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ABSTRACT

Due to advances in high-throughput biotechnol-
ogies biological information is being collected in
databases at an amazing rate, requiring novel com-
putational approaches that process collected data
into new knowledge in a timely manner. In this
study, we propose a computational framework for
discovering modular structure, relationships and
regularities in complex data. The framework
utilizes a semantic-preserving vocabulary to convert
records of biological annotations of an object, such
as an organism, gene, chemical or sequence, into
networks (Anets) of the associated annotations.
An association between a pair of annotations in an
Anet is determined by the similarity of their co-
occurrence pattern with all other annotations in
the data. This feature captures associations
between annotations that do not necessarily
co-occur with each other and facilitates discovery
of the most significant relationships in the collected
data through clustering and visualization of the
Anet. To demonstrate this approach, we applied
the framework to the analysis of metadata from
the Genomes OnLine Database and produced a
biological map of sequenced prokaryotic organisms
with three major clusters of metadata that repre-
sent pathogens, environmental isolates and plant
symbionts.

INTRODUCTION

In many branches of scientific information is collected
in tables, forms or questionnaires. Most biological
databases, for example, accumulate knowledge by
annotating or curating different biological objects or

their relationships (1). This information includes, but is
not limited to, characteristics of sequenced genomes (2),
genes (3–5), chemicals (6,7) and enzymes/metabolic
pathways (8–10). With advances in high-throughput
sequencing and omics technologies, the number of such
resources is growing at an unprecedented rate (11–13).
To facilitate their usage, a dedicated academic journal
that introduces their description (14) and even a new
resource, BioDBCore, to collect attributes of the data-
bases, has emerged (15). While databases help scientists
to gather and integrate massive amounts of information
by downloading various types of data, the task of iden-
tifying hidden regularities in the data is left open (16). For
this reason, computational approaches that sift
non-spurious associations hidden in large and complex
data and discover clusters of these annotations are needed.
One known approach to mining associations in large

data sets is association rule (Arule) learning (17). This
algorithm was initially designed to find frequently
associated products in supermarket-sale data to under-
stand consumer purchasing behaviors. Recently, the tech-
nique was applied to mine biological associations: to
identify a predictive combinations of genes in the
genotype–phenotype relationships (18), to discover
adjacent amino acids on a binding site of a protein
complex (19), to analyze disordered proteins in prokary-
otes (20) and to extract combinations of gene annotations
from a list of over-expressed genes (20,21). Association
rule learning, however, has serious drawbacks for extract-
ing hidden regularities among biological annotations.
First, it generates a large number of spurious rules that
are largely redundant. These rules are not easy to use for
further analysis, and they are difficult to filter, cluster and
visualize. Secondly, association rule learning captures as-
sociations between annotations only when they directly
co-occur in the data. Consequently, all indirect associ-
ations that may underlie important regularities are lost.
Thirdly, since the algorithm is blind to the semantic
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structure of data, the produced rules do not reflect the
initial hierarchy or type of each annotation, it makes the
results difficult to interpret and cluster.
This paper introduces a computational framework

(Figure 1) that embraces both classical association rule
learning and a novel approach to identify indirect associ-
ations and hidden biological regularities within a large
data set. We address drawbacks discussed above by
introducing two new concepts, the type-value format of
biological annotations and the association network
(Anet). The type-value format is a flattened representation
of a controlled vocabulary. It helps to restore important
semantic relationships of the annotations after their pro-
cessing by computational algorithms. This format
simplifies filtering and grouping of annotations in Anets
and in Arules. An association in an Anet is computed by
considering both direct and indirect associations in the
data. As in other biological network representations, an
Anet allows researchers to engage network analysis tools
including various types of clustering (22–25) and visual-
ization (26,27) techniques. In addition, since in each result
from classical Arule learning and Anets, an association
retains annotation hierarchies, the analysis of subse-
quently inferred knowledge (e.g. biological groups or clus-
ters) is greatly enhanced. In this paper, we apply this
framework to the data collected in the Genomes OnLine
Database (GOLD) (2) and present the analysis procedures
and biological regularities inferred from the data.

