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Abstract: Metal–organic frameworks (MOFs) comprising metal ions or clusters coordinated to organic
ligands have become a class of emerging materials in the field of biomedical research due to their
bespoke compositions, highly porous nanostructures, large surface areas, good biocompatibility, etc.
So far, many MOFs have been developed for imaging and therapy purposes. The unique porous
nanostructures render it possible to adsorb and store various substances, especially for gaseous
molecules, which is rather challenging for other types of delivery vectors. In this review, we mainly
focus on the recent development of MOFs for controlled release of three gaseous transmitters, namely,
nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Although these gaseous
molecules have been known as air pollutants for a long time, much evidence has been uncovered
regarding their important physiological functions as signaling molecules. These signaling molecules
could be either physically absorbed onto or covalently linked to MOFs, allowing for the release
of loaded signaling molecules in a spontaneous or controlled manner. We highlight the designing
concept by selective examples and display their potential applications in many fields such as cancer
therapy, wound healing, and anti-inflammation. We hope more effort could be devoted to this
emerging fields to develop signaling molecule-releasing MOFs with practical applications.
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1. Introduction

Metal–organic frameworks (MOFs) are hybrid materials composed of metal ions or metal clusters
and organic ligands. They have high porosity, large specific surface area, and surface tailorability.
Since their discovery, MOF materials have found extensive application in gas storage [1–3] and
separation [4], adsorption [5–8], catalysis [9,10], electromagnetic materials [11–13], and so on (Figure 1).
In recent years, MOFs have gained increasing attention in the field of biomedical applications such
as drug carrier, biological imaging and sensing, and theranostic nanovectors due to their unique
advantages of large pore size, degradability, and adjustable size [14,15].

On the other hand, gaseous transmitters are endogenously generated gases that can freely
penetrate cell membranes [16]. These signaling molecules have specific cell and molecular targets and
possess important physiological functions. The three gaseous transmitters identified so far are nitric
oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). All of them have multiple roles in
physiological systems, which are of crucial importance in maintaining normal physiological functions.
Moreover, these signaling molecules have shown unprecedented therapeutic capacity in the treatment
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of many diseases such as cancer, inflammation, and bacterial infection. However, the biological
functions of gaseous transmitters are highly concentration-dependent. It is inconvenient to directly
administrate the gas molecules due to the difficulty to precisely control the dosage. To attenuate
the side effects of the systemic toxicity of these gaseous transmitters, the development of delivery
platforms capable of delivering these signaling molecules to the pathological tissues and realizing
on-demand controlled release is highly desirable. To date, small molecule-based donors and various
nanocarriers including inorganic nanoparticles, polymer assemblies, biomacromolecules, etc. have
been extensively studied. Although the porous structures and ultrahigh surface areas endow MOF
materials with the intrinsic properties to store and release gaseous molecules, the development of
MOF-based nanomaterials for controlled delivery has not receive much attention until recently.

In this review, we summarize the recent advances of MOF-based materials for the controlled
delivery of gaseous transmitters (Table S1). Specifically, MOFs for controlled delivery of NO, CO,
and H2S are briefly discussed with selective literature reports. We pay special attention to the design
concepts and show the biomedical applications in cancer therapy, anti-inflammation, wound healing, etc.
In addition, we shed light on the future direction of this emerging field. The intention is not to provide
an exhaustive literature survey but to show the many possibilities to develop MOF-based materials for
controlled delivery of gaseous transmitters. We hope this emerging field could be of potential interest
to more researchers and will bring more innovative ideas to advance this intriguing field.
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Figure 1. Functional applications of metal–organic framework (MOF)-based materials in diverse fields
such as cancer therapy, antibacterial application, and delivery of gaseous transmitters.

