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The kidneys play an indispensable role in glucose homeostasis via glucose reabsorption,

production, and utilization. Conversely, aberrant glucose metabolism is involved in the

onset, progression, and prognosis of kidney diseases, including acute kidney injury (AKI).

In this review, we describe the regulation of glucose homeostasis and related molecular

factors in kidneys under normal physiological conditions. Furthermore, we summarize

recent investigations about the relationship between glucose metabolism and different

types of AKI. We also analyze the involvement of glucosemetabolism in kidney repair after

injury, including renal fibrosis. Further research on glucosemetabolism in kidney injury and

repair may lead to the identification of novel therapeutic targets for the prevention and

treatment of kidney diseases.
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INTRODUCTION

In the 1930s, Bergman and Drury showed that the removal of the kidneys or blockade of their
function markedly increased glucose requirement in rabbits, demonstrating the first evidence
for the involvement of the kidneys in systemic glucose homeostasis. Today, the kidneys are
known to contribute to glucose homeostasis via glucose reabsorption, production, and utilization.
When the bloodstream flows through the kidneys, the bulk of glucose filtered by the glomeruli
reenters circulation through reabsorption by renal tubules. In addition, when glycogen is exhausted
after a lengthy fasting, the kidneys can produce glucose and release it into circulation through
gluconeogenesis. Moreover, the kidneys are glucose consumers that utilize glucose as part of the
energy source to support their reabsorptive activity and excrete metabolic wastes.

Acute insults such as hypoxia or ischemia, drugs or toxins, and infection can cause damage to
the kidneys, resulting in acute kidney injury (AKI). The kidneys have the ability to repair, but if an
injury is severe or recurring, the repair will be abnormal or maladaptive, resulting in renal fibrosis
(1). There is accumulating evidence that glucose metabolism takes part in the progression of some
kidney diseases, but its role in kidney injury and repair remains largely unknown. In this review, we
discuss glucose homeostasis and its regulation in kidneys under normal physiological conditions,
elucidate the role of glucose metabolism in the development and progression of AKI, and analyze
its involvement in kidney repair, including renal fibrosis.

GLUCOSE HOMEOSTASIS IN NORMAL KIDNEYS

Glucose is known to be the major carbon source for cellular biosynthesis and energy generation,
which plays a significant role in cell growth (2). There are three ways that the kidneys take
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part in the homeostasis of systemic glucose. First, they reabsorb
glucose into the bloodstream after glomerular filtration. Second,
they synthesize and release glucose into circulation through
gluconeogenesis. Finally, they make use of glucose from
circulation to fuel cellular activities and functions (Figure 1).
The traditional view elicited from net organ balance studies
concluded that glucose homeostasis was mainly ensured by the
liver, while the kidneys only played a significant role under
acidotic conditions and after prolonged fasting (3). However,
the kidneys are now considered to significantly contribute
to systemic glucose homeostasis based on recent studies as
elaborated below (4–6).

Renal Glucose Reabsorption
In a healthy person with a normal estimated glomerular filtration
rate (eGFR), about 140–160 g of glucose is filtered from the
bloodstream by the glomerulus daily (7). Normally, the amount
of glucose filtered by the kidneys rises linearly when the
plasma glucose level increases because of its free filtration in
the glomerulus (8). Most of the filtered glucose reenters the
bloodstream through reabsorption by the proximal convoluted
tubules (PCT) (7). At the cellular level, glucose is reabsorbed by
the sodium–glucose co-transporters (SGLTs) that are located on
the brush-border membrane of the PCTs. PCTs mainly depend
on these transporters to transfer glucose across the plasma
membrane since the plasma membrane of PTCs is impermeable
to glucose (9). SGLT2 is a high-capacity, low-affinity SGLT
located in the S1 and S2 segments of the PCT. By coupling

FIGURE 1 | Glucose metabolism in normal kidney. The normal kidney is involved in systemic glucose metabolism mainly in three ways: reabsorption of glucose,

production of glucose (gluconeogenesis), and utilization of glucose. When the bloodstream floods into the kidneys, all of the glucose in plasma passes through the

glomerulus and most is then reabsorbed by the proximal convoluted tubules (PCTs). In addition, PCTs produce glucose through gluconeogenesis during the

post-absorptive phase. Different segments of the nephron have their own preferable sources of fuels for energy based on oxygen availability. PCTs in the cortex prefer

free fatty acids (FFAs) for respiration, while succinate and lactate are the main fuel for the outer medulla tubules and the inner medulla mainly utilizes glucose via

anaerobic glycolysis to generate ATP. Created with BioRender.com.

