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Regulation of filial imprinting and 
structural plasticity by mTORC1 in 
newborn chickens
Gervasio Batista1, Jennifer L. Johnson2, Elena Dominguez1, Mauro Costa-Mattioli2 &  
Jose L. Pena1

Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling leads to memory 
deficits and abnormal social behaviors in adults. However, whether mTORC1 is involved in critical 
periods of early learning remains largely unexplored. Our study addressed this question by investigating 
imprinting, a form of learning constrained to a sensitive period that supports filial attachment, in 
newborn chickens. Imprinting to virtual objects and sounds was assessed after acute manipulations 
of mTORC1. To further understand the role of mTORC1 during the critical period, structural plasticity 
was analyzed using DiOlistic labeling of dendritic spines. We found that mTORC1 is required for 
the emergence of experience-dependent preferences and structural plasticity within brain regions 
controlling behavior. Furthermore, upon critical period closure, pharmacological activation of the 
AKT/mTORC1 pathway was sufficient to rescue imprinting across sensory modalities. Thus, our results 
uncover a novel role of mTORC1 in the formation of imprinted memories and experience-dependent 
reorganization of neural circuits during a critical period.

Imprinting, the experience-dependent acquisition of early preferences within a sensitive period1–3, shapes vital 
behaviors. In worms, imprinting to different odors underlies aversive and appetitive responses2,4. Adult salmons 
also rely on imprinted odors experienced in early life for navigating towards breeding sites in adulthood1,5. In pre-
cocial birds, imprinted memories support the rapid development of filial attachment3,6. Hence, across evolution, 
imprinting sculpts reproductive and survival behavioral traits. Understanding the mechanisms involved in this 
form of time-constrained learning can shed light on the principles controlling behavior and its developmental 
organization.

The mechanistic target of rapamycin complex 1 (mTORC1) plays a pivotal role in long-term memory forma-
tion7–12 and different forms of long-term synaptic plasticity7,13,14 in the adult brain. Potentiation of hippocampal 
synapses and memory consolidation in mice requires activation of mTORC17. Similarly, mTORC1-mediated local 
translation is required for synaptic plasticity in Aplysia15. The role of mTORC1 in early life is less understood. Yet, 
recently, it has been reported that mTORC1 signaling supports developmental learning in songbirds16. It is thus 
possible that mTORC1 mediates experience-dependent reorganization of neural circuits within critical periods. 
Here we asked if mTORC1-mediated plasticity is relevant for imprinting. To address this question, we investigated 
the role of mTORC1 in the formation of imprinted memories of newborn chickens where mTORC1-mediated 
plasticity can be tracked to specific brain regions controlling behavior.

In chickens, protein synthesis is required for the consolidation of imprinted memories17,18. Auditory imprint-
ing, the acquisition of a preference for a given sound during the critical period19, is controlled by dephospho-
rylation of the eukaryotic translation initiation factor subunit 2 alpha (eIF2α)18. In contrast, the mechanisms 
regulating experience-dependent regulation of protein synthesis in visual imprinting remain unknown. The 
mTORC1 complex appears a good candidate to carry out this function given that it regulates translation through 
three of its downstream targets: the ribosomal protein S6 kinase (S6K)20, the eukaryotic translation initiation 
factor 4E-binding proteins (4E-BPs)21 and the eukaryotic elongation factor 2 kinase (eEF2K)22,23. Because of its 
relevance in memory formation in adulthood22,24 and its role in experience-dependent translation22,25, mTORC1 
activation might underlie imprinting across sensory modalities.
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We found that mTORC1 is recruited within the mediorostral nidopallium/mesopallium (MNM)26,27 and 
the intermediate medial mesopallium (IMM)28–30, forebrain regions involved in auditory and visual imprinting, 
respectively. This endogenous activation of mTORC1 was required for the acquisition of imprinted preferences 
and dendritic spine plasticity. On the other hand, acute pharmacological enhancement of mTORC1 signaling was 
able to recover imprinting beyond the critical period. These results provide evidence for a previously unknown 
role of mTORC1 in filial imprinting and reveal that targeting mTORC1 may rejuvenate plasticity upon critical 
period closure.

