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Abstract: Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay is a long-
established assay used to detect cell death-associated DNA fragmentation (3’-OH DNA termini)
by endonucleases. Because these enzymes are particularly active in the kidney, TUNEL is widely
used to identify and quantify DNA fragmentation and cell death in cultured kidney cells and animal
and human kidneys resulting from toxic or hypoxic injury. The early characterization of TUNEL as
an apoptotic assay has led to numerous misinterpretations of the mechanisms of kidney cell injury.
Nevertheless, TUNEL is becoming increasingly popular for kidney injury assessment because it can
be used universally in cultured and tissue cells and for all mechanisms of cell death. Furthermore,
it is sensitive, accurate, quantitative, easily linked to particular cells or tissue compartments, and
can be combined with immunohistochemistry to allow reliable identification of cell types or likely
mechanisms of cell death. Traditionally, TUNEL analysis has been limited to the presence or absence
of a TUNEL signal. However, additional information on the mechanism of cell death can be obtained
from the analysis of TUNEL patterns.

Keywords: TUNEL; cell death; kidney; DNases; endonucleases; tissue injury

1. Introduction

DNA is the only molecule in the cell that can be repaired, but it cannot be completely
resynthesized after damage. DNA destruction is one of the final stages of a multi-step cell
death process, which is potentially reversible until the point of terminal DNA fragmenta-
tion. Therefore, the latter is a common attribute and mechanistic marker of irreversible cell
death [1,2]. Cell death-associated DNA fragmentation is usually “visualized” by the termi-
nal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, DNA laddering,
or comet assay [3]. Pulse-field electrophoresis [4] and random oligonucleotide-primed
synthesis (ROPS) assay [5] are two other rarely used secondary assays. The use of comet
assay is limited to in vitro (cultured cells) only, and its quantification is labor-intensive [6].
Performing comet assays in isolated cell nuclei is possible, but it is associated with addi-
tional confounding factors during the isolation of nuclei. The second, DNA laddering assay,
is not a quantitative method, and the initial hope that the ladder pattern vs. smear would
distinguish between apoptosis and necrosis, respectively, was dispelled as this approach
proved to be unreliable [7]. Of the three main methods, TUNEL is the most sensitive,
least time consuming, and most universally applicable. It can be used in cultured cells
and tissues and for all cell death mechanisms. It is accurate, quantitative, easily linked to
particular cells or tissue compartments, and can be combined with immunohistochemistry
to allow reliable identification of the cell types or mechanisms of cell injury associated with
TUNEL-positive signals [2].

DNA breaks measurable by TUNEL are produced mainly by apoptotic endonucleases.
The most active endonucleases in the kidney are deoxyribonuclease 1 (DNase I) and
endonuclease G (EndoG) [8–10]. DNase I is the most active and abundant apoptotic
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endonuclease in mammals [11]. The kidney, salivary glands, pancreas, and intestine are
organs known to produce high amounts of DNase I. Epithelial cells in salivary glands,
pancreas, and intestine secrete DNase I as a digestive enzyme in the alimentary tract.
Some cellular DNase I fights against “foreign” DNA invading host cells [12]. Non-secreted
DNase I presents a hidden danger to host-cell DNA, but normally DNases do not act on
host-cell DNA until injury or the death of the cell. In the kidney, DNase I is secreted by
tubular epithelial cells, presumably to destroy viruses and bacteria in urine. This function
likely takes place in conjunction with proteinases, in particular, meprin, which is the main
proteinase in urine [13]. Although it is protective against infection, the presence of highly
active DNase in the kidney makes this organ vulnerable to injury, where the activity of
DNases is known to be cytotoxic to host cells. DNases promote cell death induced by toxic
or hypoxic stimuli and destroy all host kidney DNA cells released as a result of cell death.

Kidneys are filtering organs that remove toxic compounds from the body. High DNase
I activity in kidneys makes kidney cells very sensitive to injury from toxic compounds and
their metabolic products. This makes TUNEL the most appropriate and applicable method
to measure injury to the kidney. In this review, we will focus on TUNEL as a widely used,
informative, and precise assay for the measurement of cell death and tissue injury in the
kidney. We will discuss aspects of TUNEL as it applies to kidney diseases and injury and
identify qualities, techniques, and underused features of TUNEL to promote the productive
and appropriate use of this powerful assay in research, diagnostics, and therapy of kidney
diseases. We will also discuss various TUNEL image patterns that can be linked to cell
death mechanisms. The points raised in this review are broadly applicable for TUNEL use
in organs other than the kidney.