with the transport of sodium in an adenosine triphosphate
(ATP)-driven way, SGLT2 is responsible for the active transport
of glucose against a concentration gradient, which accounts
for the reabsorption of more than 90% of the glucose filtered
by the glomerulus. In contrast, SGLT1 has a relatively lower
capacity and higher affinity for glucose and is mainly expressed
in the intestine and S3 segment of the PCTs, taking part in the
absorption of glucose in the intestine and the reabsorption of
the remaining part of glucose filtered by glomerulus. In addition
to SGLTs, the facilitative glucose transporters, the GLUTs, which
lie in the basolateral membrane of PCTs, also contribute to
glucose transport. GLUT2, which is also known as SLC2A2,
works synergistically with SGLT2 in the S1 segment of the
renal tubule, while GLUT1, which is also known as SLC2A1,
cooperates with SGLT1 in the S3 segment (9–12). When the
plasma glucose concentration is < ∼200 mg/dL, reabsorption of
filtered glucose increases linearly since the reabsorptive capacity
of the SGLTs is not yet saturated. Under such conditions, glucose
is not present in the urine since the glucose filtered through
the glomerulus is completely reabsorbed by the PCTs. The
reabsorption curve is no longer linear when the glucose level
exceeds the maximal amount that can be reabsorbed (the tubular
maximum or Tmax) because the co-transporters are approaching
saturation. This is referred to as the renal threshold and is
usually seen at a plasma glucose concentration of ∼200–250
mg/dL (9). When the plasma glucose concentration exceeds
the renal threshold, for example, in diabetes, glucose leaks into
the urine.
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Renal Gluconeogenesis
Two processes are involved in the endogenous production of
glucose in circulation. One process is glycogenolysis, the process
catalyzed by glucose-6-phosphatase that converts glycogen to
glucose-6-phosphate (G6P) and subsequently hydrolyzes it into
free glucose. The other process is gluconeogenesis, i.e., de
novo synthesis of glucose from non-glucose precursors (13).
Glycogenolysis mainly occurs in the liver, accounting for
approximately 50% of circulating glucose in the post-absorptive
state (14). Although glycogen synthesis and degradation have
been noted in the medulla of kidney, it is widely believed that
the kidneys are unable to release glucose through glycogenolysis
because renal cells have negligible glucose-6-phosphatase activity
(15). Gluconeogenesis consists of a series of enzyme-catalyzed
reactions. Among them, there are four irreversible reactions
that are catalyzed by four key enzymes: pyruvate carboxylase,
phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-
bisphosphatase, and glucose-6-phosphatase. During the post-
absorptive phase, the kidneys account for ∼40% of endogenous
gluconeogenesis, which primarily occurs in the PCTs and the
proximal straight tubules since hub enzymes for gluconeogenesis
are limited to the PCTs (16, 17). In humans, lactate, glutamine,
alanine, and glycerol make up the main gluconeogenic substrates.
However, it is worth noting that there are differences between
the kidneys and the liver in their resources of gluconeogenic
precursors. Lactate is the predominant gluconeogenic precursor
in both organs, but glutamine is the preferential gluconeogenic
substrate for the kidney, while alanine is preferentially used by
the liver (18).

Renal Glucose Utilization
The kidneys consume a significant portion of energy in our body
to support filtration, reabsorption, and excretion. The preference
for energy sources of kidney cells varies depending on their
location along the nephron, specific ATP demands, and oxygen
availability (19). For example, in the cortex of the kidneys, the
PCT cells prefer free fatty acids (FFAs) rather than glucose as their
fuel for respiration and tubular transport, while glucose is the
preferred fuel substrate for the glomerulus and thin descending
limbs. Because the cortex normally has sufficient oxygen supply,
the cortical PCTs can use FFAs to produce more ATP although
this may consume comparatively higher levels of oxygen than
glucose oxidation (20). However, the oxygen supply decreases
from the cortex to the medulla due to the shunting of cortical
blood flow (21). In the outer medulla, succinate or lactate is
the preferred source for respiration rather than glucose, while in
the inner medulla, glucose is mainly converted to lactate via the
process known as anaerobic glycolysis (16).

