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Abstract: In this study, K417G Ni-based superalloy with a 20-mm gap was successfully bonded
at 1200 ◦C using powder metallurgy with a powder mixture. The results indicated that the
microstructure and mechanical properties of the as-bonded alloy were highly dependent on the
brazing time (15–45 min), mainly due to the precipitation and distribution characteristics of M3B2

boride particles. Specifically, alloy brazed for 30 min exhibited desirable mechanical properties,
such as a high tensile ultimate strength of 971 MPa and an elongation at fracture of 6.5% at room
temperature, exceeding the balance value (935 MPa) of the base metal. The excellent strength and
plasticity were mainly due to coherent strengthening and dispersion strengthening of the in situ
spherical and equiaxed M3B2 boride particles in the γ + γ′ matrix. In addition, the disappearance of
dendrites and the homogenization of the microstructure are other factors that cannot be excluded.
This powder metallurgy technique, which can avoid the eutectic transformation of traditional brazing,
provides a new effective method for wide-gap repair of alloy materials.
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1. Introduction

K417G Ni-based superalloy is widely used in the manufacture of aerospace components, such as
turbine nozzle guide vanes, integral wheels, and turbine blades, due to its high structural stability and
excellent mechanical properties at high temperatures [1–3]. However, these aerospace components are
often exposed to high-temperature and high-pressure environments, which may cause microcracks
and reduce their service life [4]. In recent years, this issue has been addressed using transient liquid
phase (TLP) bonding [5], which is an excellent brazing technique with a filler metal based on eutectic
transformations. Since this technique is more efficient and cost-effective compared to other repair
techniques, it has been used for bonding aerospace components and repairing cracks [6–8]. However,
due to the complete melting of the filler metal and the formation of a brittle eutectic structure, it is
limited to gaps smaller than 1.5 mm [9–11].

With the rapid development of current technology, the maintenance of turbine blades is becoming
more and more rigorous [12]. As a result, relatively large cracks or worn areas (>1.5 mm) are discovered
in aerospace components, where the narrow gap TLP bonding technique would be inadequate [13].
For wide-gap brazing, the selection and design of the filler metal composition is the key factor to
improve the brazing performance [14–19]. Considerable effort has been devoted to adding a second
gap-filler powder, (hereafter termed additive powder) of similar composition to that of the base metal
(BM), to the joint gap, for use with braze powder during the high-temperature brazing process [14,20,21].
During the entire wide-gap brazing process, additive powder with a high melting point remains largely
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unmelted, thereby providing the necessary capillary force to retain the molten braze powder that
would otherwise be too fluid to bridge the faying gap surfaces [16,17]. However, the formation of hard
and brittle eutectic structures with uneven distribution cannot be avoided due to their sensitivity to
the chemical composition of the filler metal, brazing temperature, and brazing time [22–25].

We previously reported [26] the successful design of a new type of Ni-based mixed filler powder
without eutectic transformation, which can be used in the repair of K417G alloy with a wide gap of 20 mm
by introducing in situ precipitated borides. In the process, the high-melting-point additive powder
with a supporting function can split the large gap into tiny virtual gaps, while the low-melting-point
braze powder with a filler function can be fully melted, for wetting and filling the numerous tiny gaps
within the large gaps. However, the effect of the brazing time on the properties of the wide-gap brazing
joints and the strengthening mechanisms are not clear. In this study, we analyzed the microstructure,
and mechanical properties of K417G alloy brazed repairs by vacuum hot-pressing for different brazing
time. In particular, the precise regulation of the shape and distribution of the M3B2 boride phase inside
the wide-gap brazed (WGB) region were investigated, ultimately achieving a high-quality brazing
repair of the wide gap of K417G alloy.

2. Materials and Methods

2.1. Materials

The K417G alloy with a size of Φ80 ×H20 mm, and chemical composition, as shown in Table 1,
was used as the cast base metal (BM). A wide gap with dimensions of L20 mm ×W20 mm × H20 mm
was machined into the core of the K417G alloy. In order to perform bonding by wide-gap brazing,
the high-melting-point additive powder similar in composition to the BM and low-melting-point
braze powder were mixed at the weight ratio of 95:5, to obtain the mixed filler powder. The chemical
compositions of the base metal, additive powder, braze powder, and mixed filler powder, as shown in
Table 1.

Table 1. Chemical compositions (in wt.%) of the base metal, additive powder, braze powder, and mixed
filler powder.

