
Vol.:(0123456789)1 3

In Silico Pharmacology            (2021) 9:36  
https://doi.org/10.1007/s40203-021-00095-w

ORIGINAL RESEARCH

In silico design of a multi‑epitope peptide construct as a potential 
vaccine candidate for Influenza A based on neuraminidase protein

Mandana Behbahani1 · Mohammad Moradi1  · Hassan Mohabatkar1

Received: 3 March 2021 / Accepted: 30 April 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Designing an effective vaccine against different subtypes of Influenza A virus is a critical issue in the field of medical biotech-
nology. At the current study, a novel potential multi-epitope vaccine candidate based on the neuraminidase proteins for seven 
subtypes of Influenza virus was designed, using the in silico approach. Potential linear B-cell and T-cell binding epitopes 
from each neuraminidase protein (N1, N2, N3, N4, N6, N7, N8) were predicted by in silico tools of epitope prediction. The 
selected epitopes were joined by three different linkers, and physicochemical properties, toxicity, and allergenecity were 
investigated. The final multi-epitope construct was modeled using GalaxyWEB server, and the molecular interactions with 
immune receptors were investigated and the immune response simulation assay was performed. A multi-epitope construct 
with GPGPGPG linker with the lowest allergenicity and highest stability was selected. The molecular docking assay indicated 
the interactions with immune system receptors, including HLA1, HLA2, and TLR-3. Immune response simulation detected 
both humoral and cellular response, including the elevated count of B-cells, T-cell, and Nk-cells.
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Introduction

Influenza A viruses have a single-stranded RNA genome, 
and this virus has been isolated from different hosts (Chen 
and Holmes 2008). These viruses have been classified based 
on the structures of neuraminidase (NA) and hemagglutinin 
(HA) envelope glycoproteins. So far, eighteen HA (H1–H18) 
and eleven NA (N1–N11) subtypes have been discovered 
(Park et al. 2020). Although, in general the epitopes of HA 
are antigenically more significant than NA, both proteins 
have the potential for being used in the vaccine studies 
(Kosik and Yewdell 2019; Huang et al. 2013; Wohlbold and 
Krammer 2014). NA is an essential surface glycoprotein, 
which plays a substantial role in viral replication. Previously, 
it has been suggested that NA could also be considered for 

developing a highly efficient Influenza A vaccine (Eichel-
berger and Wan 2014).

It has been reported that the stimulation of a strong 
antibody response against NA in animal models, which is 
independent from the HA-based immunity, could provide 
protection against the Influenza virus (Vigil et al. 2018). Pre-
vious studies have claimed that the level of stability of NAs 
from different strains is extremely variable (Sultana et al. 
2014; Wohlbold et al. 2017). It has been demonstrated that 
human  CD8+ T-cell provides cross-reactivity across Influ-
enza A, B and C viruses (Koutsakos et al. 2019). Also, it 
has been reported that Influenza infection in humans induces 
broadly cross-reactive and protective neuraminidase-reactive 
antibodies (Chen et al. 2018). Production of epitope-based 
vaccines by extremely conserved regions of Influenza virus 
proteins is considered as an important way to control the 
Influenza virus.

Several in silico tools are available to enable the growth 
of the epitope-based vaccines. The computational programs 
enable to use a large immunological data; including antigen 
presentation and processing them to acquire sensitive inter-
pretations. Currently, epitope-based vaccine design studies 
are facilitated via application of the applied bioinformatics 
tools; such as protein modeling programs, epitope mapping 

Mandana Behbahani and Mohammad Moradi contributed equally 
to this work and hence are co-first authors.

 * Hassan Mohabatkar 
 h.mohabatkar@ast.ui.ac.ir

1 Department of Biotechnology, Faculty of Biological Science 
and Technology, University of Isfahan, Isfahan, Iran

http://orcid.org/0000-0001-6524-7053
http://crossmark.crossref.org/dialog/?doi=10.1007/s40203-021-00095-w&domain=pdf


 In Silico Pharmacology            (2021) 9:36 

1 3

   36  Page 2 of 13

and protein–protein interaction analysis tools (Kumar et al. 
2008).