Results
mTORC1 controls long-term synaptic plasticity and memory consolidation24. Yet a major outstanding question 
is whether mTORC1 regulates critical periods in early life. Involvement of mTORC1 in early learning has been 
shown in juvenile birds, where mTORC1 is required for song learning16. Here, taking advantage of the precocial 
behavior of newborn chickens and rapid onset of imprinting, we addressed the role of mTORC1 during the 
critical period for imprinting by combining biochemical assays to assess endogenous activation of mTORC1, 
behavioral pharmacology and analysis of structural changes correlated to the learning process. In addition, we 
recovered the imprinting upon closure of the critical period.

Experience-dependent activation of mTORC1.  We first verified if mTORC1 was activated by train-
ing in MNM and IMM, forebrain areas crucial for auditory and visual imprinting, respectively3,26,30. While 
there are different read-outs of mTORC1 activation (e.g. 4E-BP phosphorylation), phosphorylation of the 
ribosomal protein S6 (p-S6) was chosen because it is highly conserved and has been previously used to assess 
learning-dependent activation of mTORC1 in mice7 and birds16. Endogenous activation of mTORC1 after train-
ing was investigated in both MNM and IMM (Fig. 1a), forebrain structures involved in auditory and visual 
imprinting, respectively31,32.

Western blots from MNM samples showed increased activation of mTORC1 compared to untrained animals, 
as indicated by the increased p-s6/total-S6 ratio (Fig. 1b) (Two-sample t-test, p = 0.0176). Thus, training activated 
mTORC1 signaling in the auditory imprinting-relevant area MNM. This effect could not be explained only by 
lack of movement in control animals since only chickens that significantly moved the wheel within the first half 
hour of training were included in the sample.

In addition, we examined mTORC1 activation in IMM, an area involved in visual imprinting3. Consistently, 
IMM samples from trained chickens also showed higher p-S6/total-S6 ratios than control animals (Fig. 1b) 
(Two-sample t-test, p = 0.0348). Therefore, the training method used to induce imprinting led to mTORC1 acti-
vation in both auditory and visual imprinting areas.

mTORC1 signaling is required for imprinting.  We tested whether inactivation of mTORC1 affects 
memory formation specifically. Imprinting develops rapidly (2-hour training), which allows acute pharmacolog-
ical manipulations, reducing the potential confound of compensatory mechanisms induced by prolonged treat-
ments. Taking advantage of these features we investigated whether activation of mTORC1 supports behavioral 
and structural plasticity in imprinting. To investigate whether mTORC1 activation is required for the formation 
of imprinted memories, we injected the mTORC1 inhibitor rapamycin to chickens, prior to training (Fig. 2a,b).

Consistently with our western blot analysis, mTORC1 blockade abolished both auditory and visual imprinting 
(Fig. 2c) (Two sample t-test, pAuditory-imprinting = 0.0067, pVisual-imprinting = 0.0363). Chicks treated with rapamycin did 
not show a preference for the sound experienced during training (Fig. 2c). In contrast, vehicle-treated animals 
showed auditory imprinting 24 hours after training (Fig. 2c). Rapamycin also blocked visual imprinting (Fig. 2c). 
On the other hand, chickens injected with vehicle developed a normal preference for the object presented during 
training. Importantly, no change in basal locomotion was observed between vehicle- and rapamycin-injected 
chickens (Supplementary Fig. S1a). Together our results demonstrate that long-term auditory and visual imprint-
ing requires mTORC1 activation during the critical period.

mTORC1-mediated structural plasticity.  Long-term changes in the organization of neural circuits are 
hypothesized to support memory storage33. Hence, to shed light on how mTORC1 could underlie imprinting, 
we analyzed experience-dependent alterations in spine morphology, the cellular compartment receiving most 
excitatory inputs34. To achieve this, we combined DiOlistic labeling and confocal imaging of dendrites within 
MNM and IMM (Fig. 3a).