2. TUNEL Principles

The TUNEL assay was developed in 1992 by Gorczyca et al. [14] and Gavrieli et al. [15],
using fluorochrome and avidin-peroxidase labeling, respectively. At that time, there was
a desperate need for new methods to assess apoptosis, and TUNEL successfully filled
this gap. Initially marketed as an assay for DNA strand breaks during or associated with
apoptosis [14,16], in the absence of better assays, TUNEL quickly became the standard assay
for apoptosis [17,18]. However, it was recognized almost immediately by researchers that
TUNEL indiscriminately measured any DNA fragmentation, not just the one associated
with apoptosis [19–21]. Nevertheless, the need for apoptotic assays was so great that the
rare reports of TUNEL being non-specific for apoptosis were generally ignored. This led
to an enormous amount of false-positive reports of apoptosis in the kidney and other
organs, to the degree where up to 20% of total cells were reported apoptotic even without
injury [22–25] when changes as small as 0.01% could be statistically significant evidence of
tissue injury.

The TUNEL assay has experienced a renaissance in recent years since the end of the
boom in apoptosis studies a few years ago. Our PubMed search of journal articles involving
“kidney” and “TUNEL” terms produced over 1500 results from 1992 to 2020. In 2019,
170 articles were published, the highest number in a single year over the past 28 years
(Figure S1) and which constitute the majority of articles surveyed for this review. Numerous
studies used TUNEL-positivity as a universal measure of DNA fragmentation-associated
cell death in other types of cell death apart from apoptosis. For example, ferroptosis, a
newly discovered form of programmed, non-apoptotic cell death triggered by oxidative
damage that occurs during renal ischemia-reperfusion (IR) in mice, can be detected by
TUNEL [26]. Pyroptosis, which is an inflammatory form of programmed cell death that
is distinct from apoptosis and necrosis, is shown to be associated with TUNEL-positive
signals [27,28]. TUNEL-positivity was observed during necroptosis that contributed to the
progressive depletion of renal tubule cells in rats subjected to subtotal nephrectomy [29]. In
the kidney and other tissues, positive TUNEL signals have been found in necrosis [30,31],
dysregulated autophagy [32–35], anoikis [36,37], mitotic catastrophe [35,38], autolysis [39],
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paraptosis [40], and aponecrosis [30], demonstrating TUNEL to be a truly universal assay
for irreversible cell death.

The TUNEL assay is based on labeling of 3′OH ends by a 3′OH-end-specific DNA
enzyme, terminal deoxynucleotidyl transferase (TdT) (Figure 1). Use of DNA polymerase
or Klenow fragment DNA polymerase in place of TdT may help determine the type of
3′OH ends (nicks, gaps, or overhanging oligos) because DNA polymerases need a template
(the opposite DNA strand) and thus will not label hanging or protruding DNA ends. It is
important to remember that the production of 3′OH DNA ends is not unique to apoptotic
(DNA-degrading) endonucleases. 3′OH DNA ends are a major “communicator” signal,
a common denominator of the majority of DNA enzymes. They are produced and used
by almost all DNA enzymes in eukaryotes, including DNA repair (apurinic/apyrimidinic,
AP) endonucleases, exonucleases, DNA polymerases, DNA ligases, DNA transferases, and
topoisomerases. In addition, 3′P, 3′-sugar, or 3′-protein conjugates can be converted to
3′OH termini by phosphatases, deglycosylases, and proteinases, respectively. This is why a
precise understanding of what is being measured is necessary for the successful application
of TUNEL and interpretation of its results.
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Figure 1. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay schematic.
Terminal deoxynucleotidyl transferase (TdT) reacts with fluorescein (FITC)-labeled dUTP to attach
uridine to 3′-hydroxyl (3′OH) terminus in DNA strand breaks. Double-stranded DNA is counter-
stained by DAPI that intercalates between strands of double-stranded DNA.