Bioinformatics methods have been used to design and 
produce vaccines for different subtypes of Influenza A; 
including those designed based on H1N1, H2N2, H3N2, and 
H5N1 (Bulimo et al. 2012). At the current investigation, in 
silico analysis was carried out to predict the exclusive B cell 
and T-cell epitope proteins of neuraminidase (N1, N2, N3, 
N4, N6, N7, N8) that are antigenically most significant for 
Influenza A virus subtypes.

In this study, some specific B cell and T-cell epitopes 
from seven subtypes of NA protein were chosen according to 
their antigenicity, stability, and length. The chosen epitopes 
were joined together by different linkers to construct the 
final potential multi-epitope constructs, and different proper-
ties of the structures were predicted via in silico approaches.

Methodology

Data collection

At the first step, the reference amino acid sequences for seven 
NA proteins (N1: YP_009118627.1, N2: BAN37214.1, 
N:3 AAO62039.1, N:4 Q6XV43.1, N6: AAO62071.1, 
N7: BAH69254.1, and N8: BAH69255.1), five HLA-1 
(Human leukocyte antigen-1) sequences (NP_001229971.1, 
NP_001229687.1, NP_002118.1, NP_061823.2, and 
NP_005507.3) and six HLA-2 (Human leukocyte anti-
gen-2) proteins (NP_001229454.1, NP_006111.2, 
NP_001230891.1, NP_002110.1, NP_061984.2, and 
NP_001020330.1) were fetched from NCBI data bank 
(https:// www. ncbi. nlm. nih. gov) in FASTA format. SWISS-
MODEL tool (https:// swiss model. expasy. org/) was used for 
template based homology modelling of HLA-1 and HLA-
2. In the case of Toll Like Receptor (TLR)-3, which was 
selected due to the importance of TLR3 receptor in immuno-
genic response to viral sensing (Vercammen et al. 2008; Sch-
neider-Ohrum et al. 2011; Sharma et al. 2021), the structure 
in PDB bank (ID: 2A0Z) was chosen. All of the structures 
were prepared for molecular docking by using Chimera 1.12 
(Pettersen et al. 2004).

Multiple sequence alignment and antigen selection

In order to choose the particular conserved sequences of 
NA virus proteins, NCBI protein BLAST was carried out 
(https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) by using Blosums 
62 matrix, max target sequence 100, and expect threshold 
0.05. Moreover, to define the conserved region (s) in the pro-
tein sequences, multiple sequence alignment was carried out 
using Multalin server (https:// www. multa lin. toulo use. inra. 
fr/ multa lin) by using default properties (Blosums 62-12-2, 

High consensus value of 90%, and Low consensus value of 
50%). The antigenicity of NA subtypes were evaluated using 
VaxiJen 2.0 tool available at http:// www. ddg- pharm fac. net/ 
vaxij en/ VaxiJ en/ VaxiJ en. html (for more information about 
the average antigenicity, the readers are referred to refer-
ences (Doytchinova and Flower 2007a,b,c,2008)). At the end 
of this stage, the conserved sequences for N1, N2, N3, N4, 
N6, N7, N8 proteins and the antigenic peptides were selected 
for further analysis.

Prediction and classification of T‑cell epitopes 
and linear B‑cell epitopes

The MHC-I epitopes were predicted using IEDB MHC-I 
prediction tool (http:// tools. immun eepit ope. org/ analy ze/ 
html/ mhc_ bindi ng. html) (Peters and Sette 2005; Lunde-
gaard et al. 2008). Similarly, the MHC-II epitopes were 
predicted by IEDB MHC-II prediction tool (http:// tools. 
immun eepit ope. org/ mhcii) (Jensen et al. 2018). The most 
particular conserved and antigenic peptides were chosen 
for further investigations. The linear B-cell epitopes in the 
peptide model were predicted by ElliPro (http:// crdd. osdd. 
net/ ragha va/ bcepr ed) (Ponomarenko et al. 2008) and IEDB 
population coverage tool (http:// tools. iedb. org/ popul ation) 
(Bui et al. 2006) analysis programs.