GLUCOSE METABOLISM REGULATION IN
KIDNEY

Hormones
In healthy individuals, the plasma glucose concentration is
maintained within a relatively narrow range of about 4.0–8.0mM
despite the wide fluctuations of food intake or exercise. This
mainly depends on the regulation of hormones that can precisely

adjust the endogenous production of glucose. Among those
glucoregulatory factors, insulin, glucagon, and catecholamines
are the most important acute glucoregulatory hormones and can
alter the plasma glucose level in just a few minutes (22).

Insulin, a well-studied hormone, was discovered in 1921,
but it was not until decades later that its mechanism of
action was understood. Levine et al. later elucidated that the
glucose-lowering effect of insulin was through augmenting
membrane permeability to glucose rather than binding directly
to glycolytic enzymes to modify their activity (23). In 1971,
Freychet et al. proved the existence of a membrane receptor
for insulin (24). A decade later, the insulin receptor (IR)
was cloned contemporaneously by the Ebina and Ullrich
groups (25, 26). Now it is clear that, by binding to the IRs,
insulin can regulate and amplify intracellular insulin signaling,
leading to the translocation of GLUT1 and GLUT4 to the
plasma membrane for cellular glucose uptake and lowering
of blood glucose. In addition, insulin signaling contributes to
the regulation of different cellular processes through various
pathways, such as the phospho-inositol-3 (PI3K) pathway,
MAPK, AKT, and mTOR (27). For renal glucose metabolism,
insulin is reported to attenuate glucose release through directly
activating or deactivating enzymes in gluconeogenesis, as well as
by reducing the availability of gluconeogenic substrates, and acts
on gluconeogenic activators (14).

Glucagon is an important hormone in the regulation of
liver glucose metabolism both in gluconeogenesis and in
glycogenolysis, but its role in glucose metabolism in the
kidney is negligible (28). Catecholamines can increase renal
gluconeogenesis by directly stimulating cAMP-mediated
key gluconeogenic enzymes and indirectly increasing
the gluconeogenic precursors and stimulators (13). Other
glucoregulatory hormones such as growth hormones, cortisol,
and thyroid hormones also take part in the regulation of glucose
homeostasis. The mechanism may be related to (1) influencing
the sensitivity of the kidneys to the acute glucoregulatory
hormones mentioned above; (2) modifying the activity of
key enzymes that affect glycogen stores; or (3) affecting the
availability of gluconeogenic precursors such as lactate, glycogen,
and some amino acids (22).

Substrates and Enzymes
As mentioned above, gluconeogenesis can synthesize glucose
from various precursors, of which lactate is the most important.
Due to a low oxygen supply, the distal tubules in the
inner medulla mainly rely on anaerobic glycolysis to generate
ATP, resulting in the generation of lactate. This, in turn,
provides a substrate for cortical gluconeogenesis, leading to a
corticomedullary glucose–lactate recycling loop (29).

Glycolysis, which converts glucose to pyruvate, is an
important catabolic process in glucose metabolism. The rate
of glycolytic flux is controlled precisely by key enzymes
at different levels. During glycolysis, there are three vital
enzymes, namely, hexokinase (HK), phosphofructokinase (PFK
or PFK1), and pyruvate kinase (PK) that act synergistically.
When glucose enters cells, it is immediately phosphorylated
by HK, which is the first committed, rate-limiting step of
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glycolysis and drives all major pathways of glucose utilization.
This rate-controlling step can maintain the concentration
gradient of glucose, leading to continuous glucose uptake
through the GLUTs. There are four isoforms of HK in
mammalian cells, but the distribution, regulation, and function
of the different isoforms in the kidney are unclear except
for a description by Gall et al about endogenous HK II
expression in the PCT (30–32). PFK or PFK-1 is another key
enzyme during the glycolytic process that converts fructose-
6-phosphate (F6P) to fructose-1,6-bisphosphate (F1,6P2) (33).
While several intracellular metabolites modulate PFK, the most
significant endogenous inhibitor and activator of PFK are ATP
and fructose-2,6-bisphosphate (F2,6P2), respectively (34). Last,
PK is a rate-limiting enzyme that catalyzes the irreversible
process in converting phosphoenolpyruvate (PEP) to pyruvate
in the last step of glycolysis. There are four isoforms of PK
in mammals (L, R, M1, and M2), among which the M2
isoform (PKM2) expresses exclusively in rapidly proliferating
tissues and is positively regulated by the upstream glycolytic
intermediate F1,6P2 (35). There is emerging evidence that
PKM2 is involved in the metabolic reprogramming progress of
kidney diseases (36–38).