Compared with two other primary methods of DNA fragmentation measurement,
DNA ladder and comet assay, TUNEL has the advantage of being based on the identifi-
cation of DNA termini rather than fragments (Figure 2). Theoretically, TUNEL should
be more sensitive and linear for the identification of initial (low) DNA fragmentation
than DNA ladder or comet, both of which have a lag-period of accumulation of small
high-mobility fragments. In any case, studies combining TUNEL with either comet [41,42]
or DNA ladder [43,44] have some advantage of catching early DNA fragmentation with
maximal sensitivity.
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Figure 2. Three main DNA fragmentation assays: DNA ladder and comet assays vs. Table 200. bp apart from each other.
The resulting double-stranded DNA fragments are seen as a nucleosomal 200-bp ladder in agarose gel. Comet assay
is a single-cell variant of the same method, in which comet-like images represent DNA degraded in a dead cell, while
dots without comets are formed by DNA from live cells. TUNEL labels 3′OH DNA termini in DNA within whole and
fragmented nuclei.

3. TUNEL Applications

TUNEL is used to identify and quantify kidney injury in clinical and basic toxi-
cological studies in a diverse range of applications, including medical treatments [45],
environmental [46], agricultural [41] and industrial [47] exposures, and animal [48] and
food sciences [49]. TUNEL is applicable to all cell types, organs, and species that have
DNA and DNases, which includes just about all species. TUNEL has been used to identify
and quantify kidney injury in a wide array of animals, including zebrafish [50], Japanese
rice fish [51], chickens [48], gerbils [52], mice [41], rats [45], rabbits [53], mini-pigs [54], and
humans [55]. An important advantage of TUNEL is that it can be used in fixed cultured
cells as well as fixed tissues. This provides methodological consistency for comparison
between in vitro and in vivo results in studies in which mechanisms can be investigated
in cultured kidney cells, while in vivo implications are assessed in the animal kidneys.
Anything in between whole cells and tissues can be used as well, including cultured cell
spheroids [56] and ex vivo kidney slices [57,58].

The intensity of TUNEL in terms of the signal strength or the number of TUNEL-
positive cells may vary between species depending on the activity of DNases. In our
experience, rat kidney has more active DNase I than mouse kidney, and TUNEL-positive
signal strength correlates with this. When the kidney is compared to other organs, its
TUNEL-positive signal is very intense and similar to other organs with high DNase I
activity, such as the intestine and salivary gland. On the other end of the spectrum,
the lowest TUNEL-positive signal strength is observed in brain and tumor/cancer cells,
where DNase I expression is most likely inactivated by alternative splicing in the coding
region [59]. TUNEL-positive signal is observed in all cell types in the kidney. On average,
tubular epithelium is damaged more often than glomeruli, especially in acute injuries
(Figure 3A). This correlates well with the DNase I activity prevailing in these types of
cells. Judging from sex and age differences observed in our experiments, DNase I is
more abundant and active in males than females and mid-age animals compared to old
or neonate-age animals. However, no clear-cut difference in TUNEL-positivity is evident
in relation to sex or age, probably because the difference between these groups is not
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prominent or is predominated by other factors. In some kidney models (such as ischemia-
reperfusion), DNase I is induced [9]; while in others, it is not and may even be suppressed
(for example, in cisplatin toxicity) [10]. Activation of endonucleases, if present, has been
shown to occur within the first 24 h after kidney injury [9,60,61]. Therefore, it was not
surprising that at least half of the TUNEL applications in the kidney research in this review
were used for acute kidney injury (AKI) since assessment of AKI is often made within 24 to
72 h after injury when endonucleases are most active. The list of AKI studies is long and
includes toxic, septic, transplantation, and hypoxic injuries. In this work, we surveyed the
models, exposure types, treatments, assessment timelines, and cell types affected in these
studies. The studies that were surveyed covered acute and mixed acute-chronic modes of
kidney injury and chronic kidney disease.

Table 1. TUNEL patterns (images are shown in Figure 3C–G).

TUNEL Image DAPI Image Mechanism Type of Cell Death

Universal TUNEL
Round or oval TUNEL-positive

object the size
of an average nucleus

Round or oval object of equal size Large DNA fragments inside
nuclear envelope Any