MATERIALS AND METHODS

The proposed algorithm to convert a data table with an-
notations into type-value transaction records (Step 1 in
Figure 1) was implemented as a Perl program called
‘t2t.pl’. The novel algorithm for generation of Anets
(Step 2 in Figure 1) was implemented in C++ as a
program called ‘anet’. Both programs and their documen-
tation are available for download at http://sourceforge.
net/projects/anets. The programs were applied to process
a set of annotations provided as metadata by the GOLD
research team in a table format (Figure 2). GOLD is a
comprehensive resource of biological annotations for
sequenced bacterial and archaeal organisms (2). On the
date of this analysis (March 17, 2011), it included 7331
prokaryotic genomes (rows) with each genome annotated
by 105 features or types (columns). The table included
numerous annotations represented phylogenetic informa-
tion, sequencing project information, phenotypic features
of the organisms and their general environmental charac-
teristics. Although the metadata are not meant to repre-
sent well-developed ontologies, we found that most
annotation types (columns) in the metadata are based on
a controlled vocabulary so that an annotation of a certain
type can be easily converted into the type-value format.
For this study, we selected 26 features or annotation types
reflecting (i) phenotypic, phylogenetic and genomic
features of the organisms, such as gram-staining,
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Figure 1. Computational framework for analysis of annotations collected in biological databases. Steps 1 and 2 (blue) are described in the text in
more detail. Step 3 uses a classic ‘Apriori’ algorithm for learning Arules from the type-value formatted transactions. Step 4 employs known
visualization and clustering tools to analyze the generated Anets. Step 5 uses filtering tools available in spreadsheet applications.
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phenotypes, oxygen requirement, salinity tolerance, sporu-
lation, metabolic features, motility, cell shape, arrange-
ment, temperature range, genome size and GC content,
and classifications of the organism at the level of
phylum; (ii) general environmental characteristics, such
as biotic and symbiotic relationships, habitat, associated
hosts and diseases; and (iii) classification in terms of prac-
tical relevance of the project (human pathogen, plant
pathogen, bioremediation, agricultural and others). Sets
of quantitative values representing a range, for example
the GC contents or genome size, were mapped into three
discrete levels: ‘low’ (‘small’), ‘medium’ and ‘high’
(‘large’), respectively (Supplementary Figure S1). The re-
sulting data set of annotations was then converted into
type-value formatted transactions and used to produce
Anets and Arules.

The type-value formatted transactions produced by
‘t2t.pl’ for the GOLD data set were then used as an input
for the program ‘anet’ to generate the Anets. The data set
was used to evaluate three measures of similarity when
generating Anets: Pearson correlation, Spearman’s rank
correlation coefficient and Jaccard coefficient (or cosine).
We also tested a normalization of the support profile by
dividing each support value in the profile of an annotation
by the total number of database records with the annota-
tion. We found no significant difference in the resulting
biological inferences in the case study. The generated
Anet (Supplementary Data S1) was further analyzed
using Markov clustering algorithm (22) (Supplementary
Table S1) and visualized using Cytoscape (26).

Arules (Step 3 in Figure 1) were produced by
applying ‘Apriori’ (28) to type-value formatted

transactions generated by ‘t2t.pl’ for the GOLD data
set. Each Arule is interpreted as an ‘if-then’ statement
with the confidence, support and a set of auxiliary statis-
tics provided in Supplementary Data S2 and
Supplementary Table S2. An example of the statement
from the GOLD is: if ‘GRAM_STAINING:gram+j
SIZE(KB):largejMOTILITY:nonmotile’, then ‘GC_
CONTENT:high’. This Arule means that if three annota-
tions of a bacterium in the ‘if’ part of the Arule co-occur
then it is frequently annotated by the annotation given in
the ‘then’ part of the Arule. The support for an Arule is a
probability that a randomly selected record in the
database will contain annotation values from both parts
of the Arule. The confidence is a conditional probability
that a randomly selected record of a bacterial organism in
the GOLD will have the annotation from ‘then’ part of the
Arule given that the record has all annotations from ‘if’
part of the Arule.

RESULTS

Type-value format for biological annotations

To simplify computational processing, filtering and group-
ing of biological annotations in a data set, we convert
them into a list of transaction-like records (Figure 2).
A transaction is a list of items selected together.
A typical example is a list of items bought by a
customer on a single purchase. A traditional transaction
record, however, does not associate items with their types,
e.g. dairy products or bakery products. In our study, a
record has the same format as a transaction used in
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• BIOTIC RELATIONSHIPS: free living, symbiotic, 
syntrophic

• GRAM STAINING: gram-, gram+
• HABITAT: food, air, biofilm, hot spring, deep sea, 

soil, plant, and so on. 
• DISEASE: none, sinusitis, septicemia, bronchitis, 

meningitis, otitis, lyme disease, diarrhea, ...