Peptide construct design and physicochemical 
properties

One 10 amino acids sequence from each of N1, N2, N3, N4, 
N6, and N7and N8 were selected as the epitope and organ-
ized into the final multi-epitope structure. At the next step, 
all of the seven epitopes were joined by three different linker 
sequences (GPGPGPG, GPGP and PAPAPA).

The antigenicity of epitopes and multi-epitope peptide 
constructs were evaluated by Predicting Antigenic Pep-
tides program available at http:// imed. med. ucm. es/ Tools/ 
antig enic. pl (for more information please refer to the ref-
erence (Kolaskar and Tongaonkar 1990)). At this assay, 
various characteristics,such as molecular weight, theoreti-
cal Isoelectric pH, extinction coefficient, aliphatic index and 
grand average of hydropathicity were investigated. Multi-
epitope peptide constructs were analyzed using ProtParam 
program available at http:// web. expasy. org/ protp aram (for 
more information, about these properties and the server, 
readers are referred to reference (Gasteiger et al. 2005)). 
Composition Based Protein Identification (COPid) is a pro-
gram that predicts the structure of various types of amino 
acids and is accessible at http:// www. imtech. res. in/ ragha va/ 
copid (Kumar et al. 2008). The amino acid sequences of the 
constructs were compared via this online application. The 
overall content of aliphatic amino acids (Val, Pro, Ala, Gly, 
Met, Iso, and Leu) was also investigated.

https://www.ncbi.nlm.nih.gov
https://swissmodel.expasy.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.multalin.toulouse.inra.fr/multalin
https://www.multalin.toulouse.inra.fr/multalin
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://tools.immuneepitope.org/analyze/html/mhc_binding.html
http://tools.immuneepitope.org/analyze/html/mhc_binding.html
http://tools.immuneepitope.org/mhcii
http://tools.immuneepitope.org/mhcii
http://crdd.osdd.net/raghava/bcepred
http://crdd.osdd.net/raghava/bcepred
http://tools.iedb.org/population
http://imed.med.ucm.es/Tools/antigenic.pl
http://imed.med.ucm.es/Tools/antigenic.pl
http://web.expasy.org/protparam
http://www.imtech.res.in/raghava/copid
http://www.imtech.res.in/raghava/copid
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The antigenicity of three multi-epitope structures were 
analyzed using AlgPred (http:// crdd. osdd. net/ ragha va/ algpr 
ed/) (Saha and Raghava 2006), and toxicity was checked 
using Toxin pred (http:// crdd. osdd. net/ ragha va/ toxin pred/) 
(Gupta et al. 2013). The structure of selected construct was 
assessed with PepCalc tool (https:// pepca lc. com/) (Lear and 
Cobb 2016) for hydrophobicity and pH.

The tertiary structure of the constructed multi-epitope 
peptide was modeled by GalaxyWEB server (http:// galaxy. 
seokl ab. org/ tbm) (HeeShin 2014). For such a predicted ter-
tiary structure modeling, investigation of different aspects, 
such as secondary structure, Ramachandran plot, hydropho-
bicity, and Z-score was required prior to studying molecu-
lar interactions (Haghighi et al. 2019; Haghighi and Moradi 
2020). The secondary construct of the finally selected pep-
tide was investigated in PDBsum (http:// www. ebi. ac. uk/ 
thorn ton- srv/ datab ases/ cgi- bin/ pdbsum/ GetPa ge. pl? pdbco 
de= index. html) (Laskowski 2001). Verification of Vac2 
modeling was performed using Ramachandran plot from 
PROCHECK tool (https:// servi cesn. mbi. ucla. edu/ PROCH 
ECK/) (Laskowski et al. 2012).