2. MOFs for the Delivery of Nitric Oxide

NO, in addition to being an important chemical intermediate, has a free radical property which
makes it play an important role in the physiological regulation of organisms. In 1998, Furchgott,
Murad, and Ignarro were awarded the Nobel Prize in Physiology and Medicine for their seminal
work of NO which unravels the physiological functions of NO. NO is endogenously produced by the
stoichiometric conversion of L-arginine to L-citrulline in the presence of nitric oxide synthases (NOSs),
and it plays an essential role as a messenger molecule in the body and participates in the regulation of
physiological processes [17]. For example, NO is an important regulator and mediator in the nervous,
immune, and cardiovascular systems. Furthermore, it could be used as a therapeutic agent for the
treatment of cancer, bacterial infection, wounds, etc. [18,19]. At ambient condition, NO is a gaseous
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molecule and highly unstable in the air. This intrinsic property makes it difficult to directly administrate
NO. Moreover, the physiological functions of NO are highly concentration-dependent. For example,
although a high NO concentration (µM to mM) could efficiently inhibit the proliferation of cancer
cells, a decreased NO concentration (<pM to nM) could be beneficial for cancer cell growth (Figure 2).
As such, it is of crucial importance to develop NO-releasing materials capable of delivering NO to
specific pathological sites and releasing NO on-demand with a proper concentration. In this regard,
much effort has been dedicated to various NO-releasing small molecules and nanovectors, including
organic-inorganic hybrid materials, macromolecular assemblies, and so on [20,21]. Recently, with the
rapid development of MOFs, the high porosity, large surface area, and easy structural adjustment make
them promising candidates for NO delivery [22]. To date, three main strategies have been proposed to
develop NO-releasing MOFs: (1) coordination of the metal ions with NO, (2) functionalization of the
organic ligands with NO-releasing moieties, and (3) MOF-catalyzed decomposition of conventional
NO donors. These methodologies took full advantage of either the metal ions, the organic ligands
of MOFs, or the combination of them. These emerging NO-releasing cargos have shown promising
applications in many pathological models.
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2.1. Coordination of the Metal Ions with NO within MOFs

It is well-documented that metal nitrosyl has been widely used as a sort of NO donor. For example,
sodium nitroprusside (SNP) has been clinically used for hypertensive emergency. NO could efficiently
coordinate to many metal ions such as ferric (Fe2+) and ruthenium (Ru2+) with the formation of metal
nitrosyl complexes. Therefore, it is not surprising that metal ion-containing MOFs could be potentially
used as NO donors through the formation of metal nitrosyls. For example, Pinto et al. [24]. designed
a titanium (Ti)-based MOF material, MIP-177, forming nitrites on the MOFs skeleton. This Ti-based
MOF exhibited a high NO storage capacity (3 µmol/mg solid, ranking as one of the best NO-loading
materials [25,26]) and good biocompatibility (Figure 3). In biological media, it can be stably existed
and slowly release NO. Moreover, the role of MIP-177 in wound recovery and skin repair was studied,
and the biological response was highly correlated to the NO concentration.
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CPO-27 was a kind of MOF material prepared by the coordination of 2,5-dihydroxyterephthalic
acid with different metal ions and the unsaturated metal atom in the structure could further coordinate
with NO [25]. Among CPO-27 (Ni), CPO-27 (Zn) and CPO-27 (Mg), CPO-27 (Ni) has the highest
NO storage capacity [27]. However, CPO-27(Ni) was also greater in cytotoxicity than that of other
counterparts. To circumvent this problem, CPO-27 (Zn) or CPO-27 (Mg) were doped with Ni to
obtain hybrid MOFs with low toxicity and high NO-loading capacity [28]. Interestingly, the amount of
NO released from Ni-doped MOFs was dependent on the doped Ni content, and the rate of arterial
relaxation was positive with the Ni content as well. This work provided an excellent example to
fabricate NO-releasing MOFs with high performance by integrating the strengths of two MOF materials,
avoiding the use of ingredients with serious physiological hazards.

To further assess the toxicity of various MOFs, the toxicity of 16 nanoMOFs against HepG2 and
MCF7 cell lines and zebrafish embryos was evaluated. The results revealed that the toxicity was
mainly due to the leaching of metal ions from the MOFs. Among various metal ions such as Fe2+, Zn2+,
Zr2+, Mn2+, Co2+, Ni2+, Cu2+, and Mg2+, Mg-based MOFs had the lowest toxicity [29]. In addition to
screening of metal ions with low toxicity, the use of biocompatible ligands has also been investigated.
In this context, Pinto et al. [26] designed a NO-releasing MOF based on vitamin B3 as the ligand.
The metal ions of Ni2+ and Co2+ within the MOFs could further bind NO, allowing for the release of
2.6 and 2.0 µmol/mg NO for the Ni- and Co-based MOFs, respectively. Cytotoxicity tests revealed that
these two MOFs exhibited negligible toxicity at concentrations below 180 µg/mL.