Table format of 
the database

records

Transaction 
records 

augmented
by the 

annotation 
type

•T1: {GRAM STAINING:gram-, BIOTIC_RELATIONSHIPS:free_living, 
DISEASE:sinusitis, DISEASE:septicemia,…}

•T2: {GRAM STAINING:gram+, BIOTIC_RELATIONSHIPS:free_living, 
DISEASE:urogenital_infection, DISEASE:non-gonococcal_urethritis, 
DISEASE:respiratory_infection, HABITAT:host}

•T3: {GRAM STAINING:gram-, BIOTIC_RELATIONSHIPS:symbiotic,
DISEASE:respiratory_infection, DISEASE:pneumonia,…}

•T4: {GRAM STAINING:gram-, BIOTIC_RELATIONSHIPS:symbiotic, 
DISEASE:respiratory_infection, DISEASE:pneumonia, 
DISEASE:pharyngitis,…}

Figure 2. An example of the conversion of annotation records given as a table into type-value formatted transactions using 4 truncated (4 columns only)
database records in the GOLD. Each row in the table provides metadata for a sequenced organism, and each column groups the metadata by the type.
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conventional association rule learning (28), but each item
is also supplemented with a prefix describing a more
general level of the conceptual hierarchy inferred from
the database. In other words, a transaction record is not
a list of appearances of annotations only, but a list of
composite information; an annotation with its associated
class or type. A need of the more structure of the trans-
action stems from two-level organization of information
in many biological databases where each annotation is
usually based on a controlled vocabulary and includes
not only annotations but also their types. Each type of
annotation has its own set of allowed annotation items,
terms or values. Information in survey forms, question-
naires, tables and many biological databases, including
GenBank (5), UniProt (4), MetaCyc (10), KEGG (8),
also has a controlled vocabulary and a similar two-level
structure (type-value). We supplement each annotation in
the transaction records by its type and in this way preserve
the two-level structure of biological information in the
generated networks and the Arules. Figure 2 demonstrates
how database records with annotation values given in a
table are converted to transactions augmented by the an-
notation type using an example from the GOLD.

Association network

To represent annotations collected in the database as a
network of their association, or Anet, we analyze each

pair-wise association among all unique annotations in
the database. Both direct and indirect associations are
found to be important in this research. In the genome-
wide association studies (GWAS) databases (29), for
example, two phenotypes do not always coincide, or asso-
ciate directly, in any single transaction, but they may be
linked indirectly by a set of single nucleotide polymorph-
isms (SNPs) reported in the same set of genes. To capture
not only direct associations but also indirect associations
between annotations, we compute an association of two
annotations by calculating a correlation between their
co-occurrence profiles, that is, their co-occurrences with
all other annotations in the data. In this fashion, both
direct and indirect co-occurrences are considered in the
computation (Figure 3). More specifically, suppose that
we have found n annotations {A1,. . .,An}, where each an-
notation Ai co-occurs with one or more other annotations.
We characterize such a direct association between two an-
notations Ai and Aj by a support value Aij. If Ai and Aj

co-occur then Aij is equal to the number of records in the
database where Ai and Aj co-occur; otherwise the support
value Aij is zero. The support value of the annotation with
itself, Aii, is equal to the number of records in the database
that include annotation Ai. A matrix comprised of all
support values {Aij}, where I=1,. . .,n, j=1,. . .,n, is
referred as a support matrix; and Aii denotes the entry
at the i-th row and the j-th column in the matrix. We

(a)

(c)

(b)

(d)

Figure 3. A workflow for revealing associated annotations in the database using an example of 103 database records converted to transactions (a).
The algorithm includes (b) calculation of support values for each pairs of unique annotations in the database (associations with 0 support values are
not shown); (c) transformation of all support values into a support matrix with each row/column representing a support profile of an annotation; (d)
generation of the Anet using Pearson correlation coefficient (R) as the similarity measure for each pair of profiles, (e) clustering of the Anet using a
threshold for the correlation coefficient and (f) the Anet visualization.
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define a ‘support profile’ of an annotation Ai as a vector of
support values for pairwise associations that include Ai

(the association with itself is also included). A support
profile, therefore, is just the row i of the support matrix
Aij. Similarity between two annotations Ai and Aj is
estimated by similarity of their profiles, or a pair of cor-
responding rows from the support matrix Aij, using a simi-
larity measure, such as Pearson correlation coefficient,
Spearman’s rank correlation coefficient or Jaccard coeffi-
cient. The resulting pairs of annotations, along with the
value of similarity of their support profiles, represent a
weighted network, Anet.

