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Abstract: Intradermal vaccination using fractional dosages of the standard vaccine dose is one strat-
egy to improve access to COVID-19 immunization. We conducted a pilot study in healthy adults in
Thailand to evaluate the safety and immunogenicity of intradermal administration of fractional doses
of ChAdOx1 (1/5th of standard dosage) or BNT162b2 (1/6th of standard dosage) to individuals
previously vaccinated (prime) with two-dose intramuscular CoronaVac, ChAdOx1 or BNT162b2.
Following an initial immunogenicity exploratory phase for each vaccine combination group (n = 10),
a total of 135 participants (n = 45 per group) were recruited to 3 groups (CoronaVac prime-intradermal
BNT162b2 boost, CoronaVac prime-intradermal ChAdOx1 boost and ChAdOx1 prime-intradermal
BNT162b2 boost) and their immunogenicity data were compared to a previous cohort who received
the same vaccine intramuscularly. Two weeks following booster vaccination, neutralizing antibod-
ies against the delta variant were similar between the participants who received intradermal and
intramuscular vaccination. However, neutralizing antibodies against the omicron variant in the intra-
dermal BNT162b2 boost groups were ~6-fold lower, while the levels in the ChAdOx1 boost group
were similar compared to their respective vaccine regimen given intramuscularly. The intradermal
booster significantly increased spike-specific T cell responses in all three groups from pre-booster
levels. Local and systemic adverse reactions were milder in intradermal compared to intramuscular
injections. Further studies are needed to evaluate the clinical relevance of these findings and the
feasibility of administration of intradermal COVID-19 vaccines.

Keywords: COVID-19 vaccination; intradermal; heterologous; booster; Thailand

1. Introduction

As of June 2022, eleven COVID-19 vaccines (four non-replicating viral vector, three
inactivated, two RNA, two protein subunit) have been granted Emergency Use Listing
by the World Health Organization (WHO) [1]. These vaccines given as two- or one-
dose schedules (Ad26.CoV.S, Johnson and Johnson) were highly effective against severe
COVID-19 and deaths, and also provided some protection against SARS-CoV-2 infection
prior to the omicron variant [2]. However, a booster or third vaccine dose is needed
to protect against the SARS-CoV-2 omicron variant, due to its ability to evade vaccine-
induced immunity [3]. Neutralizing antibodies are thought to be the primary mechanism
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of protection, but the concentration needed has not been identified [4]. Furthermore, T cell
immunity is increasingly recognized as an important marker of protection against severe
COVID-19, and is conserved across multiple SARS-CoV-2 variants [5].

In high-income countries, most of the eligible population have received two or three
doses of COVID-19 vaccines, but only 20% in LMICs have received one dose, due to
inequitable distribution of COVID-19 vaccines [6]. A few strategies have been proposed
to improve access to COVID-19 vaccination, which include fractional dosing, intradermal
vaccination, heterologous vaccine regimens and dose stretching [7–12]. While heterologous
regimens and dose stretching have been studied extensively, few studies have examined
intradermal COVID-19 vaccination. The dermis consists of multiple antigen presenting
cells that improve vaccine immunogenicity [13]. As such, intradermal vaccination typically
requires a lower vaccine dose than intramuscular vaccination, hence maximizing the
use of available vaccines. While the reactogenicity following intradermal vaccination
was generally higher for localized reactions, systemic reactions were lower compared
to intramuscular vaccination, as observed in influenza vaccination [14,15]. Intradermal
administration may increase vaccine uptake among those with vaccine hesitancy due to
safety concerns of standard intramuscular injection. Intradermal vaccination is already in
routine use for bacillus Calmette–Guérin and rabies vaccines [16].

Since early 2021, Thailand has mainly relied on the chimpanzee adenovirus-vector
(ChAdOx1) vaccine (AZD1222, AstraZeneca/Oxford) and the whole-cell inactivated vaccines,
such as CoronaVac (Sinovac, Life Sciences), for protection against COVID-19. Subsequently,
a limited amount of BNT162b2 vaccines (Pfizer–BioNTech) were available. One way to
maximize the use of these vaccines is intradermal vaccination using lower vaccine dosage,
but whether similar immunogenicity can be achieved as with standard intramuscular
vaccination is unclear. Heterologous vaccine regimens were recommended by the WHO
under certain circumstances related to vaccine supply and access [15]. This study aims
to assess the safety and immunogenicity of intradermal administration of heterologous
or homologous booster vaccination using fractional BNT162b2 (1/6th of standard dose)
or ChAdOx1 (1/5th of standard dose) in individuals who have completed the standard
intramuscular primary series vaccination of either ChAdOx1, CoronaVac or BNT162b2.
These dosages are typical for intradermal vaccination [14,16,17].

