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Abstract

Predicting protein functional classes such as localization sites and modifications plays a crucial role in function annotation.
Given a tremendous amount of sequence data yielded from high-throughput sequencing experiments, the need of efficient
and interpretable prediction strategies has been rapidly amplified. Our previous approach for subcellular localization
prediction, PSLDoc, archives high overall accuracy for Gram-negative bacteria. However, PSLDoc is computational intensive
due to incorporation of homology extension in feature extraction and probabilistic latent semantic analysis in feature
reduction. Besides, prediction results generated by support vector machines are accurate but generally difficult to interpret.
In this work, we incorporate three new techniques to improve efficiency and interpretability. First, homology extension is
performed against a compact non-redundant database using a fast search model to reduce running time. Second,
correspondence analysis (CA) is incorporated as an efficient feature reduction to generate a clear visual separation of
different protein classes. Finally, functional classes are predicted by a combination of accurate compact set (CS) relation and
interpretable one-nearest neighbor (1-NN) algorithm. Besides localization data sets, we also apply a human protein kinase
set to validate generality of our proposed method. Experiment results demonstrate that our method make accurate
prediction in a more efficient and interpretable manner. First, homology extension using a fast search on a compact
database can greatly accelerate traditional running time up to twenty-five times faster without sacrificing prediction
performance. This suggests that computational costs of many other predictors that also incorporate homology information
can be largely reduced. In addition, CA can not only efficiently identify discriminative features but also provide a clear
visualization of different functional classes. Moreover, predictions based on CS achieve 100% precision. When combined
with 1-NN on unpredicted targets by CS, our method attains slightly better or comparable performance compared with the
state-of-the-art systems.
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Introduction

1. Background
In the post-genomic era, tremendous amounts of sequence data

are generated from biological experiments. The increase in the

number of putative protein sequences greatly exceeds that of

known functions of proteins. Despite recent technical advances,

experimental determination of protein function remains time-

consuming and labor-intensive. Therefore, using computational

approaches to extract functional information from sequences

becomes an important issue for global analysis of biological

systems.

Identification of protein functional classes plays a critical role in

function annotation. For example, prediction of localization sites

and modifications in a protein can help understand its biological

functions and cellular mechanisms. Protein subcellular localization

(PSL) prediction focuses on determining localization sites of

unknown proteins in a cell. It provides an efficient way to depict

protein functions and annotate newly sequenced genomes.

Identification of PSL is also crucial to detect cell surface or

secreted drug targets and biomarkers. In addition, protein kinases

(PKs) consist of a key class of enzymes responsible of signal

transduction in regulation pathways modifying the cell cycle in

function of extracellular signals through reversible phosphoryla-

tion. The signal is sensed in the membrane and then transferred

into the nucleus by an enzymatic activation cascade of the PKs,

which are classified into subfamilies according to the amino acid

sequences of their catalytic domains. Therefore, the studies of
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subcellular localization and kinase classification are important for

elucidating protein functions involved in various cellular processes

and signal transduction pathways. Moreover, they are crucial for

the identification of drug targets and may serve as an important

indicator of several diseases, like cancer and Alzheimer’s disease.

2. Previous work
Many systems have been developed to analyze protein

functional classes. For PSL prediction, the prediction systems

can be generally classified into amino acid composition-based

methods, homology-based methods, and methods that integrate

various protein characteristics. The amino acid composition-based

methods, such as CELLO [1], P-CLASSIFIER [2], WoLF Psort

[3], TargetP [4,5], PSLDoc [6], and PSLNuc [7], utilize different

encoding schemes of protein sequences. Incorporation of amino

acid templates has also been shown useful for PSL prediction [8].

As illustrated in several methods, including PSLpred [9], PSORTb

[10,11], and PSLDoc, evolutionary information extracted from

homologous proteins can enhance prediction performance.

Finally, previous studies including PSORTb and PSL101 [12]

demonstrate that combination of various protein physicochemical

properties can achieve better performance than each individual

module.

PKs classification in superior eukaryotes is a difficult task as the

genes encoding those proteins diverged from their common

ancestor a very long time ago. However, the crucial function of

this protein family forced all sequences to maintain common

features insuring the stability of an active tertiary structure of the

enzyme. PKs are thus a mixture of very conserved and divergent

sequence portions. A good classifier would be able to distinguish

informative signals from too conserved portions and background

noise. This difficult task is often performed thanks to the use of

hidden Markov models (HMM) based on accurate multiple

sequence alignments (MSAs) of well characterized protein kinase

families. Kinomer [13] is one the most successful PK classifier

using this methodology. Based on the known classification of

several PKs in model organisms, Kinomer sub-divided the groups

into smaller families from which they derived accurate HMM.

3. Challenges
Although our previous prediction method, PSLDoc, attains high

accuracy in PSL prediction, three disadvantages can be further

improved. First, for feature extraction and representation,

PSLDoc requires a huge amount of running time to generate

position-specific scoring matrix (PSSM) in homology extension.

The homology extension procedure has been intensively used in

many bioinformatics software, i.e., PSIPRED [14], MEMSAT3

[15], RNAProB [16], PSI-Coffee [17], and etc. However, the

effects of database sizes and sequence identities on prediction

accuracy have not been fully investigated. The speed of a

prediction procedure can be greatly increased if the running time

of homology extension is reduced by searching against a smaller

database without sacrificing prediction accuracy. Second, feature

reduction in PSLDoc performed by probabilistic latent semantic

analysis (PLSA) [18] is computationally intensive and inefficient.

