table 3. Physical and chemical analysis of TSFP.

Items Means ± SE

pH value

Initial condition 5.76 ± 0.01
First stage fermentation 7.60 ± 0.01

Second stage fermentation 5.83 ± 0.01
Dry powder 5.97 ± 0.04

Bacillus-like, log CFU/g feed

Initial condition 1.02 ± 0.04
First stage fermentation 8.54 ±0.07

Second stage fermentation 7.53 ±0.06
Dry powder 7.52 ± 0.01

Total lactic acid bacteria, log CFU/g Feed

Second stage fermentation 8.52 ± 0.01
Dry powder 7.32 ± 0.01

Nutrient composition of dry powder

Moisture, % 5.4 ± 0.05
Crude ash,%/DM 4.63 ± 0.11

Crude protein, %/DM 62.75 ± 0.92
Gross energy, kcal/kg/DM 3156 ± 148

Calcium, Ca %/DM 0.25 ± 0.01
Total Phosphate, TP %/DM 0.54 ± 0.01

3.3. Growth Performance

Table 4 presents the effect of dietary TSFP level on the growth performance of finishing
pig. At weeks 0 to 3, the ADG and FCR of 2.5% group were comparatively to 5% group
and significantly (p < 0.05) better than the other groups, while only the 5% supplemented
group showed superior (p < 0.05) results with extending growth periods of 3–6 weeks and
6–9 weeks. Pig diet supplemented with TSFP showed an overall increasing bodyweight
gain, feed intake, and FCR than the 3% fish meal diet and basal diet groups for the entire
nine weeks feeding trial. Nevertheless, the 5% TSFP supplemented group showed better
(p < 0.05) growth performance than the 2.5% group.
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Table 4. Effects of TSFP on growth performance of finishing pigs.

Period, WK. 3% Fish Meal
TSFP, %

SEM
0 2.5 5

Bodyweight (BW), kg

0 78.17 78.44 78.13 78.15 0.65
3 88.42 b 89.03 b 91.24 a 91.22 a 0.76
6 100.03 c 101.72 c 104.56 b 106.58 a 1.01
9 111.24 c 111.90 c 115.58 b 118.79 a 1.20

Average daily gain (ADG), kg

0–3 0.49 b 0.50 b 0.62 a 0.62 a 0.04
3–6 0.55 b 0.60 b 0.63 a,b 0.73 a 0.05
6–9 0.54 a,b 0.48 b 0.52 a,b 0.58 a 0.04
0–9 0.52 c 0.53 c 0.59 b 0.65 a 0.02

Average daily feed intake (ADFI), kg

0–3 1.83 b 1.85 b 1.90 a 1.84 b 0.03
3–6 1.84 c 1.88 b 1.90 b 1.95 a 0.02
6–9 1.91 b 1.90 b 1.92 b 1.96 a 0.02
0–9 1.86 b 1.87 b 1.91 a 1.92 a 0.01

Feed conversion rate (FCR), ADFI/ADG

0–3 3.85 a 3.73 a 3.10 b 3.04 b 0.26
3–6 3.46 a 3.13 a,b 3.08 a,b 2.74 b 0.25
6–9 3.65 a,b 4.01 a 3.72 a,b 3.54 b 0.23
0–9 3.58 c 3.54 c 3.23 b 2.98 a 0.12

n = 5. a,b,c Means with the same letter in the row are not significantly different (p < 0.05).

3.4. Hematology

Table 5 showed the effect of dietary supplementation of TSFP on hematology. The
amounts of WBC, NE, EO, MO, BA, LY, RBC, Hb, Hct, MCV, MCH, RDW, PLT, and MPV
did not significantly (p > 0.05) different among groups. The results indicated no detrimental
effects found in the dietary intervention.

Table 5. Effect of TSFP on hematological traits of finishing pigs.