Apart from the evaluation of the NO-releasing MOFs in cells, the further assessment of these
NO-releasing materials in vivo is more appealing. Diabetic wounds are one of the most serious
complications of diabetes, which are slow to heal or even do not heal. Studies have shown that the slow
healing of diabetic wounds is mainly caused by the high blood sugar content that inhibits the production
of endogenous NO [30–33]. As a result, NO could be potentially applied as an emerging therapeutic
drug for the treatment of diabetic wounds. In this context, Xu et al. [34] designed a MOF carrier by
encapsulating NO-loaded HKUST-1 (NO@HKUST-1) within the hydrophobic polycaprolactone (PCL)
matrix, followed by coating with hydrophilic gelation to avoid premature NO release (Figure 4). In the
treatment of diabetes wounds, the hydrolysis of the MOFs resulted in the continuous release NO and
Cu2+ ions at relatively low concentrations. Notably, the corelease of NO and Cu2+ ions exerted a
synergistic effect on the treatment of diabetic wound through promoting angiogenesis and inhibiting
wound inflammation.

Notably, the use of metal ions of MOFs capable of coordinating NO represents a new approach
to fabricate NO-releasing materials. However, these NO-releasing MOFs typically suffer from
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insufficient stability in aqueous solution [35]. This limitation may impede the potential applications in
a physiological condition. On the other hand, the toxicity of metal ions is another concern. For example,
ferrous (Fe2+) ions may amplify intracellular oxidative stress through the Fenton reaction mechanism,
whereas other heavy metal ions such as Cu2+ have intrinsic cytotoxicity [36].
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2.2. Functionalization of the Organic Ligands of MOFs for Controlled NO Release

In addition to the metal ions, the organic ligands of MOFs could also be tailored by the installation of
NO-releasing moieties. Cohen et al. [37] investigated that aniline-containing MOF materials which can
be postmodified with NO to obtain diazeniumdiolate (NONOate)-functionalized MOF. Under a high
NO pressure (100 psi, 24 h), two different MOFs containing aniline groups (IRMOF-3 and UMCM-1-NH2)
were synthesized, IRMOF-3–NONO and UMCM-1–NONO. These two MOFs quickly decomposed in
phosphate buffer solution (PBS) at pH 7.4 due to the poor stability of NONOate moieties. Although the
stability of the NONOate functional group in these materials is limited, this work provided a feasible
strategy to fabricate NO-releasing MOFs with amine pendants. In another contribution, Cu-based
MOFs with NONOate as NO donor molecules were prepared and the secondary amine structure
on the Cu-TDPAT organic ligand (H6TDPAT = 2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine)
were modified with the formation of NO-releasing NONOate moieties [38]. Notably, the formation
of NONOate moieties could remarkably elevate the NO-loading amount, which was 5-time higher
in loading contents than for MOFs fabricated through the physical adsorption. This NO-releasing
MOF was relatively stable in a dry condition at room temperature, but sustained NO release could be
achieved within 7 days at a humidity of 85% at 37 ◦C.

In the above examples, the NO release from MOF materials was remarkably affected by
moisture, resulting in premature NO leakage in physiological conditions. To address this issue,
photo-responsive MOFs were developed to achieved controlled NO release. Furukawa et al. [39]
devised a photoactive porous coordination polymer platform for spatiotemporally controlled release of
NO. Briefly, imidazole-based ligands, 2-nitroimidazole (2nIm) and 5-methyl-4-nitroimidazole (mnIm),
were applied to construct zeolitic imidazolate frameworks (ZIFs), NOF-1 and NOF-2 (Figure 5).
Using these photo-responsive ligands enabled photo-mediated NO release under light irradiation.
For example, under mild light irradiation (300 W Xenon lamp, 7.5 mW/cm2), the NO release of NOF-1
and NOF-2 increased significantly compared to the corresponding precursors, and the NO release
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contents were calculated to be 3.4 and 2.9 µmol/mg NO, respectively. This result was tentatively
ascribed to the high light-capturing capacity of the photo-responsive ligands in the MOFs, and the
inherent voids provided spatial isolation between donors, thereby preventing aggregation-induced
quenching of reactive excitation species. Moreover, the NO release could be manipulated within cells
by taking advantage of the spatiotemporal control of light stimulus.
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Figure 5. (a,b) Schematic representation of the NO-releasing frameworks, NOF-1 and NOF-2. (c) The
photoreactivity of the ligands, 2nIm and mnIm, were remarkably enhanced through the formation of
NOF-1 and NOF-2. (d) The NO flux produced upon the photoactivation of NOF-1 can be tuned by
varying the irradiation conditions. Reproduced with permission from [39], copyright 2013, Nature
Publishing Group.