Late Universal TUNEL
Round or oval

TUNEL-positive object
the size of an average nucleus

Round or oval object of equal size,
or no DAPI-positive object at all

Small DNA fragments inside
nuclear envelope Any

Apoptotic TUNEL
A group of round objects of

varying sizes
located near each other

A group of objects of the same size
and shape as

TUNEL-positive objects

Apoptotic bodies: fragmented
nucleus containing

large DNA fragments
Apoptosis

Cytoplasmic TUNEL

TUNEL-positive object the size of
the entire cell; cytoplasmic TUNEL

may have less
intensity than nuclear TUNEL

Nucleus is smaller than
the TUNEL-positive area

Leakage of small DNA fragments
to cytoplasm through damaged

nuclear envelope
Necrosis

Dispersed TUNEL
Irregular TUNEL-positive objects

and “spills”
of TUNEL-positive material

DAPI staining is negligent
in the areas of the TUNEL objects

Leakage of DNA small fragments
through damaged nuclear

envelope and plasma membrane
Necrosis

Whether kidney injury with TUNEL-positive signal is observed in tubules or the
glomerulus depends on the type of damaging agent or disease. For example, lupus
nephritis in humans and nickel nanoparticle damage was described as having strictly
glomerular TUNEL-positive signals [62,63]. On the other hand, ischemia-reperfusion and
streptozotocin-induced diabetic nephropathy in rats produced TUNEL-positive cells only in
the tubules [64,65]. Proximal tubules, Henle’s loop, distal tubules, and collective ducts are
often TUNEL-positive in ischemia-reperfusion models. TUNEL-positive cells in both the
glomeruli and tubules were described in rats exposed to drugs such as cyclosporine A [66]
and doxorubicin [67] or consumer product materials such as zinc oxide nanoparticles [68]
and in a rat model of diabetes mellitus [69]. Septic shock-induced AKI in humans was also
associated with both glomerular and tubular TUNEL-positive cells [70].

The most common causes of AKI are toxic exposure to drugs and sepsis. The most
studied and commonly used drug toxicity model in kidneys is cisplatin AKI, perhaps
because cisplatin produces a variety of molecular damages to kidney cells, including DNA
and protein modification, membrane damage, and oxidative injury. In the kidney, the
injury was localized to kidney tubular epithelial cells and peaked 72–96 h after cisplatin
administration [71–73]. Other drugs known to induce AKIs include cyclosporine A [66],
acetaminophen [74], tunicamycin [75], cyclophosphamide [76], gentamycin [77], and col-
istin [78]. Similar to cisplatin, TUNEL-positivity was observed in tubular epithelium in
3–7 days after administration of these drugs [66,78]. Other toxic AKIs induced by heavy
metal (i.e., mercury) exposure [47,60], nanomaterial consumption [79,80], or associated
with rhabdomyolysis [81] or contrast-induced nephropathy [54,82,83] resulted in TUNEL-
positivity in tubular epithelium within hours and up to the first week after exposure.
Sepsis-induced AKI is multifactorial and includes microcirculatory dysfunction and renal
inflammation. Sepsis induced in rats and mice by lipopolysaccharide (LPS) endotoxin
from bacterial capsules was strongly associated with TUNEL-positivity in proximal and
distal tubules within 6–24 h after exposure [28,84–86]. Similar to the LPS-sepsis model,
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strangulated closed loop small bowel obstruction caused TUNEL-positivity in kidney
in 3 h [87].
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Figure 3. Variations of TUNEL images in kidneys of mice subjected to cisplatin injury (20 mg/kg,
4 days after exposure). (A) TUNEL image in kidney at low magnification; note poor TUNEL staining
of glomeruli (shown by arrows) vs. tubules. (B) TUNEL-IHC combination; red staining indicates
heme oxygenase 1 (HO-1) induced in two cells, one of which is TUNEL-positive (dead). (C) Com-
monly seen universal TUNEL signal indicative of any kind of cell death. (D) Late universal TUNEL
signal with low DAPI staining of completely degraded DNA. (E) Apoptotic TUNEL signal; TUNEL
staining of apoptotic bodies characteristic of apoptosis. (F) Cytoplasmic TUNEL signal that illustrates
at least partial necrosis. (G) Necrotic dispersed TUNEL signal characterized by nuclear and plasma
membrane lysis and irregular leakage of TUNEL-positive material from nucleus and cytoplasm. See
Table 1 for a detailed description of TUNEL patterns shown in panels C through G.

AKI can occur after transplantation and hypoxic injuries. Allograft rejection in hu-
mans is commonly associated with the elevation of TUNEL-positive cells [88,89]. After
cold ischemia, TUNEL-positive cells were usually observed within 2–24 h during reperfu-
sion [90], or more narrowly, between 14 and 17 h after ischemia [91], and sometimes were
still observed as late as 7 days in transplant rejection [92]. Similarly, in ischemia-reperfusion
models, TUNEL-positive cells were most often observed 24 h after reperfusion [44,93,94],
or within the range between 4 [95,96] and 72 h [97]. In both transplantation and ischemic
AKI studies, TUNEL-positive cells were localized to distal and proximal tubular epithelial
cells [44,93]. In mouse kidney after ischemia-reperfusion injury, TUNEL-positive cells were
described as concentrated in the corticomedullary junction, the usual target of ischemic
injury [98].