Items 3% Fish Meal
TSFP, %

SEM
0 2.5 5

WBC, 103/µL 17.61 20.16 19.63 19.29 2.06
NE, % × 103/µL 8.4 9.42 7.71 7.86 1.20
LY, % × 103/mL 7.38 8.13 9.33 9.38 0.98
MO, % × 103/µL 0.82 1.12 1.04 1.07 0.15
EO, % × 103/µL 0.93 0.96 1.28 1.02 0.25
BA, % × 103/µL 0.11 0.11 0.11 0.11 0.02

NE, % 45.18 47.74 39.4 40.9 4.05
LY, % 44.66 41.85 47.45 48.93 3.85

MO, % 4.54 5.44 5.25 5.65 0.70
EO, % 5.49 4.43 7.2 6.5 2.20
BA, % 0.37 0.55 0.52 0.43 0.09

RBC, 106/mL 6.87 6.08 7.1 6.97 0.70
Hb, g/dL 10.56 10.31 10.39 10.5 0.78
HCT, % 38.13 43.66 41.38 47.78 4.32
MCV, Fl 63.42 62.01 65.29 67.02 3.79

MCH, pG 14.62 13.8 14.28 14.29 0.87
MCHC, g/dL 22.36 20.63 20.69 19.84 1.03

RDW, % 22.05 22.09 21.95 21.53 0.66
PLT, 103/mL 384.5 349 329.5 348 63.26

MPV, fL 6.44 5.45 5.53 5.78 1.15
n = 20. WBC, white blood cells; NE, neutrophils; LY, lymphocyte; MO, monocyte; EO, eosinophil; BA, basophilic
ball; RBC, red blood cell; Hb, hemoglobin; Hct, hematocrit; MCV(fL), mean corpuscle volume; MCH(pg), mean red
blood cell hemoglobin; MCHC(g/dL), mean red blood cell hemoglobin concentration; RDW, red cell distribution
width; PLT, platelet count; MPV, mean platelet volume.
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3.5. Blood Biochemistry

Table 6 showed the effect of TSFP supplementation on blood biochemistry. Dietary
supplementation of 5% TSFP had elevated HDL-C and reduced LDL-C, and BUN levels, as
compared with 3% Fish meal and control groups (p < 0.05).

Table 6. Effect of TSFP on blood biochemistry of finishing pigs.

Items 3% Fish Meal
TSFP, %

SEM
0 2.5 5

TP, g/dL 9.83 10.84 11.21 11.29 0.77
CHOL, mg/dL 120.85 119.04 118.79 113.11 6.98
HDL-C, mg/dL 58.19 b 59.08 b 63.94 a,b 67.90 a 2.98
LDL-C, mg/dL 42.63 a 37.36 a 40.40 a 30.14 b 3.99
GLU, mg/dL 46.38 47.13 46.9 47.9 9.72
BUN (U/L) 17.95 a 16.00 a 15.03 a 11.87 b 2.16
AST (U/L) 12.73 14.07 15.39 14.76 3.42
ALT (U/L) 26.81 23.65 24.73 21.01 3.46
ALP (U/L) 34.39 33.55 33.02 31.36 3.65

n = 20. a,b Means with the same letter are not significantly different (p < 0.05). TP total protein; CHOL, cholesterol;
HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; GLU, glucose; AST,
aspartate aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; BUN, serum urea N.

3.6. Immune Characteristics

Table 7 showed that TSFP supplementation affected immunity. Pigs supplemented
with 5% TSFP had significantly (p < 0.05) activated higher lymphoblastogenesis by either
LPS or ConA, and the IFN-γ production was the highest (p < 0.05) than other groups.
Moreover, the IgA production and the oxidative burst were higher (p < 0.05) in the 5%
group than those of the fish meal group. The analysis of T cells subset populations revealed
the ratios of CD3, CD4, CD4+ CD8+ T cells of the 2.5% and 5% groups were significantly
(p < 0.05) higher than the control group.

Table 7. Effect of TSFP on the immunity of finishing pigs.