Glucose Transporters
Sodium–glucose co-transporters are transmembrane proteins
that belong to the SLC5 family of active glucose transporters,
which contains 12 members (39). Among them, SGLT1
and SGLT2 are the major isoforms that have been studied
comprehensively. As mentioned previously, SGLT1 accounts for
most of the dietary glucose uptake in the intestine, while SGLT2
is related to the majority of glucose reabsorption in the kidneys.
As a consequence, mutations in genes SGLT1 and SGLT2 can
cause glucose/galactose malabsorption and glucosuria, separately
(40). In humans, it is estimated that SGLT2 is responsible for the
reabsorption of∼90% of tubular glucose, while the rest is handled
by SGLT1 (41). Thus, the inhibition of SGLT2 can suppress
renal glucose reabsorption to a great extent. Although glucosuria
is connected with polyuria, polydipsia, nocturnal enuresis, and
polyphagia, serious complications such as ascending urinary tract
infections or impaired kidney function are rarely observed in
individuals with SGLT2 gene mutation, indicating that SGLT2
inhibitors could be developed as safe glucose-lowering drugs
(40). As early as 1933, a natural substance called phloridzin
from the root bark of apple trees was found to block the
reabsorption of glucose in the kidneys (42). Subsequent studies
demonstrated that phloridzin was a non-specific SGLT inhibitor
that can cause diarrhea, dehydration, and other adverse reactions
(40). Recently, several SGLT inhibitors have been discovered
with high selectivity, high bioavailability, and safety. With the
development of pharmaceutical technology, SGLT2 inhibitors are
emerging and evolving. Specific SGLT2 inhibitors (canagliflozin,
dapagliflozin, and empagliflozin) have entered clinical use in
North America and Europe, while ipragliflozin, luseogliflozin,
and tofogliflozin are being used in Japan. Other related SGLT
inhibitors (e.g., ertugliflozin and sotagliflozin) are also under
investigation (43).

REGULATION OF GLUCOSE METABOLISM
IN KIDNEY DISEASES

The Warburg Effect
Initially described by Otto Warburg in 1924, the Warburg
effect or aerobic glycolysis is defined as the induction of
glycolysis in tissues or cells in the presence of oxygen, which
plays a pivotal role in cancer metabolism (44). Compared
to mitochondrial oxidative phosphorylation, aerobic glycolysis
synthesizes fewer ATP molecules but produces ATP at a
higher speed, i.e., generating more ATP in the same amount
of time (45). In addition to energy production, aerobic
glycolysis and the resulting metabolites are also involved in
the regulation of various pathophysiology processes such as
cell proliferation, extracellular matrix production, autophagy,
and apoptosis (46). Although there is only a limited number
of studies on the relationship of the Warburg effect and AKI
(47), recent studies have provided compelling evidence that
the Warburg effect contributes to the progression of kidney
diseases such as polycystic kidney disease (PKD) and diabetic
kidney disease (DKD) (38, 48, 49). Rowe et al. observed that
aerobic glycolysis was a preferred source of energy rather
than oxidative phosphorylation in Pkd1−/− mouse embryonic
fibroblasts. Consistently, aerobic glycolysis was enhanced in
a murine model of PKD and human autosomal dominant
polycystic kidney disease (ADPKD) kidneys, while the blockade
of glycolysis with 2-deoxyglucose reduced the cystic index
(48), suggesting a novel therapeutic paradigm for PKD. In
diabetic mice and human patients, Sas et al. demonstrated the
upregulation of glycolytic enzymes accompanied by increased
glucose metabolism in kidneys (50). More recently, aerobic
glycolysis was implicated in kidney injury caused by glucose
fluctuation (51, 52). These studies suggest the involvement of
aerobic glycolysis or the Warburg effect in the development of
renal diseases.

Glucose Metabolism in AKI
Aberrant glucose metabolism has been reported in the
development of multiple human diseases, including cancers,
type 2 diabetes mellitus (T2DM), and retinal disease (53–55).
Similarly, the dysfunction of glucose metabolism may also
contribute to the pathogenesis of AKI, and its role and regulation
in AKI has attracted research interest in recent years (Table 1).