2. Materials and Methods
2.1. Study Design and Participants

This is a prospective and open-label study conducted at the Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok, Thailand, between September 2021 and February
2022. Participants were healthy adults aged 18 years or older and have received homologous
two-dose primary series intramuscular vaccination of either CoronaVac (CoronaVac-prime),
ChAdOx1 (ChAdOx1-prime), or BNT162b2 (BNT162b2-prime) 4–12 weeks prior to recruit-
ment. The participants were excluded from the study if they had the following conditions:
confirmed history of SARS-CoV-2 infection, had received current prophylactic treatment or
investigational agents against COVID-19 within 90 days, had unstable underlying diseases
that may compromise the immune responses, had a history of vaccine hypersensitivity, were
pregnant, were immunocompromised or receiving immunosuppressive agents. Written
informed consent was obtained prior to recruitment.

The recruitment was conducted in two phases. The initial phase was an exploratory
phase to determine the immunogenicity and safety of 0.1 mL of ChAdOx1 (1/5th of
standard intramuscular dose) or 0.05 mL BNT162b2 (1/6th of standard intramuscular
dose) as a booster via intradermal injection for each two-dose intramuscular primary series
vaccination (prime) group, which included CoronaVac, ChAdOx1, or BNT162b2. There
were a total of six groups and the planned sample size was ten per group. The extended
phase was aimed to focus on the CoronaVac- and ChAdOx1-prime groups, the main
primary series regimens in Thailand, with 35 additional participants enrolled in each
group to increase the power of the analysis. However, no additional participants were
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enrolled for the ChAdOx1 prime- intradermal ChAdOx1 booster group, due to poor
immunogenicity data found in the initial phase. The randomization lists were generated
before each phase initiation using the Sealed EnvelopeTM, an online software application
for the initial phase (Group 1–6) and the extended phase (Group 1–2) (Figure 1). At every
study visit, the history of signs, symptoms, and potential exposure to SAR-CoV-2, including
any confirmed COVID-19 diagnosis, were reviewed by the research staff. The nasal-swab
antigen detection testing was performed using the SD Biosensor Standard Q Covid Ag (SD
Biosensor, Inc., Gyeonggi-do, Korea) during the screening visit.
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Figure 1. Consort Diagram showing enrollment of each group in initial phase and extended phase.
Group 1 and 2 received two doses of CoronaVac intramuscularly (CoronaVac-prime), Group 3 and 4
received two doses of ChAdOx1 intramuscularly (ChAdOx1-prime), and Group 5 and 6 received
two doses of BNT162b2 intramuscularly (BNT162b2-prime). Each group was randomized to receive
intradermal BNT162b2 (0.05 mL, 1/6th of standard dosage) or ChAdOx1 (0.1 mL, 1/5th of standard
dosage). Additional participants were enrolled in the extended phase to join Groups 1, 2, and 3.

Blood samples were collected for humoral (binding antibody and neutralizing an-
tibody) and cellular (ELISpot) immune response assessment at pre- and 2 weeks post
intradermal booster vaccination. The participants were observed for at least 30 min follow-
ing the vaccination for any immediate adverse events. The participants were instructed
to submit self-assessment reports using an electronic diary (eDiary) in Google Form for
seven days after each dose of vaccination for any adverse events (AEs), including both
solicited local and systemic reactions. The solicited local AEs include pain, erythema,
and swelling/induration at the injection site, and localized axillary lymphadenopathy or
swelling or tenderness ipsilateral to the injection arm. The systemic AEs include headache,
fatigue, myalgia, arthralgia, diarrhea, dizziness, nausea/vomiting, rash, fever, and chills.
The severity of solicited AEs was graded using a numerical scale from 1 to 4 based on the
Common Terminology Criteria for Adverse Events–Version 5.0 guide by the United States
National Cancer Institute (NCI/NIH).
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The study protocol was registered at Thai Clinical Trial Registry (TCTR20210907003,
TCTR20211102006), and approved by the Siriraj Institutional Review Board (COA no.
Si635/2021 and Si894/2021).