The quality of the model was verified using Qmean 
(https:// swiss model. expasy. org/ qmean/) (Benkert et  al. 
2009) and ProSA (https:// prosa. servi ces. came. sbg. ac. at/ 
prosa. php) (Wiederstein and Sippl 2007) tools. Verify 3D 
(https:// servi cesn. mbi. ucla. edu/ Verif y3D/) (Eisenberg et al. 
1997) and ERRAT (https:// servi cesn. mbi. ucla. edu/ ERRAT/) 
(Colovos and Yeates 1993) servers were used to confirm the 
three-dimensional structure of predicted model.

Molecular docking and immune response 
simulation

In order to investigate the molecular interactions between 
the multi-epitope peptide construct to HLA-I, II and TLR3, 
molecular docking was performed between the selected 
peptide and five HLA-1 structures, six HLA-2 proteins, and 
TLR-3. Molecular docking studies were carried out using 
HADDOCK2.4 server (https:// wenmr. scien ce. uu. nl/ haddo 
ck2.4/) (Zundert et al. 2016) by using the default complex 
type. C-IMMSIM tool was used for simulating the immune 
response toward the selected multi-epitope peptide construct 
(Rapin et al. 2010).

Results

Epitopes selection

Initially, NA protein sequences from seven subtypes of Influ-
enza A virus (N1, N2, N3, N4, N6, N7, N8) were investigated 
to determine the conserved regions of each protein between 
these serotypes. Outcomes of protein BLAST for NA proteins 

are provided in Table 1. It was demonstrated that seven sub-
types of NA had conservancy between 94.04 and 100. Addi-
tionally, the average antigenicity VaxiJen score of these seven 
proteins showed high antigenicity. Due to having a predicted 
high antigenicity, and exposure to the immune system and 
conservancy, epitopes of NA protein were chosen for multi-
epitope peptide design.

Epitope prediction for T‑cell and B‑cells

The predicted MHC-I and MHC-II restricted epitopes 
were compared with B-cell epitopes. Finally, a 10 nucleo-
tides epitope for each NA protein was selected as shown in 
Table 2.

The epitopes with three different linkers were consid-
ered for designing the multi-epitope construct. Schematic 
diagrams of the designed constructs with their linkers are 
presented at Fig. 1.

Antigen selectivity of the constructed multi‑epitope 
peptide sequences

The antigenicity scores of each epitope and seven joined 
epitopes with PAPAPA, GPGPGPG, and GPGP amino acid 

Table 1  Results of the BLAST for different subtypes of NA proteins 
and antigenicity estimations

Note: For all the structure, vaxijen program threshold was 0.4

Neuraminidase 
subtypes

Average anti-
genicity
VaxiJen score

Minimum iden-
tity (%)

Maximum 
identity (%)

N1 0.5086 99.36 100
N2 0.5852 96.59 100
N3 0.5120 95.74 100
N4 0.4994 94.04 100
N6 0.5388 96.60 100
N7 0.5005 96.60 100
N8 0.5648 97.66 100

Table 2  The results of final T-cell and B-cell epitope prediction 
screening from seven neuraminidases

Neuraminidase Sequence Length Start End

N1 FWVELIRGRP 10 422 431
N2 YVELIRGRKQ 10 423 432
N3 TGYVCSKFHS 10 313 322
N4 NDKHSNGTVK 10 140 149
N6 VELIRGRPKE 10 426 435
N7 IRNKHSNGTI 10 139 148
N8 LLNDKHSNGT 10 137 146

http://crdd.osdd.net/raghava/algpred/
http://crdd.osdd.net/raghava/algpred/
http://crdd.osdd.net/raghava/toxinpred/
https://pepcalc.com/
http://galaxy.seoklab.org/tbm
http://galaxy.seoklab.org/tbm
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html
http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html
https://servicesn.mbi.ucla.edu/PROCHECK/
https://servicesn.mbi.ucla.edu/PROCHECK/
https://swissmodel.expasy.org/qmean/
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://servicesn.mbi.ucla.edu/Verify3D/
https://servicesn.mbi.ucla.edu/ERRAT/
https://wenmr.science.uu.nl/haddock2.4/
https://wenmr.science.uu.nl/haddock2.4/
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linkers (Vac1, Vac2, and Vac3, respectively) are presented 
in Table 3.