Glucose Metabolism in Renal Ischemia–Reperfusion

Injury
Renal ischemia/reperfusion injury (IRI) is a leading cause
of AKI, which is often related to a variety of disease and
treatment conditions such as renal vascular occlusion, kidney
transplantation, and cardiac surgery (78). Complicated injurious
factors are involved in renal IRI, including hypoxic injury,
reactive oxygen species (ROS), mitochondrial dysfunction, and
tubulointerstitial inflammation (79, 80). Dysregulation of glucose
metabolism is closely related to renal IRI.

Hyperglycemia (HG) is involved in the amplification of
the inflammatory response during renal IRI (56). Prolonged
intravenous insulin-glucose administration could significantly
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TABLE 1 | Summary of the studies of glucose metabolism in acute kidney injury (AKI).

AKI Categories Involved substance Models Effects Underlying mechanisms References

in glucose metabolism

IRI-induced AKI Glucose Rat Harmful Active TLR-2, TLR4, and NF-kB and amplify

upstream inflammatory response

(56)

Hormones Insulin Rat/clinical trial Protective 1. Phosphorylate insulin receptors, resulting in

the improvement of endothelial function and

increase in renal blood flow

(57, 58)

2. Reduce iNOS activation

3. Active AKT, leading to the blockage of

proapoptotic proteins such as BAD, BAX, and

caspases

Substrates FDP (F1,6P2) Rat Protective 1. Increase renal blood flow (59–61)

2. Maintain cellular ATP content

3. Inhibit ROS generation

4. Decrease LDH release

Pyruvate Mouse Protective 1. Increase ATP level (62)

2. Increase heme oxygenase 1 (HO-1) and

IL-10

3. Decrease MCP-1

Lactate Mouse/clinical trial Harmful Limit pyruvate synthesis because of the loss of

lactate as a pyruvate precursor

(62–65)

Enzymes HK II Rat/mouse Protective Reduce mitochondrial Bax accumulation and

apoptosis

(30)

PKM2 Mouse Harmful Increase oxidative stress (66)

Glucose SGLT2 Rat/mouse Harmful 1. Increase HIF1 expression (67–70)

transporters 2. Increase oxidative stress

Cisplatin-induced AKI Substrates FDP (F1,6P2) Rat Protective 1. Act as a calcium chelator (71)

2. Attenuate the production of prostaglandin E

and the expression of COX-2

3. Reduce the secretion of cytokines and the

production of nitric oxide

Pyruvate Rat Protective Act as a free radical scavenger (72)

Glucose

transporters

SGLT2 Mouse/human

kidney spheroids

Harmful 1. Decrease cisplatin uptake by renal tubular

cells

(73–75)

2. Activate AKT pathway

3. Impede glucose reabsorption

Sepsis-induced AKI Substrates Lactate Mouse/clinical

retrospective study

Controversial Active hydroxycarboxylic acid receptor

2(HCA2), lead to a decrease in proinflammatory

cytokines

(76, 77)

Enzymes PKM2 Mouse Harmful Alter metabolic intermediates through the

pentose phosphate pathway (PPP) to alleviate

oxidative stress

(66)

accelerate the functional and histological recoveries of kidneys
compared to the administration of glucose only during ischemic
AKI in non-diabetic rats (57). Moreover, a randomized
controlled clinical study indicated that a strict control of blood
glucose levels with insulin reduced the morbidity, mortality, and
requirement of dialysis or hemofiltration of AKI (58).

In addition to glucose, glycolysis metabolites also play
roles in ischemic AKI. As early as the 1980s, Didlake
et al. reported that fructose 1,6-diphosphate (FDP, also called
fructose 1,6-bisphosphate, F1,6P2), a crucial intermediate
in the glycolytic pathway, could prevent ischemic renal
failure whether administered prior to the ischemic insult