2.2. Chemiluminescent Microparticle Assay (CMIA) for Anti-SARS-CoV-2 Binding Antibody

The plasma samples were isolated from the blood collected in tubes with sodium
citrate solution and stored at −80 ◦C. The level of antibody (IgG) against the receptor
binding domain (RBD) of the SARS-CoV-2 spike protein (Sl subunit) was determined by a
CMIA, using the SARS-CoV-2 IgG II Quant (Abbott, List No. 06S60) on the ARCHITECT
I System. This assay linearly measures the level of antibody between 21.0 and 40,000.0
arbitrary unit (AU)/mL, which was converted later to the WHO International Standard
concentration as the binding antibody unit per mL (BAU/mL), following the equation
provided by the manufacturer (BAU/mL = 0.142 × AU/mL).

2.3. 50% Plaque Reduction Neutralization Test (PRNT50) against SARS-CoV-2 Strains

The neutralizing antibody titers against delta and omicron (BA.1) strains were deter-
mined by the 50% plaque reduction neutralization test (PRNT50) on post-booster samples.
The method was described previously [18]. The titer of each sample was defined as the
reciprocal of the highest test serum dilution; the virus infectivity was reduced by 50% of an
average plaque count in the virus control wells and was calculated by using a four-point
linear regression method. The PRNT50 titers below the positive cutoff of 10 were arbitrarily
assigned a value of 5.

2.4. IFN-γ ELISpot

Cellular immunity was determined by IFN-γ ELISpot (Mabtech, Nacka Strand, Swe-
den) to ancestral strains on a subset of participants for each group (n = 20). Peripheral
blood mononuclear cells (PBMCs) were counted and stimulated with S-peptides that con-
sisted of 100 peptides from spike proteins, and nucleoprotein-membrane protein-open
reading frame protein (NMO)-peptide pools, consisting of 101 peptides from nucleocapsid
(n), membrane (M), open reading frame (ORF) 1, non-structural protein (nsp) 3, ORF-3a,
ORF-7a, and ORF8 proteins. Negative controls contained only cell culture media, while
positive controls contained an anti-cluster of differentiation 3 (CD3) at a dilution of 1:1000.
ELISpot plates were then incubated for 20 h at 37 ◦C and 5% CO2, washed and developed
using a conjugated secondary antibody that was bound to membrane-captured IFN-γ.
The plates were read using IRIS (Mabtech) and spots were analyzed using Apex software
1.1 (Mabtech) and converted to spot-forming units (SFU) per million cells.

2.5. Statistical Analysis

The immunogenicity and reactogenicity of the intradermal booster in the CoronaVac-
prime and ChAdOx1-prime groups were compared with a previous study of the standard
intramuscular booster injection of similar regimens and timing of booster vaccinations [19].
The sample size of 45 in each group included in the extended phase provides the 90% power
to determine the non-inferiority between the intradermal and intramuscular route if the
lower bound of the 95% confidence interval (CI) around the ratio of anti-RBD SARS-CoV-2
IgG antibody geometric mean concentrations (GMC) two weeks after vaccine injection is at
least 0.67, as recommended by WHO (https://www.who.int/publications/m/item/WHO-
TRS-1004-web-annex-9, access date 3 August 2021). The AE endpoints were presented as
frequencies and the Chi-square test was used to test for statistical difference. The immuno-
logical endpoints of anti-SARS-CoV-2 RBD IgG and PRNT50 titer were reported as GMC
and geometric mean titers (GMT) with 95% confidence interval (CI), respectively. Unpaired
t-tests were used to compare IgG GMCs and IFN-γ SFU between groups. Pearson’s correla-
tion coefficient was used to assess the correlation between Log10 of anti-SARS-CoV-2 RBD
IgG and Log10 of PRNT50. All statistical analyses were performed using the GraphPad
Prism 9 version 9.2.0 (283) (GraphPad Software, San Diego, CA, USA), except for the
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ANOVA analysis of the anti-SARS-CoV-2 RBD IgG among different age groups that was
performed using STATA version 17 (StataCorp, LP, College Station, TX, USA).