Items 3% Fish Meal
TSFP, %

SEM
0 2.5 5

Lymphoblasogenesis specific fluorescence
Lipopolysaccharide 234.25 b 235.06 b 262.55 b 356.86 a 12.67

Concanavalin A 268.88 b 232.44 b 241.05 b 330.71 a 20.23
PMA/ION 437.85 439.69 401.41 447.36 38.28
Cytokine (pg/mL)

Interferon-γ 115.96 b,c 111.70 c 122.75 b 135.24 a 4.39
mean fluorescence intensity

phagocytosis 52.04 49.36 54.32 53.75 2.81
oxygen burst 142.46 b 154.46 a,b 170.15 a,b 180.13 a 8.90

immunoglobulin, mg/dl
IgA 1.52 b 1.59 a,b 1.66 a,b 1.88 a 0.14
IgM 1.79 1.74 1.74 1.81 0.17
IgG 9.75 9.96 10.39 11.38 1.26

blood T-lymphocyte, %
CD 3 79.66 b 78.59 b 84.69 a 85.79 a 1.79
CD 4 21.86 a,b 19.44 b 23.74 a 24.46 a 1.25
CD 8 39.90 40.54 38.80 37.39 1.85

CD4+ CD8+ 9.28 b,c 8.85 c 10.40 a 10.06 a,b 0.29

n = 20. a,b,c Means in the same row with different superscripts are significantly different (p < 0.05). PMA/ION:
Phorbol-12-myristate-13-acetate/Ionomycin.
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4. Discussion

Notably, the Mix fermentation group had a 31% increase in the keratinase activity
at the first 24 h of fermentation. Peng et al. (2019) has reported that coincubation with
B. licheniformis BBE11-1 and S. maltophilia BBE11-1 improved feather degradation [30].
Similarly, the feather degradation has increased 74% by 48 h in current settings, which
fermented aerobically by the mixture of five selected Bacillus strains at the first stage.

Bacillus spp. tends to grow in pH neutral environment [31]. Along with the pro-
liferation of the bacteria, the increasing alkaline metabolites raise the environmental
pH value [32]. This agrees with current results that the pH values rose from 5.76 to 7.60
during the first stage fermentation. At the second stage of fermentation, the anaerobic fer-
mentation with L12 has acidified the fermented product to pH = 5.83. Fermented products
then dried in an oven, which did not further influence the pH value. Yeh et al. (2018) has
indicated that the lactic acids were primarily produced at the second stage fermentation.
Since the organic acids were not volatile, the pH remained the same between the liquid
fermented product and the dried end product [18]. Moreover, the Bacillus spp. and Bacillus
coagulans can form spores [33,34], which can resist high pressure and low pH [35]. L12 is a
lactic acid-producing bacteria and is identified as B. coagulans. Although the Bacillus spp.
had less impacted by low temperature (55 ◦C) drying, the overall lactic acid bacteria count
had reduced to 7.52 log CFU/g.

Compared to 3% fish meal on the growth performance, the different levels of TFSP
have demonstrated similar or even better effects in the current study. It has been reported
that under the same levels of dietary crude protein and energy with different protein
sources; soybean meal vs. fish meal has exhibited similar effects on average daily weight
gain and feed efficiency in fishing pigs [36]. The growth performance did not show
significantly different between the fish meal group and control group in the current study,
suggesting the fish meal supplementation might not be essentially required in finishing
pig. Our previous broilers study, Yeh et al. (2018) also showed dietary supplementation
of a 5% two-stage fermented product has improved growth performance and ileal amino
acid digestibility [18]. In general, the fermented product derived from plant protein has
exhibited beneficial effects on growth performance and immunity in pig studies [36,37].
However, the study of utilization fermented feather meal is rare. Our previous trial has
demonstrated that dietary supplementation of a 5% two-stage fermented feather-soybean
meal performs comparably as a high-quality fish meal supplementation in the growth
performance of growing pigs [19]. In this study, the fermented product was obtained by
a two-stage fermentation of the first stage aerobic incubation using a mixture of Bacillus
spp. with the substrate of feather meal and soybean meal, and the subsequent second stage
anaerobic fermentation with L12. Supplementation of 2.5% TSFP in pig diet had improved
ADG and FCR compared to fish meal supplementation. In addition, the 5% fermentation
powder supplied group showed 18.4% and 18.7% increases in ADG and FCR, respectively.
On-farm observations also found a better appetite and feces structure without the diarrhea
incidence. Notable healthy appearance and improved wellbeing were attained. The current
TSFP may bring beneficial for pig farming.