Because spine morphology is informative about the functional state of the embedded synapses34, we classified 
them in stubby, filopodia, thin and mushroom spine types (Fig. 3). To test whether structural plasticity of spines 
required mTORC1 signaling, we injected chickens with either vehicle or rapamycin prior to training and tissue 
processing.

As previously shown18, imprinting triggered an increase in the number of mushroom spines in MNM and 
IMM that was paralleled with a reduction in thin spines. In MNM, rapamycin blocked the increase in mushroom 
spines (Fig. 3b) (Kruskal-Wallis test, Dunn’s multiple comparisons test, p < 0.001). However, the reduction in the 
number of thin spines after training was not blocked by rapamycin (Fig. 3b) (Kruskal-Wallis test, Dunn’s mul-
tiple comparisons test, p = 0.037). On the other hand, no changes in filopodia or stubby spines were detected in 
rapamycin-treated animals or controls.

Rapamycin injection also blocked structural plasticity in IMM. In chickens where mTORC1 was inactivated, 
IMM neurons did not exhibit an increase in the number of mushroom spines (Fig. 3c) (Kruskal-Wallis test, 
Dunn’s multiple comparisons test, p < 0.001) compared to the control group. Yet, as in MNM, rapamycin-treated 
chickens showed fewer thin spines after training, compared to untrained ones (Fig. 3c) (Kruskal-Wallis test, 
Dunn’s multiple comparisons test, p < 0.01). No significant changes in the number of stubby or filopodia spines 
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were observed after training in IMM (Fig. 3b,c). These results indicate that mTORC1 activation is required for 
structural plasticity in both MNM and IMM.

mTORC1 activation is recovers imprinting after closure of the critical period.  Because blockade 
of mTORC1 impaired both behavioral and structural plasticity, we aimed to test whether enhancing mTORC1 
activity could restore plasticity upon closure of the critical period (Fig. 4a). Four-day old chickens, which are 
unable to become imprinted18,29, were injected with the AKT activator SC7916,35. We found that this manipu-
lation recovered imprinting in both sensory modalities (Fig. 4b) (Two sample t-test, pAuditory-imprinting = 0.0015, 
pVisual-imprinting = 0.0085). These results indicate that mTORC1 activation is sufficient to restore plasticity upon 
critical period closure. No significant difference in basal locomotion between vehicle and SC79-injected groups 
was detected (Supplementary Fig. S1b).

To further examine the ability to recover imprinting after the critical period by manipulation of the mTORC1 
pathway, we explored other potential ways for mTORC1 activation. Thyroid hormones, in particular thyroxine 
(T4), have been shown to restore visual imprinting in P429. As shown in Fig. 4c, systemic injections of T4 strongly 
activated mTORC1 in IMM but not significantly in MNM (Two sample t-test, pIMM = 0.0092, pMNM = 0.10). 
Thus, we asked whether mTORC1 was required for the T4-dependent reopening of the critical period for visual 
imprinting. In fact, T4 rescued visual imprinting in P4 chickens but did not affect auditory imprinting (Fig. 4d). 
Remarkably, T4-dependent recovery of visual imprinting was abolished if mTORC1 was inactivated with rapa-
mycin (Fig. 4d) (Two sample t-test, p = 0.0037). Basal locomotion was not different across experimental groups 
(Supplementary Fig. S1c).

Together these findings demonstrate the requirement of mTORC1 in auditory and visual imprinting. 
Furthermore, we show that pharmacological enhancement of mTORC1 could be a novel strategy to reopen crit-
ical periods.