Although the introduction of photo-responsive ligands rendered it possible to achieve controlled
NO release, the stability in aqueous solution remained limited. To increase the stability of
photo-responsive MOFs, Kitagawa et al. [40] designed a MOF material based on bis-N-nitroso
(BNN) moieties and prepared NOF-11 and NOF-12 (Figure 6), which could release NO under white
light irradiation (300–600 nm, 0.3 mW/cm2). The maximum NO release of NOF-11 and NOF-12 was
estimated to be 1.60 and 2.78 mmol/g, respectively. Moreover, a detailed study revealed that the
Ti-based MOF (NOF-11) showed the highest stability even in aqueous media, exhibiting promising
application in a biological condition.

The combination of therapeutic and imaging modalities into one platform led to the formation of
the so-called theranostic platform. Apart from NO delivery capacity, the incorporation of imaging
modality into NO-releasing MOFs rendered it possible to in situ evaluate the therapeutic outcomes of
NO. In this regard, Yin et al. [41] designed a multimodal MOF material for NO delivery, integrating
imaging and photothermal therapy (PTT) modalities. In this contribution, Mn2+-porphyrin NMOFs
were prepared and then modified with thermo-responsive S-nitrosothiol (SNO) to obtain NMOF-SNO.
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The Mn2+ ions could be used for magnetic resonance (MR) imaging while the porphyrin-contained
MOFs doped with SNO residues could be potentially used for PTT with the release of NO upon
light irradiation. In vivo antitumor study suggested that, under near-infrared (NIR) irradiation,
the growth of tumors was significantly inhibited by the treatment of NMOF-SNO. Moreover, in a
multidrug resistance (MDR) tumor model, NMOF-SNO showed better tumor suppressing efficiency
than doxorubicin, a well-known anticancer drug. This result consolidated the synergistic therapy of
PTT and NO, proving an efficient method to treat MDR tumors.
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2.3. MOF-Catalyzed In Situ NO Generation

As discussed above, NO-releasing MOFs could be successfully fabricated through the modification
of either metal ions or organic ligands. MOF materials have been extensively used for catalysts due to
their unique porous structures and the presence of metal ions [9,10,42]. Interestingly, NO-releasing
MOFs could also be fabricated by taking advantage of the catalytic performance of MOFs, which can
trigger the decomposition of other NO donors, allowing for NO release in an indirect way. In this aspect,
Cu-based MOFs such as Cu3(BTC)2 (BTC: 1,3,5-benzenetricarboxylate) [43] and CuBTTri (H3BTTri:
1,3,5-tris[1H-1,2,3-triazol-5-yl]benzene) [44] have been developed, generating NO by catalyzing
the decomposition of SNOs [45]. Poly(vinyl alcohol) (PVA) has been widely used in biological
applications due to the hydrophilicity and excellent biocompatibility. In addition, the incorporation
of NO-releasing materials into PVA matrix has been studied for vasodilation, wound treatment, and
cardiovascular diseases [46–48]. In a recent contribution, Reynolds et al. [49] incorporated Cu-BTTri
into a hydrophilic PVA membrane, in which Cu-BTTri could promote the release of NO upon contacting
endogenous GSNO. Notably, the dispersion of MOFs in the PVA matrix remarkably elevated the
stability, which did not adversely affect the MOF-facilitated NO release from endogenous GSNO.
Similarly, Weng et al. [50] prepared Cu-based MOFs deposited onto the surface of titanium metal by a
layer-by-layer method [51,52], which can catalyze endogenous NO donors such as GSNO to produce
NO as well.

As discussed above, MOF materials have received increasing attention in recent years due to the
potential applications in many fields. However, many MOFs suffer from poor stability in aqueous
solutions/physiological environments. Although the degradable property is beneficial for the biological
metabolism of MOFs, the instability of MOFs may lead to the premature release of encapsulants.
Moreover, the degraded products such as heavy metal ions and organic ligands may be detrimental
for biomedical applications. As such, much effort has been devoted to improve the stability of MOFs
in aqueous solutions. Serre et al. [53] recently summarized the preparation of stable MOFs using
high-valence main group and transition metals of Al3+, Fe3+, Zr4+ and Ti4+ and ligands. Apart from
the increased binding strengths between metal ions and organic ligands, another popular strategy
involves the separation of MOFs from moisture by embedding water-labile MOFs into polymeric
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matrices [39]. To further advance the practical applications of these NO-releasing MOFs, it should
carefully balance the stability and NO-releasing profiles to achieve targeted therapeutic benefits.