Figure 3 gives a simple example of an Anet built from
103 database records with 8 unique annotations (A, B, C,
D, A1, B1, C1 and D1). The records are constructed to
present two communities, ABCD (supported by 100
records) and A1B1C1D1 (supported by 1 record), inter-
sected in two records: one record with annotations B and
B1 and one record with annotations C and C1. The
example demonstrates how the Anet helps to identify the
communities by considering the similarity of the support
profiles instead of the direct co-occurrences of the anno-
tations. The threshold value for the profiles similarity
measured by the Pearson correlation was set to 0 so
only pairs of annotations with a positive similarity value
are included in the Anet. In the example, although two
pairs of annotations, B and B1 and A1 and B1, each are
supported by one database record, the significance of their
associations computed in terms of the support profiles are
very different because of indirect associations. As a result,
while annotations A1 and B1 associate significantly with
the similarity value R=0.79, annotations B and B1 do
not associate (R=�0.32), and this is not included in the
Anet. The same is true for annotations C and C1.

Setting Anet resolution using a Monte Carlo simulation

We set the level of resolution for an Anet from the statis-
tical significance of similarity between support profiles of
the annotations. To assess this significance, we calculated
the P-value of a similarity score using a Monte Carlo
simulation approach (Supplementary Figure S2) (30).
The P-value was calculated by randomly selecting two
annotations Ai and Aj from a set of co-occurring annota-
tions {A1,. . .,An}, extracting the support profile for each of
them from the support matrix, and then calculating a simi-
larity measure of the profiles. These calculations were
repeated for 10 000 random pairs of annotations. The
P value for a given value of the similarity measure was
then calculated as the fraction of the random pairs with
the value of similarity greater than the given value. By
setting a threshold for the P-value, we limit the number
of pairs of associated annotations and generate a network
of desired granularity and resolution.

Applying the framework

We applied the framework to analyze metadata (1176
unique annotation values classified into 26 types) from
7017 prokaryotic genomes. We used the annotations in
the GOLD that were available in a table format as
described in Figure 2. Since many different annotation

types and their values often co-occur in metadata from
an organism, or in one row of the table, the structure of
the collected information is complex, with pervasive con-
nections among the annotation values. This complicates
the discovery of regularities in the data. On the other
hand, the complex structure of the data provides a good
case study for the proposed framework. Here, our goal
was to uncover modular structures and general regularities
underlying inter-relationships among phenotypic, genomic
and environmental characteristics of sequenced prokary-
otes and then to explore individual relationships among
specific annotations using Arules.
The Anets were produced at two different levels of

granularity, P-values of 0.05 and 0.01 (Figure 4, Sup-
plementary Dataset S1). The numbers of vertices (annota-
tions) and edges (associations) are 1136 and 34 545, and
949 and 6944, respectively. About half of the identified
associations in the Anets are indirect, i.e. between anno-
tations that do not co-occur directly in any record of the
database. We find that 55% (19 015 out of 34 545) and
50% (3467 out of 6744) of associations are indirect in
the Anets constructed with P-values 0.05 and 0.01, re-
spectively. Most indirect associations were found to
connect annotations of a small number of closely related
organisms of the same genus but annotated with different
diseases or isolated from different hosts. In the latter case,
the related organisms have similar or even identical anno-
tations except the host name. Therefore, it is logical to
consider the different host names annotated for the
related genomes, even if they never belong to one
record, as associated annotations. Another example
includes the annotations ‘HABITAT:oral_microflora’
(99 organisms) and ‘DISEASE:opportunistic_infection’
(97 organisms). They never co-occur, but have similar
co-occurrence profiles, thus were found associated with
high significance (P=0.0098).
Since the Anets included not only direct but also

indirect associations, they provide clusters that cannot
be identified if only direct associations are considered.
To empirically validate this, we constructed the equivalent
network using only direct associations. The network was
generated using Arules with two annotations (Type to be
equal 1 in Supplementary Dataset S2). The network is
found to be very dense, from which we could not find
any distinct cluster (Supplementary Figure S3). On the
other hand, we were able to find distinct biologically
meaningful clusters of annotations (Figure 4) from the
Anets using both direct and indirect associations. In
both cases, we applied the same clustering algorithm and
visualized the clustering results using the same Cytoscape
layout. We conclude that the Anet not only incorporated
indirect associations but also removed insignificant direct
associations by the new similarity measure and the statis-
tical significance test.
Post-analysis of the Anets shows that similar clusters of