PSLDoc uses PLSA to reduce features based on mappings created

by latent semantic topics for each protein localization class.

However, PLSA requires a huge computational cost and long

running time for model-fitting by expectation-maximization (EM)

algorithm. Even with a trained model, we still need to combine

different information before identifying the final signature relation

for testing (Figure 8, 9, and 10 in [6]). Finally, prediction results

generated by support vector machines (SVM) in PSLDoc could

not be easily interpreted. Like many other prediction systems,

PSLDoc utilizes SVM to learn a model and perform accurate

prediction, but it is relatively difficult to interpret prediction results

from SVM. When compared with simple k-nearest neighbor (k-

NN) or decision tree algorithms, SVM suffers from the problem of

low data interpretability due to the lack of interpretable closest

training examples or decision rules.

4. Our contributions
To overcome the above shortcomings, we proposed a new

prediction strategy in which incorporates a faster homology

extension procedure as feature extraction, correspondence analysis

(CA) as an efficient feature reduction approach, and compact set

relations with nearest neighbor algorithm as an interpretable

prediction method. First, the running time and computational cost

of homology extension can be greatly reduced using a fast search

on a smaller compact non-redundant database. We investigate the

running time and prediction accuracy for homology extension

procedures using different settings and databases filtered at various

sequence identities. Experiment results demonstrate that our

method is twenty-five times faster than the traditional default

setting by searching against a smaller compact database. Second,

incorporation of CA for feature reduction is less computationally

intensive compared to PLSA. Our analysis demonstrates that CA

can identify discriminative features from protein sequences in a

more efficient manner. Moreover, after performing CA, it is also

intuitive to observe that protein sequences in the same functional

classes tend to cluster closer than those in different classes. Finally,

combination of compact sets with k-NN for prediction can provide

a more interpretable visualization of protein sequences and their

corresponding functional classes. Applying compact set relations to

predict functional classes can generate highly reliable prediction

results. In addition, 1-NN can be considered as the simplest

classification approach in k-NN algorithms without tuning the

parameter k. Based on the above observations, we combine

compact set relations with 1-NN algorithm to achieve high

prediction accuracy without sacrificing data interpretability.

Materials and Methods

In this study, we propose a method to predict protein functional

classes based on CA and compact sets. First, gapped-dipeptides are

extracted from a protein sequence and weighted by evolutionary

information from homology extension. Then, CA is conducted to

reduce the feature dimension of gapped-dipeptides. After that,

compact set relations are identified. Finally, the prediction is made

by compact sets if the target protein belongs to part of the sets;

otherwise, a one-nearest neighbor is incorporated for the

classification. The details of framework of PSLDoc system, feature

representation, feature reduction, functional class prediction,

system architecture, data sets, and evaluation measures are

described in the following sections.

1. Framework of PSLDoc
We proposed PSLDoc for protein localization prediction based

on document classification techniques. First, sequence features of a

protein sequence are extracted from gapped-dipeptides, which are

composed of pairs of amino acids separated by various gap

distances. If a protein sequence is regarded as a document, the

gapped-dipeptides within the sequence can be treated as the terms

of the document. Then, evolutionary information from PSSM is

incorporated to determine the weight of each gapped-dipeptide,

which is referred to as TFPSSM scoring scheme and calculated

from the term frequency of a document in the field of text mining

[6]. After that, PLSA is incorporated for feature reduction and

Predicting Protein Functional Classes by CA and CS
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finally SVM is applied to predict a localization class based on the

reduced features. Although PSLDoc can attain high prediction

accuracy, it still suffers from the problems of low data interpret-

ability and high computational costs.

2. Feature representation by gapped-dipeptides
weighted by a new efficient homology extension
approach

We apply the same feature representation from PSLDoc and

investigate the effect of different database sizes and search models

in homology extension. Each protein is first represented by a

feature vector according to gapped-dipeptides and TFPSSM

weighting scheme. Then gapped-dipeptides are extracted as

features of a protein and their weights are determined according

to evolutionary information from PSSM generated by PSI-BLAST

[19]. However, the time needed to obtain evolutionary informa-

tion by a homology extension procedure is positively correlated

with the size of the searched database and could be tremendous. It

has also been shown that highly non-redundant databases can be

used to obtain similar sequence alignment accuracy with a

significantly reduced computational cost [20]. Here we compare

the influence of a database on protein classification accuracy by

searching against different databases, including NCBI (National

Center for Biotechnology Information) nr, UniProt, and several

UniRef non-redundant databases (i.e., UniRef100, UniRef90, and

UniRef50) [21]. For the UniRef databases, a database is filtered so

as to make certain that no pair of sequences exists with an identity

higher than a specific level. For example, UniRef50 database is

trimmed from the UniProt database to ensure no pair of sequences

shares higher than 50% sequence identity. Besides the size of a

database, the parameter settings of PSI-BLAST are also analyzed.