Structure analysis

Physicochemical properties of each epitope and the multi-
epitope constructs were estimated using ProtParam. It was 
indicated that the construct with six GPGPGPG linkers has 
a high instability, and low aliphatic indices (Table 4). All of 
the three constructs demonstrated an equal isoelectric point 
of 10.28. The Vac2 and Vac3 constructs showed the lowest 
GRAVY indices of − 0.904, and − 0.92, respectively. From 
the instability point of view, the Vac1 showed the highest 
value of 68.96, which makes it an inappropriate candidate 
for further vaccine studies. The lowest instability score was 

that of Vac2 with value of 2.27, which indicates that it has a 
high stability compared to the other structures.

The results of analyzing the amino acids composition of 
the designed constructs indicated that Vac2 has the highest 
overall content of aliphatic amino acids compared to the 
others. The results of amino acid composition are provided 
in Table S1. Allergenicity analysis indicated scores of 0.19 
for Vac 2, 0.45 for Vac3, and 1.3 for Vac1. The lowest aller-
genicity was for Vac2 structure which made it a suitable can-
didate. Structure analysis by Toxin pred indicated that none 
of these peptide constructs were toxic. Vac 2 was chosen for 
further investigation due to having antigenicity properties, 
highest stability and lowest allergenicity.

Vac2 has 112 residues with molecular weight of 
11,204.43 g/mol. The results of analysis with PepCalc 
showed this construct has a good water solubility, with 

Fig. 1  Graphical diagram of the multi-epitope peptide constructs with a PAPAPA, b GPGPGPG, and c GPGP linkers constructs

Table 3  Average antigenicity of neuraminidase epitopes and the multi-epitope constructs predicted by IMED tool

Neuraminidase Sequences Antigenicity 
predicted by 
IMED

N1 FWVELIRGRP 1.0304
N2 YVELIRGRKQ 1.0362
N3 TGYVCSKFHS 1.0889
N4 NDKHSNGTVK 0.9561
N6 VELIRGRPKE 1.0101
N7 IRNKHSNGTI 0.9559
N8 LLNDKHSNGT 0.9748
Constructed multi-epitope peptide with PAPAPA (Vac1) FWVELIRGRPPAPAPAYVELIRGRKQPAPAPATGYVCSKFH-

SPAPAPANDKHSNGTVKPAPAPAVELIRGRPKEPAPAPA-
IRNKHSNGTI PAPAPALLNDKHSNGT

1.0267

Constructed multi-epitope peptide with GPGPGPG (Vac2) FWVELIRGRPGPGPGPGYVELIRGRKQGPGPGPGTGYVC-
SKFHSGPGPGPGNDKHSNGTVKGPGPGPGVELIRGRP-
KEGPGPGPGIRNKHSNGTIGPGPGPGLLNDKHSNGT

0.9880

Constructed multi-epitope peptide with GPGP (Vac3) FWVELIRGRPGPGPYVELIRGRKQGPGPTGYVCSK-
FHSGPGPNDKHSNGTVKGPGPVELIRGRPKEGPG-
PIRNKHSNGTIGPGPLLNDKHSNGT

0.9977
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isoelectric pH of 10.8, with a net charge of 8.3 at pH 7. 
Figure 2 presents the secondary structure of Vac2 con-
struct using PDBsum.