Figure 1.  Experience-dependent activation of mTORC1. (a) Tissue samples from IMM (green) and MNM 
(blue) were collected for western blotting, 15 minutes after training. (b) Phosphorylation of the S6 ribosomal 
protein in MNM (left) and IMM (right) was increased in trained (N = 7) chickens compared to controls (N = 6). 
Representative western blots are shown below each panel. Box plots show mean and interquartile. Error bars 
show 10–90 percentile, *indicates p < 0.05 from two-sample t-test. The number of animals used in each group is 
listed inside parenthesis. (Illustrations by Michael Beckert).
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Discussion
The mechanistic target of rapamycin complex 1 (mTORC1) regulates a variety of cellular functions, ranging from 
autophagy to proliferation21. Activation of this protein complex in the brain mediates neuronal plasticity7,14,36,37, 
long-term memory formation7,8,38, biological rhythms39,40 and social behaviors41–43. While most studies aimed 
to uncover mTORC1 function in the adult brain, here we demonstrated that mTORC1 activation is required for 
imprinting and circuit re-organization during a critical period in newborn chicks. Furthermore, we showed that 
imprinting can be recovered, once the critical period is closed, through acute enhancement of mTORC1 signaling.

mTORC1 is recruited within imprinted circuits.  Western blot analysis showed that exposure to virtual 
objects and artificial sounds activated mTORC1 in forebrain areas relevant for visual and auditory imprinting. 
This activation was required for visual and auditory, imprinting. However, our approach is not able to identify 
the contribution of specific neuronal types to the observed increase in the p-S6/Total-S6 ratio, which could con-
tribute to variability across samples. Future studies should target mTORC1 activation within specific cell-types 

Figure 2.  mTORC1 blockade impairs auditory and visual imprinting. (a) Chickens were trained for 
two hours and injected either with rapamycin (N = 11) or vehicle (N = 10) prior to training. Visual and 
auditory imprinting were separately tested the day after training. (b) Rapamycin (N = 7) strongly reduced 
phosphorylation of S6 within MNM (left) and IMM (right) compared to vehicle-injected chickens (N = 7). 
(c) Vehicle- (N = 11), but not rapamycin-injected (N = 10) chickens showed auditory (left) and visual (right) 
imprinting the day after training. Box plots show mean and interquartile. Error bars show 10–90 percentile, 
*indicates p < 0.05 from two-sample t-test. Number of animals used for each group is inside parenthesis.
(Illustrations by Michael Beckert).
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Figure 3.  Structural plasticity in MNM and IMM is disrupted by mTORC1 inactivation. (a) Spines were 
imaged using DiOlistic labeling and confocal imaging (left) to image dendrites in IMM (top, left) and MNM 
(bottom, left). Dendritic spines were classified in thin, mushroom, stubby and filopodia based on length and 
presence or absence of a neck (top, right). Different groups can be distinguished under confocal imaging 
(bottom, right). (b,c) Imprinted chickens show a decrease in thin spines (blue) and an increase in mushroom 
spines (red) compared to control animals. Structural plasticity of mushroom spines was blocked in chickens 
treated with rapamycin. No changes in stubby (purple) or filopodia (green) were detected. Box plots show mean 
and interquartile. Error bars show 10–90 percentile; different letters indicate statistically significant differences 
(p < 0.05) between groups from Kruskal-Wallis test, Dunn’s multiple comparisons test. Number of dendrites 
analyzed for each group is inside parenthesis.
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(e.g. inhibitory interneurons). This might be particularly important given that, as shown in the visual cortex of 
mice44, maturation of parvalbumin positive (PV) cells sets the onset of sensitive periods. Similarly, these neurons 
seem to be also important for imprinting. An experience-dependent increase in the number of PV-cells after filial 
imprinting has been reported45. It is possible that mTORC1 is heavily involved in the maturation of PV-cells. This 
hypothesis is likely since genetic ablation of PTEN, an inhibitor of mTORC1 activation, increases the proportion 
of PV-neurons in the mouse neocortex46.

mTORC1 mediates structural plasticity of dendritic spines, the main site receiving excitatory inputs in neu-
rons34. Changes in spine morphology are tightly associated with potentiation and depression of synaptic func-
tion47 and learning experiences48. These changes are indicative of circuit reorganization48. In particular, spine 
enlargement and acquisition of mushroom shape, is associated with increased AMPA currents49 and longer spine 
stability50,51. We found that rapamycin injections blocked the increase in mushroom spines detected 24 hours 
after imprinting training in both MNM and IMM. Similarly, mTORC1 appears to mediate spine plasticity in 
cultured neurons52. While spine plasticity might suggest that mTORC1-mediated post-synaptic changes are 
important for imprinting, mTORC1 could also be a key player in regulating pre-synaptic processes, as shown 
previously in the hippocampus of mice14. Notably, training triggered a reduction in the number of thin spines. 