Two parameter settings are benchmarked. One is regarded as a

normal model, with iteration number as two and e-value threshold

at 0.001, and the other is considered fast (insensitive) search

suggested by BLAST [22] with soft masking, using BLOSUM80

matrix, neighborhood word threshold score as 999, gap open

penalty as 9, gap extend as 2, and e-value threshold at 1e-5 (The

corresponding parameter of NCBI+ is ‘‘–matrix BLOSUM80 –

evalue 1e-5 –gapopen 9 –gapextend 2 –threshold 999 – seq yes –

soft_masking true –numter_iteration 2’’) [22].

3. Feature reduction by a more efficient and intuitive
correspondence analysis

PSLDoc introduced PLSA to detect the preference relation

between gapped-dipeptides and protein localization classes, that is,

certain gapped-dipeptides highly frequently exist in a protein

localization class (Table 7 in [6]). PLSA uses a latent variable

model for co-occurrence data (i.e., documents and terms) in which

each observation is associated with an unobserved class variable.

The parameters of the PLSA model are then estimated by an

iterative EM learning process, which is extremely computational

intense. Furthermore, even with a trained model, the gapped-

dipeptide signatures frequently observed in each protein class can

be identified through combining both P(w|z), the topic-conditional

probability of a term condition on the unobserved topic, and

P(z|d), a document-specific probability distribution over the latent

variable space (Figure 8, 9, and 10 in [6]). To improve the

efficiency in feature reduction, we propose an efficient CA, which

can effectively project gapped-dipeptides and proteins into the

same reduced dimensional space such that we can identify the

preference between gapped-dipeptides and protein sequences in a

more intuitive and visible way.

CA is generally used to explore the dependencies that exist

between a number of observations and a set of categories that

define them. It is an exploratory multivariate technique that

converts frequency table data into graphical displays in which rows

and columns are depicted as points. In our case, a protein is

characterized by several gapped-dipeptides of a certain kind, and

CA can reveal the correspondences between the gapped-dipeptide

variables and the protein classes, which our observations fall in. A

thorough account of the technique is given in the book by

Greenacre [23]. The row profiles are the frequencies in the rows

divided by their row sums. CA is a generalized principal

coordinates analysis (PCA) of the row profiles and a generalized

PCA of the columns profiles, and the treatment of the rows and

columns is the same. Both the row and column profiles rely on the

same matrix decomposition as follows (adopted from [24]):

1. Divide the original data table N by its grand total n:

p~
1

n
, where n~

X

i

X

j

nij

2. Denote by r and c the marginal sums of P: r = P1, c = PT1

3. Calculate the matrix of standardized residuals and its SVD:

s~D
{1=2
r P{rcT

� �
D

{1=2
c ~UDaVT

4. Calculate the coordinates:

Principal coordinates of
rows : F~D

{1=2
r UDa

columns : G~D
{1=2
c VDa

Roughly, an observation is described as a vector over its

variables, and a variable is represented by a vector over its

observations. Centering and normalizing of the data matrix has

the effect that these vectors can be seen as discrete probability

distributions, and distances within each class of vectors are

interpreted as the well-known Chi-squared distance. In fact, CA

decomposes the Chi-squared statistic of the joint distribution of

variables and observations from its independent model of

uncorrelated variables and observations. In a typical CA plot,

each axis (i.e., as in PCA) reflects a certain amount of the total

variance in the data. Interestingly, both variables and observations

can be plotted in this coordinate system, and the variables and

observations contributing most to the total variance will typically

fall far away from the origin of the plot (which represents the

independent model). This way, correspondences and their main

drivers can be studied in an intuitive way. CA has been shown

useful in predicting functional residues in proteins [25,26]. In this

work, CA is conducted using the R-package, FactoMineR [27].

The sizes of reduced dimensions are chosen such that these factors

explain more the 95% variance of the data together (detailed later

in Table 1 of the Results section).

Predicting Protein Functional Classes by CA and CS
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4. Functional class prediction by combining compact sets
and nearest neighbor algorithm

To predict functional classes of a protein, we first incorporate

compact sets to analyze relations between functional classes and

gapped-dipeptides. If a target sequence belongs to compact sets,

we can make a confident prediction through the unambiguous

majority voting of the other proteins in the largest compact set.

However, not all of the protein sequences will be part of a compact

set, and the sequences that do not belong to any compact set will

be predicted by one-nearest neighbor (1-NN, i.e., k = 1 for k-NN)

algorithm. In our study, the predictions made only by compact sets

are denoted as CS, and the others determined by both compact

sets and 1-NN are represented by CS+12NN. The details of

compact sets and k-nearest neighbor algorithm are explained as

follows.
4.1 Compact sets. Given a fully connected undirected graph

G = (V, E) in which vi [ V represents a protein and the edge E(vi, vj)

denotes the distance between two proteins vi and vj measured as

the Euclidean distance of their corresponding vectors in CA

reduced space. Therefore, the distance between any pair of

proteins is known. For any subset C of V, C is called a compact set if

the smallest external distance of C is still larger than the longest

internal distance in C:

C is a compact set if min{E(vi,vk)|vi [ C,vk [ V \ C}. max

{D(vi,vj)|vi,vj [ C}.

By definition, V is a compact set and each set consisting of single

sequence is also a compact set (i.e., these compact sets are trivial).