Materials Co Cr Ti Al Mo W Nb Zr V B Ni

Base metal 10.20 8.80 4.70 5.30 3.40 / / / 0.80 / Bal.
Additive powder 7.50 14.50 4.40 3.80 4.30 2.90 1.50 / / / Bal.

braze powder 18.80 12.60 / 3.50 / / / 8.80 / 2.80 Bal.
Mixed filler

powder 8.10 14.40 4.18 3.79 4.09 2.76 1.43 0.44 / 0.14 Bal.

Micrographs of surface morphology and its corresponding cross-section of the additive powder
and braze powder are displayed in Figure 1a,b. The spherical additive powder containing dendrites
has a melting peak in the high-temperature region, while the spherical braze powder containing
cellular crystals has a melting peak in the low-temperature region. As was expected, the mixed filler
powder achieved melting peaks both in the high-temperature and low-temperature regions (Figure 1c).
Taken together with previous research results [26], the suitable brazing temperature was determined to
be 1200 ◦C, at which the braze powder was completely melted during the brazing process, while the
additive powder does not undergo significant melting and continues its supporting role.
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Figure 1. Micrographs of surface morphology and corresponding cross-section of the additive 
powder (a) and braze powder (b), and DSC curves of the additive powder, braze powder and mixed 
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prepared corrosion solution (20 g anhydrous CuSO4 + 100 mL HCl + 5 mL H2SO4 + 10 mL H2O) for 40 
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Figure 1. Micrographs of surface morphology and corresponding cross-section of the additive powder
(a) and braze powder (b), and DSC curves of the additive powder, braze powder and mixed filler
powder (c) (note, the cross-section of the additive powder and braze powder was etched by the prepared
corrosion solution (20 g anhydrous CuSO4 + 100 mL HCl + 5 mL H2SO4 + 10 mL H2O) for 40 s).

2.2. Brazing Method

Prior to brazing, the brazing surface of the BM was polished, and then degreased ultrasonically
for 1200 s in a bath of acetone. The mixed filler powder was assembled into the wide gap in the BM and
secured by upper and lower graphite punches, as shown in Figure 2a. The joint configuration was heated
in an HP-12 × 12 × 12 furnace with a vacuum of ~5 × 10−4 Pa (Centorr Vacuum Industries, Nashua,
NH, USA). The time–temperature profile of the brazing cycle is shown in Figure 2b. The specimens
were brazed by heating to 1200 ◦C for three different time periods, namely 15, 30 and 45 min, followed
by cooling in a vacuum furnace. During the wide-gap brazing process, a densifying pressure of around
20 MPa was maintained in the mixed powder-filled area. The complete brazing process is described in
detail in previous reports [26].
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process (b).

2.3. Microstructure and Properties Characterization

In this study, the physical properties, phase composition, and microstructure of the mixed filler
powder and as-brazed alloy were characterized by optical microscopy (OM) using a VHX-600 digital
microscope (Keyence, Osaka, Japan), X-ray diffraction (XRD) analysis using a Rigaku D/MAX-2500/PC
X-ray diffractometer (Rigaku Corp., Tokyo, Japan), scanning electron microscopy (SEM)/energy
dispersive X-ray spectroscopy (EDS) using an FEI NOVA NANOSEM 430 scanning electron microscope
(FEI Company, Hillsboro, OR, USA) equipped with an energy dispersive X-ray spectrometer,
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and transmission electron microscopy (TEM) using a JEM-2100F transmission electron microscope
(JEOL Ltd., Tokyo, Japan).

In addition, the tensile mechanical properties of the as-brazed alloy at room temperature were
characterized at a strain rate of 0.1 mm/min on a SANS CMT5105 microcomputer-controlled electronic
universal testing machine (Sans Testing Machine Co. Ltd., Shenzhen, China), with tensile specimen
dimensions of L60 mm ×W12 mm ×H3 mm. The settings of the electron microscope and positions
of the tensile samples are described in detail in previous reports [26]. To ensure the accuracy and
repeatability of the experiments, all tests in this study were performed in triplicate.

3. Results

3.1. Microstructure of Wide-Gap Brazed Region

Similar to the results of our previous study [26], the microstructures of the brazed joints differ in the
WGB region and BM, as can be seen in the micrographs shown in Figure 3a–c. The effect of the brazing
time on the morphology of the WGB region was determined by performing phase measurements
and backscatter electron microscopy analysis on the samples. The XRD patterns (Figure 4) of the
WGB region brazed at different brazing times reveal that the phases include γ + γ′ matrix and M3B2

precipitates [27–29]. Moreover, the peaks of the γ + γ′ matrix and the M3B2 phase tend to be moved
to the lower angles as the brazing time increases. This is due to the growth characteristics exhibited
by the grains of the alloy induced by the heat accumulation with the extension of the holding time.
Additionally, it was also found that the intensity of the diffraction peak of crystal plane (211) of M3B2