Ramachandran plot analysis of Vac2 indicated that 
94.9% of residues were in the most favored regions and 
5.1% were in allowed regions. Figure 3. A represents the 
results of Ramachandran plot for VAC 2 construct. The 
3D structure of Vac2 construct, the local quality estimate, 
along with the quality comparison graph are provided in 
parts B, C, and D of Fig. 3, respectively.

The results of ERRAT tool indicated an acceptable 
error for the construct, with all the residues having values 
below the warning level. Figure 4. A shows the output 
graph of the ERRAT server for Vac2 construct.

The results of Verify 3D software indicated that 88.39% 
of the residues had average 3D-1D score ≥ 0.2, and at 
least 80% of the amino acids are having this properties 
(Fig. 4b). Results of ProSA server indicated a Z. Score 
of − 0.46. The overall model quality predicted by ProSA 
tool is presented in Fig. 5.

Molecular docking and immune response 
simulation

The results of docking analysis for the proposed multi-
epitope construct with HLA-1, HLA-2, and TLR3 are pre-
sented in Table 5. In the HLA-1 group, HLA-1-alpha-chainF 
showed that the highest Van der Waals energy, and the high-
est electrostatics energy was for interaction with HLA-1-al-
pha-chainE. In the HLA-2 group, HLA-2-DP showed the 
highest Van der Waals and electrostatics energy.

Molecular docking analysis showed that the predicted 
Vac2 construct has a high affinity toward TLR-3 receptor. 
Further analyzing with PDBsum showed that in the Vac2-
TLR-3 complex, 47 residues from the TLR-3 and 37 resi-
dues of the Vac-2 construct were involved in the mutual 
interface, and provided an interface area of 1785  Ao2 for 
the TLR-3 and 1954  Ao2 for the Vac-2 construct. Among 
the interactions, 8 salt bridges, 17 hydrogen bonds, and 
246 non-bounded contacts were detected and no disulphide 
bonds was found in the interaction area. Figure 6 shows the 
molecular interactions between TLR-3, and Vac2 construct. 

Table 4  Physicochemical 
properties of different epitopes 
of neuraminidase and the 
proposed multi-epitope 
constructs

Sequences Extinction 
coefficient

Molecular weight Isoelectric point Aliphatic index GRAVY Instability

FWVELIRGRP 5500 1272.52 9.60 107 0 11.28
YVELIRGRKQ 1490 1261.49 9.99 107 − 0.91 24.19
TGYVCSKFHS 1490 1128.27 7.90 29 − 0.160 − 7.98
NDKHSNGTVK 0 1099.17 8.66 29 − 1.92 − 25.89
VELIRGRPKE 1490 1196.42 8.72 107 − 0.94 19.77
IRNKHSNGTI 21.5 1139.28 11 78 − 1.15 21.5
LLNDKHSNGT 0 1098.98 6.74 78 − 1.19 − 23
Vac1 8480 11,114.74 10.28 67.45 − 0.558 68.96
Vac2 8480 11,204.57 10.28 47.77 − 0.904 2.27
Vac3 8480 9937.25 10.28 56.91 − 0.92 6.45

Fig. 2  Secondary structure of Vac2 construct predicted using PDBsum
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Figure 7 demonstrates molecular docking analysis of Vac2 
construct with TLR-3 with regards to A. Hydrogen bonds, B. 
Interpolated charges C. Hydrophobicity, and D. Ionizability 
of the TLR-3 receptor. 

The results of immune response simulation by 
C-IMMSIM server indicated that upon the injection of 
the selected multi-epitope construct, the highest immuno-
globulin response will be by IgM and IgG at days 15–20th 
(Fig. 8a). The B-cell response indicated that the total cell 
response will have a log phase of growth, starting around 5 
days, which will continue to exponential phase until around 
day 20th, and after that remains at its high levels, close to 
600 cells per  mm3 (Fig. 8b). The number of NK cells will 
be increased and it will be 370 cells per  mm3 at day 5th, 
and the lowest count will be less than 310 per  mm3 at day 
24th (Fig. 8c). In the case of T-cells, the cell counts start to 

increase immediately after injection and will drop at the day 
25th (Fig. 8d). The TH-cells count start to increase at the 
day 5th, and will have an exponential phase to reach more 
than 10,000 cells per  mm3 at day 15th, and after the day 
20th, the cell count goes down (Fig. 8e). The TR (regula-
tory) cells also will have an immediate exponential growth 
which reaches its climax at the day 5th, and after that will 
start to reduce in the count (Fig. 8f).