Figure 4.  mTORC1 underlies recovering of imprinting upon closure of the critical period. (a) Chickens were 
trained on P4, when the critical period is closed and mTORC1 activation was manipulated to assess its role 
in the critical period. (b) Chickens were injected with the AKT activator SC79 before training. Activation of 
mTORC1 restored both auditory (left) and visual (right) imprinting (NControl = 12, NSC79 = 10). (c) Injections 
of the thyroid hormone thyroxine (T4) enhanced mTORC1 signaling in IMM (right) but not MNM (left) 
(NVehicle = 7, NT4 = 7). (d) Injections of T4 on P4 had no effect on auditory imprinting (left). Re-opening 
the critical period for visual imprinting by thyroid hormone (T4) also requires mTORC1 activation (right) 
(NT4 = 11, NT4+Rapamycin = 8). Box plots show mean and interquartile. Error bars show 10–90 percentile, 
*indicates p < 0.05 from two-sample t-test. Number of animals used for each group is inside parenthesis 
(Illustrations by Michael Beckert).
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This process resonates with a form of homeostatic plasticity described in the hippocampus53, where potentia-
tion of a subset of spines is counterbalanced by synapse elimination within the same dendrites. In our case, the 
experience-dependent reduction of thin spines was not blocked by mTORC1 inactivation, suggesting that this 
process is mTORC1 independent. It would be interesting to assess if in the hippocampus, rapamycin blocks spine 
potentiation but not synapse elimination. This might be the case since manipulation of mTORC1 in cultured 
neurons particularly affects structural plasticity of mushroom spines but not of other subtypes52.

Protein synthesis regulation by mTROC1: a potential downstream mechanism underlying 
imprinting.  The downstream mechanisms controlled by mTORC1 to support imprinting remain unclear. 
However, it is likely that mTORC1-mediated protein synthesis, through S6K, 4E-BPs and eEF2K21,24, under-
lies critical period plasticity. mTORC1 phosphorylates S6K and 4E-BPs to regulate translation initiation21,54, a 
mechanism known to mediate memory consolidation in adults7,22. On the other hand, mTORC1 can control 
the elongation of nascent polypeptide chains through phosphorylation of eEFK215. In Aplysia, the elongation 
factor 2 (eEF2) supports long-term facilitation of synaptic function even when translation initiation is blocked25. 
Because of its potential for controlling translation at different levels, mTORC1 might be a ‘master’ regulator 
of experience-dependent protein synthesis necessary for imprinting. In contrast, other translational control 
mechanisms involved in imprinting, such as dephosphorylation of the translation initiation factor eIF2α18, may 
have more subtle and specific roles. For instance, eIF2α-mediated translation regulates auditory, but not visual, 
imprinting18. To better understand how experience recruits eIF2α and mTORC1 within imprinted circuits, 
species tractable by genetic approaches might be required, such as C. elegans, where imprinting has also been 
shown2,4.