Considering the distance matrix of Figure 1 as an example, there

are three nontrivial compact sets {S1, S6}, {S1, S2, S6}, and {S3, S4,

S5} among the sequences. Nontrivial compact set can be

considered as the strict neighboring relationship because sequenc-

es inside a compact set are closer to any one of them with a

sequence from the outside of the set.

The first COMPACT_SET algorithm for identifying all

compact sets in the graph G is provided by Zivkovic [28], which

is similar to the Kruskal algorithm for finding a Minimum

Spanning Tree (MST) (Section 23, [29]), merging edges one by

one until all vertices are in one union set (|E| repeat-loop

iterations). Then, Dekel, Hu, and Ouyang brought up a candidate

tree Tcan of G which has a good property that each compact set of

G is represented by a vertex in Tcan but not all vertices in Tcan are

compact sets (Lemma 3.1, [30]). Kim presented an improved

implementation of the above algorithm, assuming G is given as an

adjacency list [31].

Combining the Kruskal-like method in [28] with the properties

of the Tcan tree in previous studies [30,31], we proposed a Kruskal

Merging Ordering Tree, TKru (a new method to construct Tcan)

such that identifying compact sets can be done in two steps shown

as below [32,33]. An example of TKru ( = Tcan) and its correspond-

ing compact tree, Tc, are illustrated in Figure 2.

The compact set tree is a hierarchical clustering approach. Its

backbone topology is TKru, which is identical to a hierarchical tree

created by Single-Linkage Clustering (SLC). However, a cluster

defined by the internal node of a SLC hierarchical tree might not

satisfy the compact set property. In the compact set method, this

internal node will be merged within its parent in Tc (i.e., Step 2 in

the COMPACT_SET algorithm). Therefore, Tc is not necessarily

binary, but a SLC hierarchical tree is. A cluster created by the

internal node of a SLC hierarchical tree possibly does not belong

to clusters defined by Tc. Conversely, clusters generated by Tc are

subsets of clusters built by SLC.

Algorithm: COMPACT_SET

Input: A weighted undirected fully connected graph G

Output: Find all the compact sets in G

Step 1. Construct a Kruskal Merging Ordering Tree

TKru of G. (CONSTRUCT_TKru)

Step 2. Verify all candidate sets.

Algorithm: CONSTRUCT_TKru

Input: G = (V, E), where |V| = N and |E| = M

Output: Kruskal Merging Ordering Tree TKru

begin

Step a for each vertex v [ V do

Make-Set (v);

Sort the edges of E in a non-decreasing order;

for k = 1 to M, ek = (u,v) [ Es do

if Find-Set (u) ! = Find-Set (v) then

Union (u, v);

Step b Merge the trees Tu and Tv into the new

tree Tk;

return Tk;

end

We proceed with the detailed description of each step. The

CONSTRUCT_TKru algorithm in step 1 is merging edges one by

one in the process of the Kruskal MST algorithm (Section 23,

[29]). Initially, we create a rooted tree Ti which contains only a

node vi as its root for each vertex vi [ V. We sort the edges of E in a

non-decreasing order such that we get the result E = {e1, e2,., eM}

with w(e1) # w(e2) #.# w(eM). For each edge ek = (u,v) [ E,1# k

#M, we find the trees Tu and Tv containing u and v, respectively,

and then merge them into a new tree Tk rooted at a new node k

such that u and v become the children of k (step b). One nice

property is that w(ek) is the minimum external distance for both

groups u and v [30,31]. The merging step is continued until only

one tree remains, and it is TKru which is identical to Tcan (Proof in

Theorem 1, see Text S1 in Supporting Information). The original

Kruskal MST algorithm does not have steps a (i.e., making sets for

each vertex) and b (i.e., merging trees into a new tree). Step a can

Table 1. Performance comparison of fast search and normal
search on databases of different sizes for the GramNeg_1444
data set.

Fast search (Normal search*)

Database # of seq. Time (sec.) Accuracy (%) # of CA
dim.

Ave. IPP

UniRef50 3,077,464 21,219
(139,667)

90.10 (90.34) 29 (21) 0.742
(0.607)

UniRef90 6,544,144 44,999
(315,518)

89.89 (90.03) 37 (29) 0.817
(0.699)

UniRef100 9,865,668 67,797
(496,425)

90.10 (90.10) 44 (36) 0.857
(0.749)

UniProt 11,009,767 73,623
(543,240)

90.58 (89.96) 52 (41) 0.888
(0.777)

NCBI nr 10,565,004 73,811
(536,104)

90.17 (90.44) 44 (36) 0.856
(0.749)

*Experiment results based on normal search are shown in parentheses.
doi:10.1371/journal.pone.0075542.t001

Predicting Protein Functional Classes by CA and CS
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be done in O(N) and step b can be performed in O(1). Therefore,

the time complexity of CONSTRUCT_TKru is the same with that

of Kruskal MST, O(M log N) (Section 23, [29]), where M and N are

the numbers of edges and vertices in an edge-weighted graph.

For step 2 of the COMPACT_SET algorithm, we use the least

common ancestor algorithm [31] to verify all candidate sets in

O(M + N) time [34]. In conclusion, compact sets can be found in

O(L + M + MlogN) time, where L is the sum of the sizes of all

compact sets.