boride gradually increased with the extension of the brazing time, which indicates that the content of
M3B2 boride gradually increased. This is mainly due to the extension of time, which provides enough
time for the precipitation of M3B2 boride.
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region brazed at different brazing times.
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Figure 4. (a) XRD patterns of the mixed filler powder and WGB region bonded at different brazing
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The backscattered electron micrographs of the WGB region bonded for different brazing times
(Figure 3d–f) reveal significantly changed distribution, morphology, and area fraction of M3B2 particles
in the corresponding WGB region with increasing brazing time (Table 2).

Table 2. Summary of location, shape, and area fraction of M3B2 borides in the WGB region.

Brazing Time Location Shape Area Fraction

15 min Dendrite boundary Chain-type 1.78%
30 min Grain/Grain boundary Globular/Blocky 2.44%
45 min Grain boundary Strip-type 2.82%

(Note, M3B2 particles in the electron micrographs were counted and measured by Photoshop 7.0 and Image Pro 4.5.).

When the brazing time is 15 min, the M3B2 phase mainly distributed along the boundary of
dendrites with chain-type shape; this may be due to the presence of higher energy in the dendrite
boundary, which provides a good dynamic foundation for the precipitation of M3B2 boride [30,31].

It is worth noting that the trend towards sphericalization and equiaxing of the M3B2 boride
particles in the WGB region was most obvious in the sample brazed for 30 min. When the brazing time
is increased to 45 min, the M3B2 borides of the WGB region are “strip-type”, larger and distributed
along the grain boundaries (Figure 3c,f), which demonstrates coarsening of M3B2 borides after an
excessively long time [32].

Meanwhile, for the joint sample prepared by brazing for 30 min (Figure 3h), the M3B2 boride
particles in the WGB region exhibit a relatively narrow size distribution, with most dispersed in the γ +

γ′ matrix. This is mainly a result of the state of the mixed filler powder, which is more suitable for the
nucleation of spherical M3B2 boride precipitates in crystals after 30 min.

This finding showed that at 30 min, the braze powder was completely melted, the mixed filler
powder in the WGB region was in a homogeneous compositional state, and there was better nucleation
of the M3B2 precipitates in the crystal. Overall, this further demonstrated that this brazing condition
(30 min) is better for sufficient diffusion of boron into the matrix and the solid solution effect of γ + γ′

phase. [33].

3.2. Mechanical Properties

In order to further characterize the mechanical properties of the as-brazed samples, the ultimate
tensile strength (UTS) of the joints brazed for different brazing times were tested at room temperature,
as shown in Figure 5. The results of the room temperature tests shown in Figure 5a reveal that the
tensile strength and ductility of the repaired joint initially increased and then decreased, with the
increase of the brazing time. Three tensile mechanical properties have the same trend, which indicates
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the result is repeatable. When the brazing time was increased to 30 min, the UTS was noticeably
improved to 971 MPa, exceeding the UTS (935 MPa) of the BM. Fracture failure occurred at one side
of the BM for the samples prepared at 30 min, but failure for other samples occurred at the bonding
layer (Figure 5c, indicated by a black arrow). This was attributed to the reduction in the porosity
and morphology, as well as the M3B2 precipitated phase in the WGB region. However, there was
a reduction in the UTS of the joint after brazing for 45 min. The decrease of the bonding strength
with increasing brazing time could be attributed to the larger and elongated M3B2 boride particles
in the WGB region. The improvement of the strength of the joint was attributed to the shape, size,
and distribution of the M3B2 boride particles in the WGB region. Fortunately, for the samples brazed at
1200 ◦C for 30 min, the size of the globular M3B2 boride particles is relatively concentrated, with most
distributed in the γ + γ′ matrix phases [34,35]. Therefore, it is reasonable to infer that the M3B2 borides
play an important role in the tensile properties of the joints during deformation.
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the illustration of the brazing process of the K417G alloy tensile test specimen (b), and morphology of
failed specimens (c) (BM—base metal, WGBR—wide-gap brazed region).

4. Discussion

According to the above experimental results, for the brazed alloy with brazing time of 15 and
45 min, the fracture position is near the joint of the WGB region and BM, while only for the alloy with a
brazing time of 30 min the BM breaks. These results are consistent with the mechanical properties
trend observed for bonded alloys and show that the tensile strength of the brazed joint is related to
the position, shape, and size of the M3B2 phase in the WGB region. Overall, these findings further
demonstrated that this brazing time (30 min) is the most appropriate for the diffusion of boron into
the matrix [36–38]. The samples brazed for 30 min have a moderate amount of spherical M3B2 boride
in the WGB region, and these particles are homogeneous in size and evenly distributed in the WGB
region, allowing for reduced stress concentrations during the deformation process, thereby facilitating
an efficient repair [39].