Re-opening critical periods through translational control mechanisms.  Mechanisms controlling 
experience-dependent protein synthesis during critical periods can offer novel routes to rejuvenate plasticity. 
Enhancing eIF2α-mediated translation, for example, can recover auditory imprinting in chickens after the critical 
period18. Since mTORC1 can control protein synthesis, its manipulation could hold promise for restoring critical 
period plasticity across species. Consolidation of ocular dominant plasticity (ODP), the experience-dependent 
reorganization of visual binocular responses in the primary visual cortex (V1) of mammals, requires mTORC1 
activation during sleep55. However, no attempt to recover ODP through mTORC1 activation after critical period 
closure has been pursued55. Our results demonstrate that direct enhancement of AKT/mTORC1 signaling is 
sufficient to restore visual and auditory imprinting upon critical period closure. Yet, these data cannot rule out 
that AKT activation by SC79 restores imprinting through downstream targets other than mTORC1. In addition, 
we showed that mTORC1 is recruited in the reopening of the critical period by thyroxine, one of the thyroid hor-
mones capable of restoring visual imprinting29. Interestingly, during the critical period for birdsong acquisition in 
zebra finches, thyroid hormones levels increase56, as well as mTORC1 activation in response to the tutor’s song16. 
Our results raise the intriguing question of whether thyroid hormones also engage mTORC1 in songbirds to sup-
port behavioral plasticity. It remains untested whether activation of mTORC1 can rescue song learning outside 
of the critical period.

mTORC1 as key regulator of complex behaviors during development.  In addition to its role in 
imprinting, mTORC1 may be important in time-constrained learning supporting the development of other brain 
functions, such as social behaviors. Yet the lack of early behavioral readouts in most vertebrates has stalled pro-
gress in understanding the early roles of mTORC1. Recently, in one of the few studies investigating mTORC1 
in juveniles, it was shown that repeated inactivation of mTORC1 in songbirds impairs acquisition of the tutor’s 
song16. This result is consistent with our findings showing that rapamycin injections block imprinting. However, 
while acute rapamycin administration inactivates mTORC157, repeated exposure to rapamycin also reduces the 
activity of the mTOR complex 2 (mTORC2)58, involved in actin remodeling regulation59,60. Thus, in the case of 
songbird learning16 it has no yet been ruled out that both mTOR complexes have a role in the behavioral plasticity 
during the critical period. The single-trial nature of imprinting in chickens allowed us to acutely perform gain- 
and loss-of-function manipulations on mTORC1, which is less likely to affect mTORC2 signaling. Yet, mTORC2 
might still play a role in imprinting. To address this important question, specific genetic manipulations and phar-
macological tools will be required.

Conclusions
Together, our results demonstrate that mTORC1 mediates behavioral and structural plasticity in newborn chick-
ens, supporting the idea that mTORC1 controls the storage of long-term memories since birth. We also showed 
that pharmacological activation of mTORC1 could help to reinstruct brain function after critical windows are 
closed, opening a potential avenue for therapeutic interventions to recover brain plasticity.

Methods
Animals.  White Leghorn chicken eggs (E14-17) were received from a vendor (Charles River supplier) every 
week and incubated (Grumbach incubator, compact S84) at 37–38 °C in darkness until hatching. Humidity and 
temperature were constantly monitored to ensure proper embryonic development and normal hatching. On 
hatching day, chicks were transferred to individual compartments inside a brooder (Brinsea TLC-5). Temperature 
was kept at 37–38 C, and chickens were reared in the dark until the time of the experiments. Because chickens 
are capable of eating and drinking in darkness, water and food was provided ad libitum. This method of rearing 
does not affect health, locomotion and sensory acuity of chicks29. All the experiments were approved by the 
institutional animal care committee (IACUC) at Albert Einstein College of Medicine (protocol 20140910). All 
experiments were performed in accordance with relevant guidelines and regulations.
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Imprinting training and preference test.  Experiments and analysis described in this section were 
performed blind to treatment, between 8 AM to 6 PM. Both female and male chicks were used. In this study 
these data were pooled. To isolate chickens from environmental noise, training and tests were carried inside a 
sound proof chamber (IAC acoustics) at 37 °C. The day of the experiment, subjects were first placed under a 
white light for 30 minutes. This step has been proven to enhance imprinting training efficiency61. After priming 
with light, chickens were moved inside a running wheel equipped with a ring of magnets to assess locomotion 
(Med Associates). The wheel (internal diameter = 18 cm) was connected to a counter and a motherboard (Med 
Associates, DIG-700G, DIG-726). Data was stored in a computer for offline analysis.