4.2 k-nearest neighbor algorithm. An unknown target is

projected through CA as a point in the same dimension space with

the training data set. Then, we calculate its Euclidean distance

with respect to all training data, and the predicted class will be

assigned with the same label as the nearest neighbor sequence in 1-

NN algorithm. Although simple 1-NN usually does not predict as

accurately as SVM, it not only performs efficiently but also

generates more interpretive prediction results from the nearest

neighbor relation compared with SVM. However, the lack of

prediction confidence estimation in k-NN makes it difficult for the

users to judge whether a prediction result is reliable or not. In

addition, the k-NN algorithm is sensitive to the local structure of

the data, that it, some cases can only be correctly predicted by 1-

NN, some only by 3-NN, and some only by 5-NN. Therefore, one

of the challenges in using k-NN algorithm is to determine how

many nearest neighbors are enough for each individual case.

5. System architecture
In this study, we present a protein functional class prediction

method based on CA and homology extension. Our method

incorporates gapped-dipeptides extracted from a protein sequence

and weighted by homology extension information from PSSM.

Next, CA is utilized as feature reduction to reduce the feature

dimension of gapped-dipeptides. Then, a compact set relation

analysis is performed. Finally, the protein is classified by CS or

CS+1-NN. The system architecture of our method is shown in

Figure 3. Given a protein sequence, our method performs the

following steps:

1. Use PSI-BLAST to search against a non-redundant sequence

database and generate homology extension information in

PSSM

2. Extract gapped-dipeptides to represent the protein and assign

weights according to TFPSSM scoring scheme

3. Apply CA for feature reduction

4. Generate protein gapped-dipeptide compact set relation based

on reduced gapped-dipeptides

Figure 1. A compact set example. A distance matrix D for five sequences and its three nontrivial compact sets {S1, S6}, {S1, S2, S6}, and {S3, S4, S5}.
doi:10.1371/journal.pone.0075542.g001

Figure 2. Kruskal Merging Ordering Tree TKru and its compact set tree Tc. (a) A Kruskal Merging Ordering Tree TKru of the distance matrix D in
Figure 1 with four internal nodes, C1, C2, C3, and C4, representing four candidate compact sets {S1, S6}, {S1, S2, S6}, {S3, S4} and {S3, S4, S5}, respectively. (b)
Its compact set tree Tc with three internal nodes, I1, I2, and I3, representing nontrivial compact sets {S1, S6}, {S1, S2, S6}, and {S3, S4, S5}, respectively.
doi:10.1371/journal.pone.0075542.g002

Predicting Protein Functional Classes by CA and CS
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5. Incorporate CS+12NN method to predict the protein

functional class: if the target protein belongs to compact sets,

make the confident prediction by the largest CS; otherwise,

predict by 1-NN.

6. Data sets
To demonstrate the generality of our method, both localization

prediction and kinase classification are incorporated to evaluate

prediction performance. For performance comparison with other

approaches, we utilize protein localization and kinase classification

data sets that have been used in previous studies.

6.1 Protein subcellular localization data sets. For protein

localization prediction, we utilize benchmark data sets curated in

PSORTb 2.0 and PSORTb 3.0. First, to compare the perfor-

mance of our new strategy with the original PSLDoc, we

incorporate the Gram-negative bacteria benchmark data set

(abbreviated as the GramNeg_1444 data set) organized in

PSORTb 2.0, which consists of 1,444 experimentally determined

proteins in five localization sites: cytoplasmic (CP), inner

membrane (IM), periplasmic (PP), outer membrane (OM), and

extracellular space (EC). The numbers of proteins distributed in

each localization sites in the GramNeg_1444 data set are shown in

Table 2. For comparison with the state-of-the-art system PSORTb

3.0, we also incorporate new benchmark data sets (abbreviated as

the GramNeg_8230, GramPos_2652, and Archaeal_810 data sets

in Table 3) built in PSORTb 3.0, which contain 8,230 Gram-

negative, 2,652 Gram-positive, and 810 Archaeal proteins.

6.2 Protein kinase classification data set. Although the

original PSLDoc framework is designed to predict PSL, it can also

be extended to other protein classification problems. To validate

the generality of our method, we also analyze its prediction power

on the annotation of human PKs. Since the first classification

realized by Hanks and Hunter in 1995 [35], and one of its major

updates in 2002 [36], the structures of the kinome classification

have not been changed. The 516 known human kinases are

distributed in eight families of eukaryotic protein kinases (ePKs)

(i.e., AGC, CAMK, CK1, CMGC, RGC, STE, TK, and TKL)

and different numbers of atypical protein kinases (aPKs) depend-

ing on the study. In this work, we focus our interest only on the

ePKs as aPKs are often related to different functions and can be

considered as an out-group. Our kinase data set, called hereafter

the HumanKinase_409 set, is downloaded from KinBase database

(http://kinase.com/kinbase/FastaFiles/Human_kinase_domain.

fasta) and it contains 409 protein sequences classified into the eight

families detailed in Table 4. To the best of our knowledge, we

compare our results to the most recent classification method,

Kinomer [13].