or during the post-ischemic reperfusion period in rats with
bilateral renal artery occlusion (59, 60). More than a decade
later, Antunes et al. demonstrated that FDP given before
nephrectomy could attenuate renal cell injury in a cold ischemia
rat model by maintaining cellular ATP content, decreasing
lactate dehydrogenase (LDH) release, and preventing the
microfilament disruption of PCT cells (61). Pyruvate is another
key glycolytic metabolite sitting at the crossroad of anaerobic
and aerobic energy production and can exert antioxidant
and anti-inflammatory effects. Pyruvate depletion was detected
in mice with unilateral ischemia and was accompanied by
increased lactate and gluconeogenesis (pyruvate consumption)
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(62). Moreover, pyruvate therapy was also shown to mitigate
functional damage in renal IRI. The underlying mechanisms may
be related to increases in cytoprotective heme oxygenase 1 (HO-
1) and IL-10, selective reduction of proinflammatory factors,
and improved tissue ATP levels (62). Recently, Legouis et al.
detected impaired glucose production and lactate clearance in
patients with postoperative AKI and animals exposed to renal
IRI. This altered glucose metabolism is a major determinant of
systemic glucose and lactate levels and is strongly associated with
mortality (63). Lan et al. further demonstrated that impaired
mitochondrial function accompanied by enhanced glycolysis was
a hallmark during renal IRI in rats, which was featured by higher
levels of lactate and pyruvate and enhancement of HK activity
(64). In addition, a multicenter cohort study showed that blood
lactate was an independent predictive factor for AKI (65). As
mentioned earlier, the kidneys mainly produce glucose from
lactate through gluconeogenesis, particularly during fasting and
stress conditions, making this organ a major systemic lactate
dispersal site. When AKI occurs, the consumption of lactate
decreases in kidneys, which may lead to lactate accumulation
in blood.

Since accumulating evidence demonstrates that glycolysis is
activated in ischemic AKI, the role of glycolytic enzymes in AKI
has been questioned. Gall et al. found that total HK II content
decreased and HK II was displaced from the mitochondria
into the cytosol both in vivo (mouse) and in vitro in ischemic
conditions, while the overexpression of HK II in opossum
kidney PCT cells reduced mitochondrial Bax accumulation and
apoptosis (30). On the contrary, Lan et al. detected increased
protein levels of HK II, as well as other rate-limiting enzymes
for glycolysis, including 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 3 (PFKFB3) and PKM2 after renal IRI in rats
(64). The discrepancy between these studies is likely related
to the models and the times of analysis; Gall used mice and
harvested the kidneys 3 hr after reperfusion, whereas Lan
et al. tested rats at 3 days of reperfusion or later. In addition,
using renal tubular epithelial cell-specific PKM2-knockout mice
(Pkm2−/−) mice, Zhou et al. proved that Pkm2−/− mice had
better renal function and less histological tubular injury than
wild-type (WT) mice following renal IRI or lipopolysaccharide
(LPS)-induced endotoxic AKI (66). Several studies reported
the protective effect of SGLT2 inhibitors in IRI-induced AKI
(67–69), but a recent study showed that genetic deletion of
SGLT2 from renal tubules did not protect against renal IRI
(70). Therefore, the role of SGLTs in ischemic AKI remains to
be established.

Glucose Metabolism in Cisplatin-Induced AKI
Cisplatin is a powerful antineoplastic agent that may induce
nephrotoxicity. It causes tubular injury and cell death through
multiple mechanisms, including DNA damage, oxidative
stress, mitochondrial dysfunction, and inflammation (81, 82).
Impairment of glucose metabolism has been implicated in
cisplatin-induced AKI. Glucose was detected in the urine of mice
at 48 hr after cisplatin administration. This metabolic alteration
preceded the change of serum creatinine (83), and thus, it may be
used as a biomarker of cisplatin-induced nephrotoxicity. F1,6P2

has shown a protective effect in the kidney during cisplatin
nephrotoxicity (84). Azambuja et al. confirmed that rats that
received cisplatin plus F1,6P2 presented a significantly lower
level of serum creatinine and urea and less severe tubular necrosis
compared to a cisplatin-only group, verifying the protective
effect of F1,6P2 in cisplatin-induced AKI (71). Other glycolysis
intermediates, such as pyruvate, have been reported to ameliorate
cisplatin-induced AKI as well (72). Moreover, in 1992, Yanase
et al. reported the decreasedNa+-dependent D-glucose transport
across renal brush-border membranes in cisplatin-induced AKI
(85). This inhibition of Na+-coupled glucose uptake by cisplatin
may result from direct chemical interactions with the SGLTs,
leading to glucosuria in cisplatin-induced AKI (86). Intriguingly,
a recent study found that canagliflozin, a SGLT2 inhibitor,
could reduce histopathological injury in kidneys with cisplatin
nephrotoxicity (73). We further demonstrated that the protective
effect of canagliflozin in cisplatin-induced nephrotoxicity was
related to decreased cisplatin uptake by renal tubular cells and
the activation of the AKT pathway (74). In addition, Cohen
et al. used organ-on-chip models, vascularized human kidney
spheroids with integrated tissue-embedded microsensors for
oxygen, glucose, lactate, and glutamine, to achieve a dynamic
assessment of cellular metabolism and verified that empagliflozin
(another SGLT2 inhibitor) could block cisplatin toxicity in
the kidneys by impeding glucose reabsorption (75). Despite
these studies, the molecular mechanisms underlying the
changes of glucose metabolism in cisplatin-induced AKI remain
largely unknown.