3. Results
3.1. Baseline Characteristics of Study Participants

The baseline characteristics of the cohort and results of the initial phase are shown in
Supplementary Materials (Supplementary Figure S1 and Supplementary Tables S1 and S2).
For the main analysis in the extended phase, a total of 45 participants in the CoronaVac
prime-intradermal ChAdOx1 boost (CoronaVac-ChAdOx1), CoronaVac prime-intradermal
BNT162b2 boost (CoronaVac-BNT162b2) and ChAdOx1 prime-intradermal ChAdOx1 boost
(ChAdOx1-BNT162b2) groups were included, and their baseline demographic character-
istics are shown in Table 1. The overall median age (interquartile range: IQR) was 39
years (30–46), 43.6% were male and the BMI was 24.0 kg/m2. The median (IQR) interval
between the second dose of primary series and the ID booster vaccination was shorter in
the ChAdOx1-BNT162b2, but was not statistically significant compared to the CoronaVac-
primed groups. Consequently, the ChAdOx1-BNT162b2 group also had a higher baseline
antibody concentration than CoronaVac-primed groups.

Table 1. Baseline characteristics of the participants of each group in the initial and extended phase.

Primary Series
(IM-IM)-Booster (ID)

Types of Vaccines

All CoronaVac-
BNT162b2

CoronaVac-
ChAdOx1

ChAdOx1-
BNT162b2 p-Value

Number of subjects, n (%) 135 (100.0) 45 (33.3) 45 (33.3) 45 (33.3) -

Age (years), median (IQR) 39.0 (30.0, 46.0) 38.0 (29.0, 44.0) 39.0 (29.0, 45.0) 43.0 (30.0, 50.0) 0.186

Male, n (%) 60 (44.4) 18 (30.0) 23 (38.3) 19 (31.7) 0.533

Body mass index: BMI (kg/m2),
median (IQR)

24.0 (21.5, 26.6) 24.4 (22.3, 26.8) 23.6 (20.4, 26.5) 23.9 (21.5, 26.4) 0.719

Interval between last dose of
primary series and booster

(weeks), median (IQR)
9.9 (7.4, 12.0) 11.6 (8.9, 16.3) 10.3 (9.1, 12.6) 7.4 (6.0, 9.6) 0.083

3.2. Humoral Immune Responses of Intradermal ChAdOx1 and BNT162b2 Booster

Two weeks following the intradermal booster, the anti-RBD IgG GMC significantly
increased in all three groups (p < 0.0001). The CoronaVac-BNT162b2 group had significantly
higher GMCs than the CoronaVac-ChAdOx1 and ChAdOx1-BNT162b2 groups. The ratio
between post-vaccination and pre-vaccination for the CoronaVac-ChAdOx1, CoronaVac-
BNT162b2 and ChAdOx1-BNT162b2 groups were 48.2 (33.4–69.6), 57.8 (42.5–78.4) and
7.6 (6.3–9.0), respectively (Figure 2 and Supplementary Tables S3 and S4). Importantly,
compared to their respective intramuscular heterologous vaccine regimens previously
reported [19], there was no statistically significant difference in GMC for the CoronaVac-
ChAdOx1 group, while the GMC of intradermal boosting in both CoronaVac-BNT162b2 and
ChAdOx1-BNT162b2 groups were around 2.6 and 1.8-fold lower than the intramuscular
boosting (p < 0.001).

Following the intradermal booster dose, the neutralizing antibody titers against the
delta variant in all three groups were marginally lower (1.3–1.6-fold) than the intramuscular
booster of the same regimens, although the titers for ChAdOx-BNT162b2 were significantly
lower for intradermal vaccination, compared with the titers for intramuscular vaccination
(Figure 3A and Supplementary Tables S3 and S4). Interestingly, compared to their respective
intramuscular vaccine regimens, the neutralizing antibody titers against the omicron variant
were significantly lower (5.4–5.8-fold) with intradermal BNT162b2, but were similar with
intradermal ChAdOx1 (Figure 3B and Supplementary Table S4).
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Figure 2. Geometric mean concentration of anti-RBD IgG pre- and post-intradermal (ID) booster dose
in the initial phase (A) and in initial and extended phase (B). Intramuscular (IM) boosting of the same
vaccine regimens from the previous study [19] is included as a reference group. Error bars represent
geometric mean concentration, plus 95% confidence intervals. BAU: binding antibody units.
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Figure 3. Neutralizing antibody titers of live virus plaque reduction neutralization assays (PRNT50)
against delta strain (A) and omicron strains (B) following intradermal (ID) booster. Intramuscular
(IM) boosting of the similar vaccine regimens from the previous study [19] is included as the reference
group. Error bars represent geometric mean titers plus 95% confidence intervals.