7. Evaluation measures
To compare with other approaches, we follow the same

evaluation measures used in previous studies [1,6,11,13]. In our

experiment, we use five-fold cross-validation to evaluate our

prediction performance. First, a data set is randomly split into five

disjoint parts of equal size. One of the five parts is used as a testing

set, and the remaining parts are joined as a training set. A training

set is used to get the coordinate system for CA projection and a

testing set is projected to the same space as obtained from the

training set according to the trained CA. A testing set is predicted

based on CS or CS+12NN. The procedure is iterated five times

and each time a different part is chosen as a testing set. To assess

the performance of each protein class, recall and precision are

calculated by Equations (1) and (2), respectively. We also use

accuracy defined in Equation (3) to assess the overall prediction

performance and apply F-measure defined in Equation (4) to

evaluate the harmonic mean of recall and precision. TP, FP, FN,

and N denote the numbers of true positives, false positives, false

negatives, and total number of proteins, respectively.

Recall~
TP

TPzFN
ð1Þ

Precision~
TP

TPzFP
ð2Þ

Accuracy~
TP

N
ð3Þ

F�measure~
2|Recall|Precision

RecallzPrecision
ð4Þ

Figure 3. System architecture of the proposed method for
prediction of protein functional classes. Using ‘‘fast search’’ on
‘‘UniRef50’’ database is the default setting of our method.
doi:10.1371/journal.pone.0075542.g003
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Results

1. Compact non-redundant database achieves high
prediction performance with much less running time

When we calculate the TFPSSM weighting scheme of gapped-

dipeptides, evolutionary information of PSSM is generated by

BLAST search for each protein against a database. This procedure

defines the database as a key ingredient of homology extension.

Therefore, it is an interesting question to ask how this parameter

may affect the overall accuracy of the procedure. To investigate

the effect of database sizes and search models, we incorporate

12NN on the GramNeg_1444 data set for comparison in this

section. The information per position (IPP) provides a quantitative

measure of sequence conservation among the homologous

sequences used to construct the PSSM for each sequence position

[37]. This value, which is stored in the second last column in PSI-

BLAST profiles, is provided directly by PSI-BLAST. Table 1

demonstrates the prediction performance using fast search and

normal search (shown in parentheses) on UniRef50, UniRef90,

UniRef100, UniProt, and NCBI nr databases. We compare the

effect of different database sizes and search models as following.

First, we compare prediction performance and running time

among databases of different sizes. Experiment results show that

the differences in accuracy are very small among those databases

for both normal search and fast search. For example, the 90.10%

accuracy of fast search against UniRef50 database is almost as

good as 90.58% and 90.17% by UniProt and NCBI nr,

respectively. Moreover, the numbers of CA dimension and the

values of average IPP in our method also decrease when more

redundant sequences are filtered in the searched databases. This

implies that the incorporation of a more compact non-redundant

database can achieve equal prediction performance with less

running time compared to large databases. In fact, the UniRef50

database filters protein sequences at 50% redundancy and is

approximately 3.5 times smaller than the traditionally searched

UniProt and NCBI nr databases. It suggests that the central

processing unit (CPU) requirements and computational time in

homology extension could be greatly reduced by one-fourth faster

(139,667 sec. vs. 543,240 sec.), without sacrificing prediction

power based on a more compact non-redundant database.

Second, we compare prediction performance and running time

of fast search and normal search. Interestingly, using fast

insensitive search on UniRef50 database can further reduce 85%

running time (21,219 sec. vs. 139,667 sec.) with almost identical

accuracy (90.10% vs. 90.34%) compared to normal search on the

same database. Moreover, it takes almost only 4% running time

(21,219 sec. vs. 536,104 sec.) of the most widely used homology

extension procedure (i.e., normal search on NCBI nr database),

which is twenty-five times faster than the original required running

time. Our results demonstrate that applying a fast search on a

smaller compact database in homology extension can greatly

reduce running time up to 96% without sacrificing prediction

performance. This observation is useful for the community using

homology extension, e.g., secondary structure prediction, MSAs,

and etc. Therefore, the following analyses and experiments are

performed based on UniRef50 with fast search model.

2. Interpretable visualization of feature reduction by
correspondence analysis

Our experiment results demonstrate that feature reduction

based on CA not only efficiently identify discriminative features,

but also provides a more interpretable visualization for both

protein localization and human kinase classification. For protein

localization classification, we incorporate the GramNeg1444 data

set as an example for comparison with PLSA feature reduction

used in our previous PSLDoc study. Figure 4 illustrates the

proteins represented by localization labels with different colors,

and gapped-dipeptides denoted by dots and projected in top two

Table 2. Prediction performance of protein subcellular localization by five-fold cross-validation for the GramNeg_1444 data set.

CS CS+12NN PSLDoc

Loc. Site # of seq. Precision (%) Recall (%) Precision (%) Recall (%) Precision (%) Recall (%)

CP 278 100.00 46.40 92.34 88.85 91.03 94.96

IM 309 100.00 65.26 85.07 91.05 96.97 93.20

PP 76 100.00 55.02 96.22 90.94 89.13 89.13

OM 391 100.00 68.03 94.80 97.95 96.89 95.65

EC 190 100.00 65.58 88.15 88.41 87.69 90.00

Overall 1,444 100.00 60.25 91.97 91.97 93.01 93.01

The best performance of individual localization sites and overall data set is shown in bold face.
doi:10.1371/journal.pone.0075542.t002

Table 3. Prediction performance of protein subcellular
localization by five-fold cross-validation for the
GramNeg_8230, GramPos_2652, and Archaeal_810 data sets.