3. MOFs for the Delivery of Carbon Monoxide

Like NO, CO has been recognized as a signaling molecule. The endogenous CO production
mainly depends on the breakdown of heme catalyzed by heme oxygenase [54,55]. CO exists widely
in the human body, and plays a regulatory role on the respiratory system, cardiovascular system,
nervous system, etc. [56,57]. Akin to the development of NO donors, a variety of CO-releasing
molecules (CORMs) have been developed to increase the bioavailability and decrease the systemic
toxicity of CO [58–61]. Although CO could readily bind to many transition metals, conventional metal
carbonyl-based CORMs suffer from several limitations such as insufficient stability in a biological
condition, spontaneous release, and limited action time. To this end, much effort has been devoted to
the development of metal-free CO donors and some successful examples have been reported, including
3-hydroxyflavone (3-HF) derivatives [62], xanthene-9-carboxylic acid [63], boron dipyrromethene
(BODIPY) [64], and aromatic α-diketone derivatives [65]. Despite tremendous achievements, the
development of CO-releasing MOFs is rather sparse. Based on the results of iron carboxylate MOFs
with good biocompatibility [14,66], Metzler-Nolte et al. [67] reported the preparation of iron-based
MIL-88B-Fe and amino-functionalized NH2-MIL-88B-Fe using ferric(III) chloride hexahydrate and
terephthalic acid and 2-aminoterephthalic acid. CO could bind to the unsaturated coordination sites
within the MOFs and the CO release was achieved by the degradation of the MOF materials under
physiological conditions.

To achieve controlled CO release within MOFs, Furukawa et al. [68] loaded a CO donor of
MnBr-(dmbpy)(CO)3 onto the surface of the MOF of UiO-67-bpy through covalent coordination,
resulting in the formation of a photosensitive CO-releasing framework (CORF-1) (Figure 7). Compared
with the MnBr-(dmbpy)(CO)3 small molecule precursor, under identical 460 nm irradiation conditions,
CORF-1 could quickly release CO, while no CO release was found for the MnBr-(dmbpy)(CO)3 precursor.
Further investigation revealed that MOF materials provided abundant space sites for photosensitive
CO donor molecules, which can effectively suppress the aggregation-induced quenching phenomenon,
thereby improving the light absorption efficiency of photosensitive molecules and releasing CO.
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Figure 7. Schematic showing the loading of MnBr(bpy)(CO)3 on UiO-67-bpy to synthesize CORF-1, and
the subsequent CO release upon light irradiation. Reproduced with permission from [68], copyright
2017, the Royal Society of Chemistry.

4. MOFs for the Delivery of Hydrogen Sulfide

H2S is the third identified gaseous transmitter. Endogenous H2S is mainly produced by the action
of three enzymes on the L-cysteine substrate, which are cystathionine β-synthase (CBS), cystathionine
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γ-lyse (CSE), and 3-mercaptosulfurtransferase (MST) [69]. The biological roles of H2S include regulating
blood pressure, affecting inflammation, preventing apoptosis, and maintaining vascular tone [70,71].

Notably, although many MOF materials have been used for H2S study, many of them focused on
the removal of this odorous air pollutant. So far, there are very few studies on the controlled H2S release
using MOF-based delivery platforms. Due to the high adsorption capacity and excellent delivery
performance of CPO-27, Morris et al. [72] prepared two MOFs (Ni-CPO-27 and Zn-CPO-27) based
on Ni, Zn and 2,5-dihydroxy-1,4-phthalic acid ligands for the storage and delivery of H2S (Figure 8).
Powder X-ray diffraction (XRD) was used to study the interaction of Ni-CPO-27 and H2S, and it was
concluded that the interaction between metal atoms and sulfur was the main interaction of the system
for gas storage. The H2S-loaded CPO-27 materials were placed in a humid environment to study the
release of H2S. Ni-CPO-27 showed higher H2S loading capacity than Zn-CPO-27. The Ni-CPO-27
showed no degradation of the crystal structure within 6 months. In contrast, under the same conditions,
although the crystal structure of the Zn-CPO-27 material was damaged, it still had the ability to deliver
a large amount of H2S. Taking into account of the toxicological characteristics of Ni-CPO-27, the
H2S-loaded Zn-CPO-27 was further studied for the release of H2S under physiological conditions, and
it was suggested that the H2S released from the MOF materials did have biological activity involving
vasodilation of the porcine artery.
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Figure 8. (a) H2S-loaded Ni-MOF structure from Rietveld refinement of X-ray diffraction data.
The metal cluster of Ni-CPO with H2S coordinated to the Ni-site. Color key: Ni = orange, oxygen
= red, carbon = grey, sulfur = yellow. Hydrogen atoms are not shown. (b) The vasodilatory effect
of H2S loaded Zn-CPO in a precontracted porcine coronary artery. H2S-loaded Zn-CPO-27 showed
~39% relaxation after about 15 min, which was reversed after the MOF was removed using a washout
procedure. Reproduced with permission from [72], copyright 2012, the Royal Society of Chemistry.