In front of the running wheel, a monitor (ACER LCD, 17′′) and a speaker were placed. Videos of animated 
figures, blue or red, were generated using the open source program Blender (http://www.blender.org/). Animated 
objects were designed to move inside a virtual environment. Both animated objects covered the same area and fol-
lowed identical trajectories on the screen. Expansion and contraction animation effects were added, matching the 
timing of sounds employed to test auditory imprinting. Two distinct sounds (labeled ‘sound 1’ and ‘sound 2’) were 
generated using Audacity software (2.1.0). The frequency range (0–3 KHz) was the same for all sounds, within 
the chickens’ audible range. Sound 1 contained sharp frequency steps and sound 2 frequency sweeps (ramps). A 
command script written in Matlab controlled the Med Associates equipment through a USB DAQ card (National 
instruments USB-6008). Each sound was played 12 times per minute, with an inter-stimulus interval of 3 seconds.

Training consisted in the presentation of audiovisual stimuli in bouts of 4 minutes with an inter-bout interval 
of 1 minute. During intervals, the speaker remained silent and the room was in complete darkness. If chickens 
were inactive within the first half-hour of the training, they were not considered for this study (N = 3). Training 
length was 120 minutes for all experiments and imprinting was tested one day after training.

Independent assessment of auditory and visual imprinting was achieved with a sequential test, where novel 
and imprinted stimuli were presented in alternation, in contrast to other studies that have used a simultaneous 
choice test29. The presentation of stimuli in sequence during tests allowed us to randomize stimulus presentation, 
measure baseline locomotion and evaluate the response to novel and imprinted stimuli independently. Each test 
included 5 presentations of the imprinted stimulus and 5 presentations of the novel stimulus. The duration of each 
presentation was 1 minute. The amount of locomotion inside the running wheel when no stimulus was presented, 
was measured during 30-second time windows immediately preceding each trial. This value, referred here to as 
baseline locomotion, was included in the preference score metric as a normalization factor. Imprinted and novel 
stimuli were alternated over 5 consecutive blocks. The first stimulus that started the sequence was picked ran-
domly. Randomization of stimulus presentations prevents the emergence of biases and motivation changes over 
time. Importantly, no innate biases for the stimuli used was detected (Supplementary Fig. S2).

Our computation of the preference indexes normalized differences between locomotion to novel and 
imprinted stimuli by the average baseline locomotion in the wheel when no stimulus was presented. Therefore, 
to measure imprinting strength, we calculated a preference index (PI), PI = ∑(ImprintedSTL − NovelSTL)/Baseli
neA where STL indicates stimulus-triggered locomotion either during presentation of the imprinted stimulus 
(ImprintedSTL) or presentation of the novel stimulus (NovelSTL), and baselineA refers to the average baseline loco-
motion across the experiment. An advantage of this quantification over previous methods is that: (1) it considers 
basal locomotion before each stimulus presentation, and (2) it normalizes locomotion during stimulus presenta-
tion trials by average locomotion.

Pharmacological manipulation of mTORC1 activation.  Rapamycin specifically blocks mTORC17,8. 
We used a rapamycin dosage shown to impair LTM when injected systemically before a 2-hour training (20 mg/
Kg62, N = 10) diluted in 4% ethanol, 5% Tween-80 and 5% PEG-400. We confirmed mTORC1 blockade by rapa-
mycin with Western blotting (Fig. 2b). Behavioral measures of imprinting were performed 24 hours after training. 
Vehicle-injected chicks were used for comparison (N = 11).