Glucose Metabolism in Sepsis-Associated AKI
Sepsis is characterized by organ dysfunction and failure resulting
from the host’s deleterious response to infection. It can
lead to sepsis-associated acute kidney injury (SA-AKI), which
contributes to high mortality and remains the most important
cause of AKI (87, 88). In addition to renal hypotension
and associated ischemia, inflammation and tubular injury are
pathogenic factors in SA-AKI (87, 89). During SA-AKI, the
lactate/pyruvate ratio rises in parallel with a significant decrease
of renal cortex microvascular perfusion (90). It is worth noting
that the role of lactate in SA-AKI remains controversial. Woolum
et al. reported that thiamine could improve lactate clearance
and reduce 28-day mortality (76). Conversely, Takakura et al.
reported that lactate could negatively regulate macrophage
activation and therefore acted as a negative feedback loop during
sepsis to decrease the inflammatory response and improve the
outcome (77). In addition to the glucose metabolites, sepsis
can induce an early anabolic response in renal tissue that is
characterized by a shift of metabolism toward aerobic glycolysis,
followed by a decline in total renal ATP level (91, 92). Moreover,
the deletion of PKM2 frommouse PCTs can protect against LPS-
induced AKI. The mechanism is related to the SNO-CoA/SCoR
system that shunts metabolic intermediates through the pentose
phosphate pathway (PPP) to alleviate oxidative stress (66).
Collectively, these findings suggest that glucose metabolism and
its reprogramming are involved in SA-AKI but its precise role
and regulation in injury development remains unknown.
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Glucose Metabolism in Kidney Repair and Renal

Fibrosis
After an acute insult in the kidneys, the surviving tubular
cells undergo regeneration to restore the injured renal tubules
(93). If the initial injury is severe, the repair is incomplete or
maladaptive, eventually resulting in renal fibrosis and chronic
kidney disease (CKD). In maladaptive repair after AKI, injured
PCTs may become atrophic (94). Lan et al. found that these
atrophic PCTs had elevated glycolysis after ischemic AKI,
suggesting a role of glycolysis in maladaptive repair (64).
Glycolytic enzymes were also detected to increase in CKD (64,
95, 96), although the role of glycolysis in CKD progression
is less well defined. We demonstrated that the blockade of
glycolysis with glycolysis inhibitors [dichloroacetate (DCA) or
shikonin] could attenuate tubular apoptosis and the expression
of extracellular matrix (fibronectin and collagen type I) in a
mouse model of unilateral ureteral obstruction (UUO) (97).
Similarly, Ding et al. demonstrated that the inhibition of
aerobic glycolysis in UUO mice could suppress renal interstitial
fibroblast activation and renal fibrosis (95). In contrast to these
observations, the enhancement of glycolysis by TEPP-46, a PKM2
activator, decreased fibrotic protein expression in DKD in mice
(38). In addition, using mice with inactivating mutations of
the phosphorylation sites Ser468 and Ser485 in PFKFB2, a key
glycolytic enzyme, Mardiana and colleagues showed that reduced
glycolysis was associated with increased renal fibrosis in UUO
and, to a less extent, in the model of folic acid nephropathy (98).
These discrepant observations indicate that the role of glycolysis
in renal fibrosis is more complex than originally thought andmay
depend on the cell types and its timing of activation. In addition
to glycolysis, attention has been paid to the effects of HG on
the PCT and how these effects promote renal fibrosis (99, 100).
In diabetes, the glycemic threshold increases up to 200 mg/dL
in patients, the mechanism of which is related to SGLTs in the
tubular epithelium under conditions of chronic HG (101). Under
HG, tubular cells undergo hypertrophy and apoptosis, which,
to a great extent, contributes to renal fibrosis (102, 103). Thus,
SGLTs can be an ideal target for renal fibrosis in such conditions.
Indeed, recent studies have shown that SGLT2 inhibitors can
attenuate fibrotic changes in diabetic mice (104, 105). Together,
these studies indicate that the ability to regulate and maintain the

appropriate level of glycolysis in the kidney is crucial for renal
homeostasis, and anti-fibrosis strategies relying on the inhibition
of glycolysis should depend on the type and location of the
target cells.