Data set Method Precision (%) Recall (%) F-measure

GramNeg_8230 CS 100.00 51.50 0.6799

12NN 95.17 95.12 0.9514

CS+12NN 96.08 96.04 0.9606

PSORTb 3.0* 97.30 94.10 0.9567

GramPos_2652 CS 100.00 59.20 0.7437

12NN 93.73 93.48 0.9361

CS+12NN 95.06 94.84 0.9495

PSORTb 3.0* 98.20 93.10 0.9558

Archaeal_810 CS 100.00 69.74 0.8218

12NN 96.76 96.40 0.9658

CS+12NN 96.89 96.89 0.9689

PSORTb 3.0* 97.20 93.40 0.9526

*Prediction performance of PSORTb 3.0 by five-fold cross-validation is obtained
from Tableô 2 and Tableô 3 in [11].
The best performance of individual data sets is shown in bold face.
doi:10.1371/journal.pone.0075542.t003

Predicting Protein Functional Classes by CA and CS

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e75542



major CA dimensions, whose percentages of variances are shown

in brackets. The analysis of Figure 4 takes 1m29.294s in HP z800

workstation with Dual (2x) Intel Hex (6x) Core Xeon X5650

2.67 GHz and 47.3 GB memory. First, we examine the proteins

labeled with localization classes with different colors in the plot.

Interestingly, most of the localization sites are nicely separated in

two major CA dimensions, which explain 60.31% of the variance

in the data. However, the EC and OM classes tend to mix

together, which can also reflect misclassifications between the EC

and OM proteins in our method. Second, we analyze the

correlation between the distribution of gapped-dipeptides and

different localization classes in the plot. In CA, it is observed that

some gapped-dipeptides stay closely with a specific localization

class, which implies that these gapped-dipeptides show preference

to the localization site. Gapped-dipeptide signatures proposed in

PSLDoc are marked as stars in Figure 4, and their colors are

assigned according to their corresponding preference localization

sites (Table 7 in [6]). Interestingly, same colored gapped-dipeptide

signatures and localization sites tend to cluster together. In other

words, the preference relation between gapped-dipeptides and

localization sites previously proposed in PSLDoc is consistent with

CA. Now, this preference relation can be efficiently identified in

one step by CA instead of the previous complex procedures in

PLSA (Figure 8, 9 and 10 in [6]). Besides efficiency, CA also

provides a more intuitive visualization of the preference relation.

For human kinase classification, Figure 5 shows human proteins

represented by kinase family labels in and gapped-dipeptides

projected in top two major CA dimensions for the HumanKi-

nase_409 data set. We can observe a better separation in CA,

which is consistent with a high overall prediction accuracy of

99.02%. We also use CA to further classify each human ePKs

family into sub-families as defined in Manning et al. [36]. Figure S1

in Supporting Information gives an overview of the results we

obtain for the sub-family classification of the AGC family.

3. Combination of precise prediction by compact sets
and interpretable results from nearest neighbor
algorithm

In our study, if a target protein belongs to compact sets, the final

prediction is made by CS; otherwise, 12NN is used to assign the

functional class. We utilize protein localization and kinase

classification benchmark data sets for comparison with other

approaches. For protein localization classification, Table 2 shows

the prediction performance based on CS, CS+12NN, and the

original PSLDoc for the GramNeg_1444 data set. It is observed

that CS only predicts 870 of 1,444 proteins but a precision of

100% is achieved. This demonstrates that the neighboring relation

identified by CS is highly reliable. Furthermore, we incorporate a

simple 12NN to predict the remaining ‘‘unknown’’ proteins based

on CS (i.e., the CS+12NN method) and achieve an overall recall

of 91.97%, which is comparable to the prediction performance

made by SVM-based predictors, such as the 91.60% by CELLO II

[1] (recall and precision not available for comparison). To

compare with the state-of-the-art system PSORTb 3.0, we also

incorporate three new data sets built in PSORTb 3.0 for

prediction performance evaluation.

Table 3 shows the prediction performance for the Gram-

negative, Gram-positive, and Archaeal data sets. It is also observed

that CS method reaches 100% precision with low recall for the

three data sets. Poor recall in CS method is resulted from the

limitation that CS method can only predict the proteins belonged

to a compact set. On the other hand, 12NN method attains much

higher recall because it can be applied to classify any protein in a

data set. Most importantly, when CS and 12NN are combined

together, experiment results demonstrate that CS+12NN method

attains a comparable performance with PSORTb 3.0 for both

recall and precision. For the three data sets, we can observe that

our CS+12NN method reaches higher recall while PSORTb 3.0

obtains better prediction. Moreover, when both recall and

precision are considered, our method achieves higher in F-

measure at 0.9606 and 0.9689 compared to 0.9567 and 0.9526 by

PSORTb 3.0 for the GramNeg_8230 and Archaeal_810 data sets,

respectively. This indicates that our method can provide a more

efficient and interpretable mean to predict protein localization

without sacrificing discrimination power.

Table 4 shows the performance comparison of CS, CS+12NN,

and the state-of-the-art system, Kinomer, for the HumanKi-

nase_409 data set. The precision of proteins predicted by CS is

also 100% under a 71.39% recall (i.e., 292 proteins predicted).