3.3. Cellular Immune Responses of Intradermal ChAdOx1 and BNT162b2 Booster

An intradermal booster increased the T cell responses against the spike protein for all
three groups, with significantly higher spike-specific T cell responses induced by the intra-
dermal BNT162b2 booster compared with the intradermal ChAdOx1 booster (Figure 4A,
and Supplementary Table S4). For T cell responses against the NMO proteins, no statisti-
cally significant differences were observed for any of the groups following the intradermal
booster (Figure 4B and Supplementary Table S4).
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Figure 4. SARS-CoV-2 antigen-specific T-cell response by ELISPOT after intradermal (ID) booster.
(A) Spike-specific T cell responses. (B) Nucleocapsid-membrane-open reading frame-T cell responses.
Error bars represent geometric mean concentrations plus 95% confidence intervals. SFU: spot-
forming units.

3.4. Reactogenicity of Intradermal Booster Injections

Local injection site reactions were similarly common among the groups and the
proportions were not different compared with the reactogenicity of intramuscular injection
of the similar regimens (Figure 5A). However, the severity of reactions for the intradermal
injection was milder compared to intramuscular injection. The systemic adverse effects
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were significantly less frequent and milder in intradermal compared to intramuscular
booster injections (Figure 5B).
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4. Discussion

This study found that the administration of fractional ChAdOx1 (1/5th of standard
dose) and BNT162b2 (1/6th of the standard dose) as a booster via intradermal injection
to individuals previously vaccinated with two-dose CoronaVac or ChAdOx1 standard
primary series generated robust immune responses against the delta and omicron variant.
Importantly, similar immunogenicity measured by neutralizing antibodies against omicron
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was generated following the intradermal booster, compared to the standard intramuscular
ChAdOx1 booster to CoronaVac-prime participants. However, lower antibody responses
were found for the intradermal administration of fractional dosages of BNT162b2, com-
pared with the corresponding vaccine regimen given via intramuscular injection; their
antibody concentrations were similar to the CoronaVac-ChAdOx1 group. This is the first
study to report the immunogenicity of intradermal fractional dosing against the omicron
variant. Our findings have important implications on the use of COVID-19 vaccines in
Thailand and in settings where COVID-19 vaccines are in limited supply. It is important
to note that this study was conducted when there was a major shortage of COVID-19
vaccines. For future vaccines, there may be a similar situation and novel strategies, such as
intradermal vaccination, may be needed.

Intradermal vaccination is thought to improve global access to COVID-19 because of
the use of smaller doses, provided it offers the same immunogenicity and protection [20].
However, to date, there are only a few studies that have evaluated this strategy for
COVID-19 vaccines. The initial phase of the study revealed some important findings
of each vaccine when administering intradermally following various priming vaccinations.
This includes the concentration of antibodies at the time of the booster dose, affecting
the booster responses. Another observation is that while participants vaccinated with
CoronaVac had much lower IgG antibodies after 12 weeks, the strong anamnestic response
following the booster dose suggests that sufficient immune memory was induced. This was
substantiated in the extended phase. While neutralizing antibodies are thought to be the
primary mechanism of protection [4], there is currently no identified level for protection.