annotations are identified even when Anets are generated
at different levels of resolution (different P-value cutoffs).
The full list of identified clusters is available in
Supplementary Table S1. Annotations in large clusters
suggest a strong connection between phenotypic, genomic
and environmental characteristics of the organism on one
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hand and the relevance of the organism to human needs
on the other. The type-value format of the annotations
enabled the discovery of these connections. Annotations
in an individual cluster or across multiple clusters are
easily aligned by their types making relationships among
annotations are readily interpreted. The relevance of or-
ganisms to human needs, for example, was identified by
values of the annotation type ‘PROJECT_RELEVANCE’
and phenotypic characteristics of organisms by values of
types ‘METABOLISM’, ‘OXYGEN_REQUIREMENT’,
‘SYMBIOTIC_RELATIONSHIP’ and ‘TEMPERA-
TURE_RANGE’. Annotation types also play an import-
ant role in defining signature characteristics of the
bacterial pathogens. The type ‘PROJECT_RELEVANCE’
found in this cluster includes pathogen related values such
as ‘animal pathogen’, ‘human pathogen’, ‘medical’ and
‘dental pathogen’. Likewise three annotation types
‘DISEASE’, ‘HOST_NAME’ and ‘HABITAT’ are also
found to extract characteristics of pathogens. A close in-
vestigation of the cluster also reveals that a pathogen may
have a few limited cell shapes and arrangements and may
be characterized in general as a non-sporulating free living
mesophile with facultative, aerobic or anaerobic respir-
ation and of low or medium GC content in the genome.
The second largest cluster represents characteristics of

environmental isolates that are reflected in ‘PROJECT_
RELEVANCE’ with 36 annotation values of ‘environ-
mental’, ‘evolutionary’, ‘bioremediation’, ‘ecological’ and
‘carbon cycle’. The other annotations in the cluster include
a diverse set of different environmental habitats (36 anno-
tations), metabolic activities (56 annotations) and phylo-
genetic groups (17 annotations), along with such
characteristics as obligate aerobic respiration and high
genomic GC content. The third largest cluster of annota-
tions represents characteristics of plant symbionts isolated

from diverse plant hosts (88 annotations), roots and root
nodules, and characterized by nitrogen fixing metabolic
activity. Four other large clusters denote obligate intracel-
lular pathogens, mainly from the phylum Chlamydiae;
plant pathogens; environmental bacteria with specific
characteristics important for practical applications; and
other endosymbionts, such as symbionts of insects and
nematodes.

Using Arules to find frequently co-occurred annotations
and to examine regularities inferred from Anets

Discovering regularities from Arules is rather challenging.
A key characteristic of Arules is redundancy. Lower order
rules (rules with smaller number of items) are largely
subsumed by higher order rules (rules with larger
number of items). As a result, the number of generated
Arules is usually huge requiring methods to select the most
important or interesting Arules. Clusters of annotations
produced from an Anet can provide the necessary
guidance for such selection. These clusters contain anno-
tations with significantly correlated support profiles and,
therefore, more likely represent important regularities
hidden in the data. Selection of Arules for clustered anno-
tations can also provide comprehensive statistics on how
frequently the annotations associate directly and, thus,
supplement the information revealed by Anet with add-
itional evidence of a direct association.

We decided to use Arules to further investigate two inter-
esting regularities discovered in two major clusters: an as-
sociation of high genomic GC content with annotations of
environmental isolates and medium and low GC content
with annotations of pathogens. For example, in each of the
clusters, the type PROJECT_RELAVENCE is found but
with different values. While ‘GC_CONTENT:low’ and