Mixed acute-and-chronic injury, where toxic exposures, disease states, and/or assess-
ments were both acute (i.e., hours, days) and chronic (i.e., weeks, months, years) in the
same study, were observed in human transplant rejection (biopsy 1 week to 3 years post-
transplant) [88], swine hepatitis E virus infection (7 and 14 days post-inoculation) [52], CO2
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pneumoperitoneum-induced stress in hydronephrotic kidneys (2 weeks hydronephro-
sis, 2 days post-pneumoperitoneum) [53], mesangial proliferative glomerulonephritis
induced by snake venom (1 to 14 days post-injection) [99], unilateral ureteral obstruc-
tion (1 to 14 days of obstruction) [100], uranyl acetate exposure (1 to 28 days of expo-
sure) [101], aristocholic acid nephropathy (5 and 30-day daily exposure) [102], and neona-
tal hyperoxia (tested 1 to 60 postnatal days, exposed to hyperoxia first 14 days) [103].
Fourteen days after impact is a very common assessment time point for these kinds of
kidney injuries [52,53,99,101,103]. In the majority of cases, TUNEL-positive cells were
localized in tubules and collective ducts. The only exception was snake venom toxicity,
which primarily damaged the glomeruli [99].

Chronic kidney disease (CKD), defined as the presence of kidney damage or decreased
glomerular filtration rate (GFR) in humans for longer than 3 months, is also a common
subject for TUNEL assessment, which can determine if CKD is associated with progres-
sive kidney damage. The most commonly studied CKD in which TUNEL is applied is
diabetic nephropathy. The injury identified by TUNEL-positivity occurred in tubules
and podocytes [69] in diabetic patients with onset of diabetes prior to TUNEL testing
ranging from 7 to 30 years [104,105] and 2 to 16 weeks after streptozotocin treatment in ro-
dents [106,107]. Similar TUNEL-positive histopathology was reported in immunoglobulin
A nephropathy [22]. In lupus nephritis and membranoproliferative glomerulonephritis,
TUNEL-positivity was seen primarily in the glomeruli [62,108,109]. On the other hand,
drug safety studies of cisplatin [110], chloroquine [45], doxorubicin [67], finasteride [23],
tacrolimus [111], and levetiracetam [24] observed mostly tubular damage. Likewise, the
continued acute injury identified by tubular TUNEL-positive cells were described in stud-
ies of uric acid nephropathy [112], methionine deficiency [48], exposure to environmental
toxins microcystin-LR [50] and cadmium [113], and in association with calcium-oxalate
induced kidney stones [114] and calcifying nanoparticles [115]. While identification of the
progressive kidney damage during CKD by using TUNEL assay is a useful diagnostic tool,
combining TUNEL assay with immunohistochemistry (IHC) would perhaps be even more
informative in determining the mechanism of the injury.

4. TUNEL Quantification and Colocalization Techniques

Methods of TUNEL quantification vary. In the majority of reports, TUNEL-positive
cells/nuclei are quantified as the percent of total cells/nuclei [83,116,117]. This seems
the right thing to do, although the number of TUNEL-positive cells likely do not corre-
spond exactly to the number of dead cells. Some cells may not have reached identifi-
able levels of DNA fragmentation, while others could already have been eliminated by
macrophages. Quantification of the number of TUNEL-positive cells per square unit (mm2)
is also used [118], but this method seems less precise because it depends on the location
and cell type content of the areas. Cortical sections contain mostly glomeruli, tubules,
blood vessels, and medullary rays, while medullary sections primarily contain loops of
Henle, collecting ducts, and blood vessels. Quantification “per field” certainly depends on
what the field is [72,119], and quantification “per section” is even more undefined [61,120].
Poorly identified measurements, such as “histological score” [121], “apoptotic index” [113],
“apoptosis rate” [92], “percentage of apoptosis” [122], or percentage of untreated con-
trol [123,124], seem to be even less appropriate, and make interpretation difficult and not
comparable with the majority of studies.