DISCUSSION AND PERSPECTIVES

Emerging evidence indicates that glucose and its metabolism play
an inevitable role in AKI. The pharmacological intervention of
glucose metabolism may reveal novel therapeutic strategies for
AKI. However, there are still numerous questions to be answered.
For example, what is the role of lactate in different types of
AKI?Whatmechanisms lead to alterations in glucosemetabolism
in renal tubular cells in AKI? Reprogramming of glucose
metabolism has been explored in a variety of cellular processes,
such as tumor malignance, chronic inflammation, and cell
proliferation, but the underlying mechanism remains obscure.
Further understanding of the regulation and pathological effects
of glucose metabolism in kidney injury and repair may lead to the
discovery of new therapeutic approaches for AKI and prevention
of the AKI-to-CKD transition.

AUTHOR CONTRIBUTIONS

LW and ZD contributed to the conceptualization, design, and
outline of this review. LWprepared the original draft with figures.
LW, YL, SL, XH, QW, and ZD contributed to the revision and
editing. All authors have read and agreed to the published version
of the manuscript.

FUNDING

The authors were supported by grants from the National
Institutes of Health of USA (DK058831 and DK087843)
and Department of Veterans Administration of USA
(BX000319).

ACKNOWLEDGMENTS

ZD is a recipient of a Senior Research Career Scientist Award of
the Department of Veterans Administration of USA.

REFERENCES

1. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, et al. AKI on CKD: heightened

injury, suppressed repair, and the underlyingmechanisms.Kidney Int. (2017)

92:1071–83. doi: 10.1016/j.kint.2017.06.030

2. Mulukutla BC, Yongky A, Le T, Mashek, DG, Hu, et al. Regulation

of glucose metabolism - a perspective from cell bioprocessing.

Trends Biotechnol. (2016) 34:638–51. doi: 10.1016/j.tibtech.2016.

04.012

3. Cano N. Bench-to-bedside review: Glucose production from the kidney. Crit

Care. (2002) 6:317–21. doi: 10.1186/cc1517

4. Hughes CB, Mussman GM, Ray P, Bunn RC, Cornea V, Thrailkill KM,

et al. Impact of an SGLT2-loss of function mutation on renal architecture,

histology, and glucose homeostasis. Cell Tissue Res. (2021) 384:527–

43. doi: 10.1007/s00441-020-03358-8

5. Legouis D, Faivre A, Cippa PE, de Seigneux S. Renal gluconeogenesis: an

underestimated role of the kidney in systemic glucose metabolism. Nephrol

Dial Transplant. 2020:302. doi: 10.1093/ndt/gfaa302

6. Kaneko K, Soty M, Zitoun C, Duchampt A, Silva M, Philippe

E, et al. The role of kidney in the inter-organ coordination of

endogenous glucose production during fasting. Mol Metab. (2018)

16:203–12. doi: 10.1016/j.molmet.2018.06.010

7. Vallon V, Thomson, SC. Targeting renal glucose reabsorption to treat

hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia.

(2017) 60:215–25. doi: 10.1007/s00125-016-4157-3

8. Alsahli M, Gerich, JE. Renal glucose metabolism in normal physiological

conditions and in diabetes. Diabetes Res Clin Pract. (2017) 133:1–

9. doi: 10.1016/j.diabres.2017.07.033

9. Chao EC, Henry RR. SGLT2 inhibition–a novel strategy for diabetes

treatment. Nat Rev Drug Discov. (2010) 9:551–9. doi: 10.1038/nrd3180

Frontiers in Medicine | www.frontiersin.org 7 November 2021 | Volume 8 | Article 744122

https://doi.org/10.1016/j.kint.2017.06.030
https://doi.org/10.1016/j.tibtech.2016.04.012
https://doi.org/10.1186/cc1517
https://doi.org/10.1007/s00441-020-03358-8
https://doi.org/10.1093/ndt/gfaa302
https://doi.org/10.1016/j.molmet.2018.06.010
https://doi.org/10.1007/s00125-016-4157-3
https://doi.org/10.1016/j.diabres.2017.07.033
https://doi.org/10.1038/nrd3180
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wen et al. Glucose Metabolism and Kidney Injury

10. Liu JJ, Lee T, DeFronzo RA. Why Do SGLT2 inhibitors inhibit only 30-

50% of renal glucose reabsorption in humans? Diabetes. (2012) 61:2199–

204. doi: 10.2337/db12-0052
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