To enhance mTORC1 signaling outside of the critical period (P4) we employed two pharmacological agents: 
(1) we used the AKT activatorSC7916,35,63 (0.04 mg/g, N = 10) diluted in diluted in 5% Tween-80 and 5% PEG-400 
to enhance mTORC1 activity; and (2) Thyroxine (30 µg/100 gr, N = 11), which is known to extend the sensitive 
period for visual imprinting29, after verification that such manipulation strongly activates mTORC1 within IMM 
(Fig. 4c). SC79-treated group was compared with vehicle-injected chickens (N = 12). To evaluate if the previously 
reported29 T4-mediated re-opening of the critical period requires mTORC1 activation, we administered both T4 
and rapamycin (N = 8) to P4 chicks before training. All drugs used in our study were injected systemically (i.p.) 
30 minutes prior to training.

Western blotting.  Lysates of IMM and MNM (anatomical boundaries described below) were obtained from 
brain tissue, punched out from 0.75- to 1 mm-thick sagittal brain slices collected from imprinted (N = 7) and con-
trol (N = 6) animals. We used antibodies against the phosphorylated ribosomal protein p-s6 (Cell Signaling Cat 
#2215) and total s6 protein (Cell Signaling Cat #2217), following standard protocols described before64. Control 
tissue samples were obtained from chickens that ran on the wheel towards a screen displaying only a static image 
of an empty room.

Dendritic spine analysis.  Chicks were euthanized, and brains were rapidly removed and sank in PFA (4%) 
for 1 hour before being transferred to PBS. Fixation period was set to 1 hour because over-fixation damages the 
cellular membrane, affecting DiI spread. Sagittal slices (200 µM thick) were made with a vibratome (Leica VT 
1000S). The DiOlistic technique was used to obtain sparse labeling of neurons. In brief, tungsten beads coated 
with a lipophilic dye (DiI) were delivered with a modified gene gun. After allowing the DiI to spread for 24 hours 
at room temperature, slices were mounted using ProLong Gold mounting media. Confocal imaging (Zeiss LSM 
510 Meta Duo V2) was used to collect Z-stacks (63×, zoom 3) from dendritic arbors of MNM and IMM neurons. 

http://www.blender.org/
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The criteria to define regions of interest within a dendrite were based on distance from the soma (50–75 µm), 
always after the first dendritic bifurcation.

All images were taken blind to experimental groups and treatment. IMM is located 2.5 mm from the dorsal 
surface of the forebrain and 0.5–1 mm from the caudal edge, limited below and laterally by the lateral ventricle. 
MNM stereotaxic coordinates are: 0.5–1 mm lateral from the midline, 3 mm ventral from the dorsal surface of the 
brain and 5 mm rostral from the caudal edge of the forebrain, below the lateral pallial lamina that separates the 
hyperpallium and mesopallium65. All compared samples were processed the same day, using the same protocol, 
and images were taken with equal microscope settings. As in other comparative testing, control animals were 
housed in the same conditions as trained animals but presented with a screen displaying the static image of a 
virtual empty room.

Image J software (Version 1.50a) was used to count spines in each group by a subject blind to treatments. To 
enhance spine contrast, a multicolored lookup table (Fire) was used. Two 10 μm segments were marked randomly 
along each secondary dendritic branch. Spines along each of the two segments were counted by a blind exper-
imenter. The spines‘ head width, presence of neck and overall length were used for classifying them in stubby 
(length <1 μm), thin (1 <length <2 μm, no clear head or neck), mushroom (1< length <2 μm, head and neck) 
and filopodia (length >2 μm)34,66,67.

Statistical analyses.  SigmaPlot (Systat Software) was used for statistical analysis. Data distribution normal-
ity was assessed using the Shapiro-Wilk and F-test to evaluate differences in variance. When variance was signif-
icantly different across datasets, the Welch’s correction was used. Statistics were based on the two-sided Student’s 
t test, or the two-way ANOVA and Bonferroni post-hoc test for multiple comparisons of normally distributed 
samples. Otherwise the Mann-Whitney or the Kruskal-Wallis and Dunn’s multiple comparisons tests were used. 
Within-group variation is indicated by box plots showing the mean, interquartile and 10–90 percentiles (error 
bars) for each distribution. p < 0.05 was the criterion for significance.
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