Cell death in neighboring cells starts unevenly because it depends on vascularization,
cell cycle, and other variables. This often results in uneven TUNEL staining of cells in
the tissue [45,96,125]. Surprisingly, the general intensity of the TUNEL-positive signal is
not used for TUNEL measurement, despite it directly depending on the degree of DNA
fragmentation. This is perhaps because cells are considered dead independent of the
intensity of the TUNEL signal, as a cell cannot be “more dead” if the TUNEL staining is
more intense. Although it is difficult to compare studies that use a wide variety of methods
to quantify TUNEL results, the amount of TUNEL-positive cells in control animals is
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usually below 2% [75,99,100,116,126]. Acute injury is associated with a ~5–40× increase in
TUNEL-positivity [79,126,127]. During chronic injury, the increase in TUNEL-positive cells
is slightly lower, ~2–20-fold, [29,43,65] compared to untreated controls.

The initial TUNEL assay based on diaminobenzidine (DAB) staining was designed for
light microscopy [14,15]. This traditional method was still used in two-thirds of the studies
surveyed in this review and in the overwhelming majority of human biopsy studies. The
quantification is done by manual cell count and, while precise, it is time-consuming. Often,
quantification is not used at all, and the results are presented using images of treated and
stained samples as simple evidence that cell death took place. Automation may speed up
the quantification process [128,129]. However, DAB cannot be combined with any other
staining in the same sample, and thus DAB-based TUNEL can only provide the number
of dead cells, without any identification of the cell type (except visual recognition) or cell
death mechanism.

While human studies overwhelmingly rely on DAB-based TUNEL using light mi-
croscopy, approximately half of animal studies use fluorescent microscopy (Figure 3).
Fluorescent TUNEL is visually attractive, easily interpretable, and has several major ad-
vantages. In addition to precise quantification by identification of TUNEL-positive nuclei
or mean intensity of the color, fluorescent TUNEL signal can be colocalized with other
colors for histochemistry (e.g., DAPI) (Figure 3A) or IHC (Figure 3B). In the latter, the use
of protein markers may help to identify TUNEL-positive signals associated with different
kidney compartments or give information on the type of cell death. We could not find
any examples of TUNEL combined with double IHC antibody staining. While such a
combination would be very informative, for example, for the identification of a cell death
mechanism in certain cell types, the technical difficulties associated with such staining may
outweigh the benefits.

Identification of kidney cell type is certainly not a problem for an experienced kidney
pathologist [104]. Because of this, the use of additional markers for cell-type identifi-
cation, for example, using CD31 for the identification of endothelial cells [130], is rare.
However, the use of IHC protein markers for the characterization of tissue injury is often
used. Most studies use TUNEL-positivity as the sole evidence of apoptosis. In other
studies, recognition that TUNEL-positivity is not specific for apoptosis has led to many
morphological (e.g., hematoxylin and eosin or periodic acid–Schiff staining), biochemical,
and IHC markers to be combined with TUNEL staining to confirm apoptosis. The most
commonly used marker for caspase-dependent apoptosis is cleaved (active) caspase-3 by
using an antibody that does not recognize the full-size caspase-3 [131,132]. Both TUNEL
and cleaved caspase-3 assays showed exclusively tubular, not glomerular, staining in rat
ischemia-reperfusion [64]. Other caspase studies used caspase-1 [27], -9 [53], -11 [28], and
-12 [75]. Other apoptotic markers included the B-cell lymphoma 2 (Bcl2) family of proteins
Bcl-2 [27], Bcl2L1 [43], Bcl-xl [71], Bax [99], Bak [49], and Bad [43]; apoptotic receptor
Fas [52] and apoptotic receptor ligand FasL [66]; forkhead box (FOX) protein transcription
factors Fox01 [133] and Fox03 [27]; and cytochrome c [53]. Inflammation was identified
by IHC of tumor necrosis factor alpha (TNFα) [134]; tumor growth factors TGFβ [66]
and TGF-β1 [135]; serine/threonine kinase 1 (SGK1) [135]; electron-transfer flavoprotein,
beta-subunit (ETFβ) [136]; Janus kinase-2 (JAK2) [137]; signal transducer and activator of
transcription 3 (STAT3) [137]; nuclear factor kappa-light-chain enhancer of activated B cells
(NF-κB) [137] and its inhibitor protein IκB [137]. For kidney injury assessment, kidney
injury molecule-1 (KIM-1) [24], aquaporin-1 channel (AQP-1) [45], hypoxia-inducible factor
1-alpha transcription factor (HIF-1α) [103], Asc-type amino acid transporter-1 (Asc-1) [121],
mammalian target of rapamycin (mTOR) [131] kinase, and transglutaminase II [89] were
used. Oxidative kidney injury was studied using markers such as 8-hydroxyguanosine
(8OHdG) [102], neutrophil gelatinase-associated lipocalin (NGAL) [102], NAD-dependent
deacetylase sirtuin-1 (SIRT1) [138], and heme oxygenase 1 (HO-1) [90]. Kinases were inten-
sively studied, including c-Jun N-terminal kinase (JNK) pathway [101], phosphoinositide
3-kinase/protein kinase B/nuclear factor erythroid 2-related factor 2 transcription fac-
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tor (PI3K/Akt/Nrf2) pathway [46], pannexin-1 (PANX1) plasma membrane gap junction
protein [26], and mitogen-activated protein kinase/extracellular signal-regulated kinase
(MAPK/ERK) [26]. Studies of apoptotic endonucleases involved caspase-activated DNase
(CAD) [139], DNase I [108], and EndoG [139], and DNA damage markers included tu-
mor protein p53 (p53) [99] and dynamin-related protein 1 (PARP1) [66]. Some studies
also found the assessment of endoplasmic reticulum stress-mediated apoptosis and tissue
injury useful [75].