Figure 4. Biological maps of sequenced prokaryotic organisms based on their metadata collected in the GOLD. The maps are based on the Anet
(Supplementary Dataset S1) generated from the metadata using Pearson correlation as the similarity measure, and two P-value thresholds: 0.05
(a) and 0.01 (b). The maps link environmental, physiological, genomic and phenotypic characteristics based on similarity of profiles of their
co-occurrences in the sequenced prokaryotic organisms and reveal similar communities/clusters of the annotations (Supplementary Table S1)
indicated by color. Names of seven most populated clusters were assigned by manual curation of ‘PROJECT_RELEVANCE’ annotations within
each cluster.
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‘PROJECT_RELEVANCE:human_pathogen’ belong to
cluster pathogen, ‘GC_CONTENT:high’ and non-human
pathogen related values such as ‘PROJECT_
RELEVANCE:biotechnological’ belong to cluster envir-
onmental isolates (Figure 4 and Supplementary
Table S1). For the analysis, we gathered the statistics of
102 381 Arules, where each rule is of at least 80% confi-
dence and the support value is of 0.05%, which amounts to
at least four database records (Supplementary Dataset S2).
We then selected Arules that contain ‘GC_CONTENT:
low’ or ‘GC_CONTENT:high’ with the minimum
support of 50 records (Supplementary Table S2). The re-
sulting sets were 51 and 22 Arules for low and high GC
content, respectively. Nine rules out of 51 for low
GC content included ‘PROJECT_RELEVANCE:
human_pathogen’, and 5 out of 22 rules for high
GC content included ‘PROJECT_RELEVANCE: bio-
technological’, or ‘agricultural’. None of the high
GC content rules included ‘PROJECT_RELEVANCE:
human_pathogen’, and none of the low GC content rules
included ‘PROJECT_RELEVANCE:biotechnological’ or
agricultural. Two other important associations found by
Anet are between the type of cellular respiration and the
GC content and between the genome size and the GC
content. The associations are also confirmed in the
Arules. The latter relationship between the genome size
and GC content was also confirmed by computing the cor-
relation between genome sizes in terms of kilo base pairs
and GC content for complete prokaryotic genomes. We
found a medium level of correlation R=0.53 between
these characteristics (Supplementary Figure S4).

We further analyzed relationships identified by Anets
and Arules in the context of published observations on
the genomic GC content in different organisms. Lower
GC content in obligatory pathogens/symbionts, as well
as in phages, plasmids and insertions elements, was
described before and linked to the higher energy cost and
limited availability of G and C over A and T/U (31).
Associations of GC content with the type of cellular res-
piration and with genome size are also reported previously
from an analysis of smaller sets of organisms (32–34). Our
data generated, from a significantly greater number of or-
ganisms, show a similar trend. Importantly, our analysis
associates high GC content, larger genome and obligate
aerobic respiration with complex environmental habitats
and with a diversity in metabolic activities and physio-
logical characteristics of prokaryotic organisms.

DISCUSSION

Considering the amazing rate at which data are
accumulated in natural and social sciences, new methods
that process and interpret large and complex data are in-
creasingly important. The proposed approach makes a
step in this direction providing a way to transform a com-
bination of numerical and nominal data collected in
tables, survey forms, questionnaires or type-value anno-
tation records into networks of associations. After the
transformation, different statistical and algorithmic tools
can be applied for further analysis and visualization of

the data. The case study shows how the approach
discovers hidden regularities in annotation data from
bacterial genomes through the data transformation,
computation of associations, clustering, statistical evalu-
ation and visualization. The application domain of the
proposed framework is not limited to biological data. It
can, for example, be applied to approximate the
meaning of texts documents, to analyze social
communities, to visualize results of surveys and even
to facilitate clustering of densely nested weighted
networks. In the latter case, the nested network could
be converted into a support matrix and then into Anets
for further clustering and visualization (steps c, d, e and
f in Figure 3).
Like with any statistical analysis, the proposed

approach has some limitations. First, it cannot automat-
ically generate a comprehensive output by processing a
collection of type-value formatted annotation records
with incorrect syntax or semantics. Syntactically, each
record in the dataset must conform to the required
format. Semantically, each record must include character-
izations of the same object such as a protein, genome, gene
or person. Furthermore, a proper selection of annotation
types with controlled vocabularies that are independent
and relevant to the goal of the analysis is required to
produce meaningful results. In the GOLD study, for
example, we had to exclude 78 annotation types that fail
to meet the criteria. Also, we had to introduce two
nominal ranges for two types, genome size and the GC
content, which were relevant to our analysis. Another
caveat is that the approach is blind to bias potentially
inherent in the collected data. Such bias can affect
regularities discovered by Anet. For example, due to the
difficulty in sequencing and phenotypic characterization of
non-cultured organisms, the analyzed GOLD data set is
obviously dominated by cultured prokaryotes. Threshold
parameters used to produce and to cluster Anets must
also be carefully adjusted not only for a given data set
but also for a chosen similarity measure. Recently
developed novel clustering algorithms, like linkcomm
(link communities) (23), and measures of similarity, like
maximal information-based non-parametric exploration
(MINE) statistics (35), may help to uncover a modular
structures in the collected data and hidden regularities.
Finally, it is important to note that the time required
to process a data set is rather dependent on the number
of unique annotations in the data, not simply the data
volume.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2, Supplementary Figures
1–4 and Supplementary Datasets 1 and 2.
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