Our findings indicate that robust immunogenicity is generated following an intrader-
mal booster dose of ChAdOx1 given at 1/5th of the standard dose in participants who
previously received the standard intramuscular Coronavac, which is consistent with the
findings from two other studies. These two studies found similar and non-inferior humoral
and cellular immune responses between the standard intramuscular ChAdOx1 booster
dose and the intradermal ChAdOx1 booster dose at 1/5th of standard dosing [21,22].
For intradermal boosting using BNT162b2, our study findings were also consistent with a
previous study that reported significantly lower anti-RBD IgG concentrations and neutraliz-
ing antibodies against the delta variant, when compared with corresponding intramuscular
injections in individuals vaccinated with the CoronaVac primary series [23]. This is despite
the use of different vaccine dosages for intradermal injection (1/3rd vs. 1/6th of standard
dose). Of note, none of these studies examined neutralizing antibodies against omicron.
The neutralizing antibodies titers against omicron found in our study following intradermal
boosting of fractional doses were similar across the three groups, but the titers in each
group were different, when compared with their corresponding vaccine regimen given via
intramuscular injection. High vaccine effectiveness (>93%) against symptomatic COVID-19
patients, COVID-19-related hospitalization, ICU admission, and death have been reported
for individuals who were vaccinated with CoronaVac primary series and boosted with
ChAdOx1 [24]. However, this study was conducted pre-omicron. As recent circulating
omicron subvariants (BA.4, BA.5) were found to escape immunity from standard intramus-
cular immunization, the lower neutralizing titers via the intradermal route would probably
not be clinically significant.

We found that intradermal boosting with BNT162b2 induced higher T-cell responses
to spike proteins than ChAdOx1 among individuals previously vaccinated with CoronaVac.
However, we were not able to directly compare the T cell responses between those induced
by intradermal injection and intramuscular injection. Previous studies of the intradermal
fractional ChAdOx1 booster in individuals who received CoronaVac primary series found
similar T cell responses to the standard intramuscular ChAdOx1 booster at two weeks
post-booster dose; these responses, however, were lower in patients who were given an
intradermal injection than intramuscular injection at four weeks post-booster dose [21,22].
For BNT162b2, the T cell responses were lower following the intradermal fractional dose
than the standard intramuscular dose at two weeks [23]. The clinical relevance of the
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lower T cell responses through intradermal injection is unclear but may be due to the lower
vaccine dosage. Further studies, including dose escalation, that titrate the vaccine dosage
to reach the expected immunity levels, but within acceptable adverse reactions, may be
needed. This may also be relevant for new COVID-19 vaccines, such as the bivalent Wuhan-
and omicron-variant vaccine and omicron-specific mRNA vaccines that are currently being
investigated.

Our findings of lower and milder systemic reactions are consistent with those that were
reported for intradermal injections of COVID-19 vaccines and other vaccines [14,21,22].
Intradermal administration may, therefore, increase vaccine uptake among those hesitant
about vaccination due to the high reactogenicity concern associated with the standard
intramuscular injection of some COVID-19 vaccines. However, intradermal injection would
require specific training on administration and supply of special syringes, which have
implications on implementation programs.

Our study has some limitations. Although the RT-PCR and anti-nucleoprotein tests
were not performed to rule out natural infection during the study, the participants were
screened by history of illness and exposure to COVID-19, as well as antigen detection
testing, and were closely observed during the 2-week study period. Therefore, they were
less likely to have unrecognized infections. Our sample size is small, and we did not
have a direct comparison group in the same cohort with intramuscular injection; therefore,
the results should be interpreted with caution. Another limitation is that our results on
the ChAdOx1 and BNT162b2 fractional intradermal booster may not be generalizable to
other COVID-19 vaccines and populations who have received other COVID-19 vaccines as
primary series.

5. Conclusions

In conclusion, we found that intradermal injection of fractional BNT162b2 following
CoronaVac- and ChAdOx1-prime generate robust antibody responses against SARS-CoV-2
delta and omicron variants, but at a lower concentration than the intramuscular route.
The lower BNT162b2 response following ID booster vaccination might also be related to the
lower antigen dose, but whether this is associated with lower efficacy needs to be studied
further. On the other hand, the intradermal fractional ChAdOx1 booster induced similar
antibody responses to the intramuscular route following CoronaVac-prime. The intradermal
route had lower and milder systemic adverse reactions. Further studies are needed to
evaluate the clinical relevance of these findings and the feasibility of administration of
intradermal COVID-19 vaccines. Our study has significant implications for Thailand and
other similar settings, where CoronaVac and ChAdOx1 vaccines were given as primary
series and have limited access to mRNA vaccines.
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Table S4: Adverse events following intradermal COVID-19 vaccination in the booster in the extended
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