Given the large number of mechanistic studies surveyed and the advantage of com-
bining TUNEL with IHC markers for the identification of cell death mechanisms, one
would expect many studies using colocalization between the two. The analysis may be
performed by a pixel-by-pixel colocalization between TUNEL-positive cells and IHC mark-
ers, IHC marker mean intensity in TUNEL-positive areas, or TUNEL-positive signal mean
intensity in IHC marker-positive areas. Unfortunately, this advantage of TUNEL has been
used in only a few studies. TUNEL-positive cells were colocalized with cleaved caspase-3
in kidney tubules during acetaminophen toxicity in rats [74]. IHC colocalization with
TUNEL-positive signal allowed cell death identification of mesangial cells during Habu
nephritis [99]. In light microscopy, colocalization with mechanistic markers of toxicity was
done in serial sections, as reported by Ott et al. [89].

5. TUNEL Problems and Limitations

Several potential problems can take place and should be expected when working with
TUNEL. One is that 3′OH DNA termini occur not only during cell death as a result of
endonuclease action but also as a normal intermediate metabolite in almost all enzymatic
reactions with DNA. A primary cell function that produces 3′OH termini is DNA synthesis,
in which numerous Okazaki fragments may theoretically produce a false-positive TUNEL
signal, especially in highly-sensitive modifications of the assay. During kidney injury,
DNA repair may also contribute to false TUNEL-positive signals as a result of an AP-
endonuclease action. Massive oxidative kidney injury induced by chemical (hydrogen
peroxide, bleomycin) or physical (gamma irradiation) injury may add to the number
of 3′OH ends, increasing the false-positive TUNEL readings apart from endonuclease-
mediated DNA fragmentation.

More often and more likely, improperly set experimental conditions of the TdT re-
action (time, temperature, enzymatic activity, or cofactors) may result in an artificially
elevated TUNEL-positive signal background. Although it remains undefined as to what
is considered the normal baseline for untreated kidney tissue samples, it seems plausible
that around 1% of total cells would be a reasonable number. Certainly, a 10% or higher
background is clear evidence of either uncharacterized and unrefined assay conditions or a
deviation from appropriate sample storage conditions.

Another problem to expect is low DNase I activity in some cell types (e.g., endothe-
lium), or kidney compartments (e.g., glomeruli), or pathological tissues (e.g., tumors).
These cells should be expected to show low TUNEL positivity, not because they are injury-
resistant, but because there is not enough endonuclease activity to produce a measurable
signal in TUNEL. In our experience, even changes between 0.01% and 0.1% of TUNEL-
positive cells can be statistically significant and used as solid evidence of kidney (of another
tissue) injury.

Finally, a problem with quantification of TUNEL staining arises when the amount
of DNA fragmentation is too high, for example, at late stages of cell death or in high-
intensity injuries, where remaining DNA cannot be properly counterstained with DAPI
due to disassembly of the double helix (Figure 3D). In these cases, TUNEL-positive signals
are “hanging in the air”, and seemingly not associated with a nucleus. It becomes the
responsibility of a pathologist to interpret these as TUNEL-positive cells rather than an
artifact. With fluorescein-labeled TUNEL, there is a danger of identifying background
autofluorescence in tissue as TUNEL-positivity [140]. In these cases, a switch to red
spectrum TUNEL [51,54] is recommended.