All hematological values were within normal ranges [38]. Hung et al. (2006) has also
shown that dietary supplementation of 3% fermented soybean meal in fishing pigs did not
affect hematological parameters [39]. Similar results were obtained in the current study in
an indication of no adverse implication. Probiotics can effectively improve blood lipidemia
by reducing blood total cholesterol, LDL, and triglycerides levels, while increasing liver-
derived HDL-C [40]. Current TSFP content-rich Bacillus spp. with lactic acid-producing
bacteria. When pigs were supplemented with 5%, TSFP did not affect blood total cholesterol.
The lower LDL-C and higher HDL-C levels were observed in the 5% TSFP group. HDL-C
synthesized in the liver and intestine is responsible for transport cholesterol back to liver
for metabolism, while LDL-C is to carry cholesterol for cells and tissue utilization. The
LDL-C is known notoriously related to atherosclerosis and other vascular diseases, such as
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thrombosis. Feed supplemented with the TSFP may exhibit beneficial effects on cholesterol
forming, transportation, and metabolism in pigs.

BUN is metabolites of proteins and is excreted by the kidney through urine, which re-
flects the function of the kidney. Several factors may lead to increase BUN levels, especially
protein mal-metabolism. In the current study, elevating BUN level might be associated with
enhanced protein digestion and absorption. Two-stages fermentation may degrade proteins
into small peptides, or amino acids leads to better protein utilization and absorption [18,41].
In the current study, the 5% TSFP group increased ADFI and improved the FCR (Table 4).
All the results demonstrated that TSFP has positively affect digestion, metabolism, and
physiological parameters. Clinical analysis on ALP, ALT, and AST levels did not show
significant differences among groups, and all fall within normal ranges. It appears that
dietary supplementation of TSFP had no adverse effect.

Mitogenic stimulations by LPS or ConA elicited non-specific B cell and T cell clones
proliferations, respectively. Lymphocyte specificity is clonally distributed—upon encounter
antigens, the higher lymphocyte proliferating activity implies better adaptive immune
response. The cytokine, IFN-γ is essential in defending against viral infection, which
is important in cell-mediated immunity. The 5% TSFP group had shown to boost cell-
mediated immunity, which significantly (p < 0.05) increased the ratio of CD4 T cells and
production of IFN-γ. Consistent with the findings of enhanced cell-mediated immunity,
the innate immune functions of phagocytosis activity and the oxidative burst of phagocytic
cells were both upregulated in the 5% group.

The phagocytic coordination serves as the first defense line during bacterial infection,
and the ROS generated during oxidative bursts is responsible for killing phagocytosed
bacteria [42]. Cha et al., (2013) reported that dietary supplement with 0.5% Bacillus spp.
has increased oxidative burst, improved immunity, and feed efficiency, complying with
current findings [43]. Moreover, the IgA production of the 5% TSFP group was significantly
(p < 0.05) higher than that of the 3% fish meal supplemented group. Steiner (2006) states
that oral supplements with probiotics can increase immunoglobulins production [44].
Furthermore, Lee et al. (2014) show piglet diet supplied with 0.45% Bacillus subtilis has
increase IgA and IgG productions [45]. The current results demonstrated supplementation
of TSFP in pigs may boost humoral immunity by increasing immunoglobulin production.

5. Conclusions

In conclusion, cocultivating feathers with mixed Bacillus strains show an optimum
feather degradation rate and keratinase activity. Dietary 2.5–5% TSFP promotes growth
performance and boosts immunity in finishing pigs. Whereas dietary inclusion of the 5%
TSFP has obtained the best overall performances.
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