5. Summary and Outlooks

In this review, we briefly introduced the recent achievements of MOF materials for the delivery of
three gaseous transmitters including NO, CO, and H2S. The combination of the unique properties of
MOFs and the therapeutic functions of gaseous transmitters provides many opportunities to develop
novel delivery materials of signaling molecules. Although it remains at the infant stage of this emerging
field, a variety of encouraging results have been achieved in the treatment of various diseases such as
cancer therapy, wound healing, bacterial infection. Three strategies have been successfully used to
fabricate NO-releasing MOFs, while only little work has been done in the field of MOFs for delivery of
CO and H2S. There is still plenty of room in this emerging area.

First, the stability of MOFs remains a grand challenge and the leakage of metal ions, in some
occasions, leads to severe toxicity. Although some attempts have been made to elevate the stability of
MOFs, only a few successful examples have been achieved. In addition to metal ions, the biosafety
of organic ligand should be prudently assessed as well. Notably, the incorporation of biocompatible
ligands into the design of MOFs provides an efficient way to decrease the toxicity. The increased stability
and decreased cytotoxicity would be a prerequisite for practical applications of MOF-based materials.
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Second, it can be speculated that the three gaseous transmitters are related to each other and
affect each other. Current studies mainly focus on the delivery of a single signaling molecule, and
the development of MOFs for synergistic delivery of multiple signaling molecules could provide
additional insights into the physiological functions of gaseous transmitters. Perhaps in addition to
NO, CO, and H2S, there may be other gaseous transmitters in the body, such as ammonia (NH3),
formaldehyde, sulfur dioxide (SO2), and so on. Therefore, more research work is needed in the future
to focus on the restriction and synergy among these gas signal molecules.

Finally, some transition metal ions and organic ligands show great potential in fluorescence or
MR imaging. The incorporation of these metal ions and (or) organic ligands renders the resulting
gaseous transmitter-releasing MOFs with a unique imaging performance. As such, the therapeutic
outcomes of gaseous transmitters could be in situ reported by fluorescence or MR imaging. Overall,
the controlled delivery of gaseous transmitters using MOF materials as the carriers provides a robust
strategy to integrate the therapeutic potential of gaseous transmitters and the unique physiochemical
properties of MOFs. This emerging field is full of challenges as well as opportunities. We hope more
innovative ideas appear to advance the practical application of these MOF-based smart materials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/6/1134/s1,
Table S1: Summary of gaseous transmitter-delivering MOFs involved in this review.
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Abbreviations

BDC 1,4-benzenedicarboxylic acid
BNN bis-N-nitroso
BODIPY Boron dipyrromethene
CBS cystathionine β-synthase
CORF CO-releasing framework
CORM CO-releasing molecules
CPO Coordination Polymer of Oslo
CSE cystathionine γ-lyse
HepG2 A type of human liver cancer cells
HKUST Hong Kong University of Science and Technology
IRMOF Isoreticular Metal-Organic Framework
MCF7 Human breast cancer cells
MDR Multidrug Resistance
MIL Materials of Institute Lavoisier frameworks
MIP Materials of the Institute of Porous Materials of Paris
mnIm 5-methyl-4-nitroimidazole
MR Magnetic Resonance
MST 3-mercaptosulfurtransferase
NIR Near-Infrared
NOF NO framework
NONOate Diazeniumdiolate
NOSs Nitric Oxide Synthases
PCL Polycaprolactone
PTT Photothermal therapy
SNO S-nitrosothiol
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SNP Sodium nitroprusside
SURMOF Surface-attached metal-organic framework
UiO University of Oslo
UMCM University of Michigan Crystalline Material
ZIF Zeolitic Imidazolate Framework
2nIm 2-nitroimidazole
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