This corresponds well with our previous observation that

identification of neighboring relations by CS is highly reliable.

Moreover, when a simple 12NN is applied to classify the

remaining unknown proteins from CS, the precision and recall are

enhanced to 99.02% and 99.02%, respectively. Based on a

compact set and simple 12NN, our prediction method can

Table 4. Prediction performance of human kinase classification by five-fold cross-validation for the HumanKinase_409 data set.

CS CS+12NN Kinomer*

Family # of seq. Precision (%) Recall (%) Precision (%) Recall (%) Recall (%)

AGC 69 100.00 72.46 100.00 95.65 98.41

CAMK 76 100.00 73.68 100.00 100.00 100.00

CK1 12 100.00 83.33 92.31 100.00 100.00

CMGC 63 100.00 74.60 98.44 100.00 100.00

RGC 05 100.00 40.00 100.00 80.00 100.00

STE 47 100.00 89.36 100.00 100.00 100.00

TK 94 100.00 62.04 98.56 100.00 100.00

TKL 43 100.00 58.14 95.56 100.00 100.00

Overall 409 100.00 71.39 99.02 99.02 99.77

*Prediction performance of Kinomer, which was trained and tested on the same data set, is obtained from Table III in [13].
The best performance of individual kinase families and overall data set is shown in bold face.
doi:10.1371/journal.pone.0075542.t004
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achieve comparable performance that is only slightly worse than

the state-of-the-art recall at 99.77%, which could be overestimated

because it was trained and tested on the same set instead of five-

fold cross-validation in an HMM method by Kinomer.

Discussion and Conclusions

First, for feature extraction and representation, evolutionary

information in the PSSM has been commonly used for protein

structure and function prediction, such as PSL prediction, function

classification, and secondary structure prediction. Most methods

generated PSSM information by searching against the NCBI nr

database [38]. It has been shown that highly non-redundant

UniRef databases can be used to obtain comparable prediction

performance with NCBI nr in around one fourth of the running

time in MSAs [20]. In this study, experiment results correspond

well with the above observation that applying a fast search on a

more compact non-redundant data set in homology extension can

greatly increase efficiency without sacrificing prediction perfor-

mance for both localization and kinase classification. Most

notably, it would be helpful for researches in the bioinformatics

community to consider this finding when they try to develop

programs or web servers that can make accurate prediction in

much less running time.

As for feature reduction by CA, our results demonstrate that

proteins with different functional categories can be nicely

separated by CA for both protein localization and human kinase

classification. For localization data sets, experiment results show

that CA can not only discriminate proteins from different

localization sites but also provide a more efficient and visualized

feature reduction compared with PLSA. The separation between

proteins from varied kinase families in CA is especially clear for the

human kinase data set, which lend support on the assumption that

different functional classes can be accurately distinguished if more

discriminative features can be proposed after feature reduction.

Besides gapped-dipeptides, many sequence features have also been

reported effective for protein classification, i.e., k-mer [39], class

frequency [40], and etc. Due to the generality of our method, they

can be incorporated into our framework such that the preference

of these features with respect to the protein classes can be

identified through CA in the future.

For the machine learning approaches, we propose a hybrid

method in which CS is incorporated if a target protein belongs to

compact sets; otherwise, the final functional class is predicted by

12NN. We propose CS to identify neighboring relation of

proteins with high precision and experiment results indicate that

proteins belonged to the same compact sets tend to have an

identical proteins class. In addition, we apply 12NN because it is a

simple and intuitive prediction method compared with SVM, and

k is chosen as 1 (k = 1 in k-NN) to avoid overestimation in

parameter tuning. Our study demonstrates that the combination

of CS and 12NN is able to generate interpretable prediction

results and achieve comparable performance compared with the

state-of-the-art systems for both protein localization and human

kinase classification.

Figure 4. Correspondence analysis of the GramNeg_1444 data set. The figure shows Gram-negative bacteria proteins with localization labels,
gapped-dipeptides (black circle) and gapped-dipeptide signatures (stars with corresponding color) projected in top two major CA dimensions whose
percentage of variance is shown in parentheses.
doi:10.1371/journal.pone.0075542.g004
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The ability to correctly classify protein kinases into their

respective families without the need of time consuming MSAs

represents one of the major benefits of our method. While

classifying the human ePKs may not be seen as challenging, one

shall keep in mind that we designed our method for the task of

classifying non-annotated proteins from species evolutionarily

distant from common model species. Indeed, when analyzing the

ePKs from orphan species, one may encounter sever difficulties to

accurately align their sequences with the annotated ones. Thus, a

method able to classify a set of distant sequences without the need

of a MSA may be able to cover the gap left by the alignment based

procedure. We believe that a meta-classifier based on both

approaches should be able to deal with challenging classifications

thanks to the use of two orthogonal signals. The source codes to

generate gapped-dipeptides weighted by TFPSSM scheme and

find compact sets are available at https://github.com/warnname/

PSLDoc and https://github.com/warnname/FCS, respectively.

Supporting Information

Figure S1 Correspondence analysis for kinase subla-
bels of AGC family. The figure shows human kinase sequences

in AGC family with subfamily labels projected in top two major

CA dimensions.
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Text S1 Proof of compact sets.
(DOC)
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