Int. J. Mol. Sci. 2021, 22, 412 10 of 17

6. TUNEL Patterns as a Source of Additional Information

Several TUNEL patterns can be clearly distinguished and used to determine a potential
mechanism and degree of injury (Table 1, Figure 3). Usually, a nuclei-only type of TUNEL
pattern is produced by mild injury, while stronger injury (i.e., elevated exposure) results in
stronger staining and disintegration of nuclei or cells.

A strictly apoptotic TUNEL pattern is nuclear fragmentation as a result of apoptotic
bodies formation (Figure 3E). Small fragments of TUNEL-positive nuclei, which are likely
apoptotic bodies, were seen in rat ischemia-reperfusion at 24–72 h [97]. Apoptotic bodies
were also seen with TUNEL labeling of nuclei in the renal tubular epithelium and intersti-
tium 14 days after ischemia-reperfusion injury in rats [141]. Increasing doses of lavender
oil reduced nuclei-only TUNEL patterns and converted them to necrosis-like TUNEL with
cytoplasmic leakage [94]. The latter was a result of nuclear envelope destruction due to the
action of proteinases and lipases in necrosis. Cytoplasmic TUNEL (Figure 3F) seen as a
TUNEL-positive cytoplasm was observed in light microscopy in rhabdomyolysis model in
rat tubules [142] and in podocytes cultured in the presence of high glucose and in diabetic
nephropathy in mice [135]. Cytoplasmic TUNEL was also described in renal ischemia-
reperfusion in mice using fluorescent TUNEL [98] and in ischemia-reperfusion in rats using
light microscopy [143]. Mercuric chloride induced profound and exclusively tubular dam-
age with strong cytoplasmic TUNEL staining indicative of nuclear membrane damage [60].
If the injury continues or the dose of the damaging agent increases, cytoplasmic TUNEL
can be converted to a “messy” picture of dispersed TUNEL (Figure 3G) attributed to late
stages of cell destruction due to necrosis and spillage of cellular cytoplasm and debris.
For example, both cytoplasmic and dispersed TUNEL was observed in cisplatin-treated
mice [71,72] and rats [144], and in podocyte injury in streptozotocin-induced diabetic
rats [145]. Dispersed necrotic TUNEL was also observed during uranyl acetate-induced
nephrotoxicity in mice [101]. Lastly, another TUNEL signal variable to pay attention to is
the intensity of TUNEL-positive signals, which may deviate from cell to cell depending
on the number of breaks (degree of injury) each cell experiences, as documented by some
studies [45,96,125]. For models in which varying TUNEL signal intensity is observed,
quantification by both the number of TUNEL-positive objects and the mean intensity of the
staining is recommended.

7. Conclusions

Due to the high activity of apoptotic endonucleases in the kidney, particularly DNase
I and EndoG, the use of TUNEL for kidney research and diagnosis is very informative. It
may become even more useful if TUNEL is applied beyond its initial use as a method to
identify apoptosis. Applying TUNEL exclusively for apoptosis studies is a good example of
how science can be inadvertently misdirected by an inappropriately used method. Despite
its use as a mostly acute injury assay, TUNEL can be successfully applied to assess both
AKI and CKD. However, in CKD, the degree of TUNEL-positivity should be expected to
be lower than in acute injury. Because the activity of endonucleases (mainly, DNase I) is
much higher in tubular epithelium than in other kidney compartments, injury to kidney
tubules is usually seen as more prominent. However, glomerular or vascular injuries
can also be studied using TUNEL if the injury actually occurs in these compartments.
The colocalization of fluorescent TUNEL with IHC markers permits the identification
and association of cell types and cell death mechanism with TUNEL signals. TUNEL
quantification can contribute valuable information on the degree of cell death, and applying
image analysis software can be very useful in this regard. Considering the variety of
TUNEL patterns, representative images are strongly suggested to establish and demonstrate
TUNEL signals that are considered positive. Finally, TUNEL patterns should be used as
a source of additional information, such as the mechanism of cell death and the degree
of toxicity. For example, distinguishing between TUNEL-positive apoptotic bodies, the
presence of cytoplasmic TUNEL signals, or dispersed TUNEL patterns may help identify



Int. J. Mol. Sci. 2021, 22, 412 11 of 17

apoptotic vs. necrotic TUNEL-positive cells for more precise interpretations of research
and diagnostics results.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/1422
-0067/22/1/412/s1.
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