Analysis of the interface of the precipitated phase M3B2 and the matrix using selected area electron
diffraction (SAED) (Figure 6) reveals that the crystal plane of the M3B2 precipitate [100] is parallel
to that of the matrix [013]. The orientation relationship of the M3B2 borides and the matrix can be
summarized as:

(
131
)
M

//(001)M3B2
,
(
200
)
M

//
(
020
)
M3B2

, and
(
131
)
M

//
(
021
)
M3B2

, respectively. For the
as-brazed specimens with a brazing time of 30 min (Figure 6b), the angles of the crystal planes
corresponding to the phase relationship of the M3B2 borides and the matrix are 2.78◦, 15.47◦ and

14.29◦. According to the Bramfitt lattice matching theory [40], the mismatch degree factor δ(hkl)M
(hkl)M3B2

was calculated as 7.79%, and the specific parameters are listed in Table 3.
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Table 3. Matching degree factor of the phase interface between matrix and M3B2 borides.

[uvw]M [uvw]M3B2 d[uvw]M (nm) d[uvw]M3B2
(nm) θ (◦) δ(hkl)M

(hkl)M3B2
(%) δ(hkl)M

(hkl)M3B2

(%)

[200] [020] 0.1782 0.2924 15.47 17.47
7.79[131] [021] 0.1103 0.2175 14.29 1.71

[131] [001] 0.1086 0.3123 2.78 4.20

For the sample prepared at 1200 ◦C for 30 min, the M3B2 boride precipitates, and the matrix
maintain semi-coherency, with a mismatch degree of only 7.79%. Surprisingly, after 3% pre-deformation,
the mismatch degree of the M3B2 boride precipitates and the matrix in the WGB region change to
4.70% with a better coherence for the sample brazed at 1200 ◦C for 30 min [26]. This finding indicates
that the exerted strain induces a self-accommodation effect of phase interfaces, thereby transforming
the semi-coherent interface in the sample into a coherent interface in the as-brazed sample during 3%
pre-deformation. This suggests a transformation into a more stable state, consequently resulting in
higher strength and larger plasticity for the metallic materials [41].

According to the coherent strain strength theory model of the precipitated phase established
by Mott and Nabarro [42], the fine M3B2 precipitates in the γ + γ′ matrix cause lattice misfit when
deformation occurs, especially for the precipitated phase of M3B2 boride (a = b = 0.578 nm, c = 0.313
nm) and its matrix (a = b = c = 0.356 nm). As mentioned above, due to the self-accommodation effect
of phase interfaces, the elastic stress field generated by the lattice mismatch will cause the lattice of the
γ + γ′ matrix, whose cell volume is relatively small, to expand. As a result, it will induce the formation
of numerous dislocations in the γ + γ′ matrix during the deformation process, especially near the
M3B2 precipitated particles. At this point, the dislocation movement will not directly pass through
these precipitated particles but will result in multiple coherent strains that hinder their motion by
dislocation tangles to achieve the reinforcement effect [43].

5. Conclusions

In this study, a wide gap in the K417G alloy was repaired at 1200 ◦C by vacuum hot-pressing for
different brazing times. The microstructure evolution and mechanical properties of the WGB region
were thoroughly studied. The following findings were made:
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(1) With the increase of the brazing time from 15 to 45 min, the tensile strength of the repaired joint
increased initially and then decreased. The maximum UTS value of the joint was obtained by
brazing for 30 min and was 971 MPa at room temperature, which was higher than that of the
cast BM.

(2) At the brazing times of 15 min, the M3B2 boride particles were mainly distributed at the dendrite
boundary, and their size was fine. The M3B2 boride particles in the joint brazed for 30 min exhibited
the most uniform size and semi-coherently precipitated in the matrix, with an approximate
spherical size of about ~1.44 µm. When the brazing time was further increased to 45 min,
the grains and particles coarsened. Therefore, 30 min was determined to be the optimal brazing
time to obtain high performance.

(3) The improvement of the strength of the K417G alloy brazed for 30 min is mainly due to the
coherent strain strengthening between the dispersed M3B2 particles and its γ + γ′ matrix, as well
as the mirror-deformation resistance caused by the inconsistency of the deformation between the
hard particle and the soft matrix.
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