Discussion

Information regarding the three-dimensional (3D) struc-
tures of proteins and their complexes with their potential 
ligands are of critical importance for designing novel thera-
peutic agents; such as multi-epitope vaccines. Even though 

Fig. 3  a The Ramachandran plot analysis graph of Vac2 construct b 3D predicted construct of Vac2 c Local quality estimate of Vac2 d Quality 
comparison of the predicted Vac2 construct
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the laboratory methods; such as X-ray crystallography and 
NMR are considered as the efficient method for predicting 
3D structure of proteins, they suffer from downsides; such as 
technically difficulties, and require a considerable time and 

financial resources. Application of the in silico methods for 
prediction of 3D structure of the protein has been proven an 
efficient method by using bioinformatics algorithms (Dev 
et al. 2016; Chou 2015).

In the post-genomic era, researchers have access to the 
vast resources of sequences and sequence-based knowledge; 
such as post translational modifications in proteins, which 
could be of critical importance for drug discovery. In fact, 
the accelerated development in sequential and structural 
bioinformatics have revolutionized the biology sciences. 
As a consequence of these substantial alterations, compu-
tational biology has been acting noticeably for stimulating 
the development of novel therapeutic agents (Chou 2011; Ju 
and Wang 2020). In this regard, in silico tools were utilized 
at the current research. Moreover, application of the graphic 
approaches for studying the biological and medical systems 
could present an intuitive knowledge to help analyzing the 
complicated molecular interactions (Chou et al. 1980; Chou 
and Forsén 1980).

Multi-epitope vaccines are a group of recombinant prod-
ucts with high specificity, safety, stability and low-cost of 
production (Nezafat et al. 2017); therefore, any study that 
could help to improve the quality of these agents is impor-
tant. Since the laboratory-based works require application 
of a considerable amount of consumables, materials, human 
workforce, and sacrifice of animals; using computer-based 

Fig. 4  a The ERRAT analysis diagram of the Vac2 construct b The diagram of quality prediction provided by verify 3D for Vac2 construct

Fig. 5  The overall quality of the predicted model for Vac2
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Table 5  Molecular docking 
analysis of the predicted Vac2 
construct with HLA, HLA2, 
and TLR

Receptor RMSD from the overall 
lowest-energy structure

Van der Waals energy Electrostatic energy Z-score

HLA-1-A1 0.7 ± 0.4 − 96.9 ± 8.9 − 395.2 ± 30.5 − 1.7
HLA-1-alpha-chainE 13.4 ± 0.1 − 87.8 ± 9.2 − 455.2 ± 44.4 − 1.5
HLA-1-alpha-chainF 18.6 ± 0.1 − 109.3 ± 4.2 − 413.7 ± 64.4 − 1.6
HLa-1-ChainG 12.2 ± 0.4 − 78.6 ± 10.5 − 417.7 ± 63.7 − 1.5
HLA-1-cw-1 14.8 ± 0.2 − 75.7 ± 6.7 − 221.1 ± 15.3 − 1.0
HLA-2-DM 7.7 ± 0.9 − 88.1 ± 8.0 − 298.8 ± 15.9 − 1.0
HLA-2-DO 0.5 ± 0.3 − 101.7 ± 8.0 − 349.3 ± 7.5 − 1.3
HLA-2-DP 10.5 ± 0.1 − 109.6 ± 7.6 − 567.2 ± 38.9 − 1.5
HLA-2-DQ 1.9 ± 0.2 − 93.3 ± 10.1 − 305.5 ± 54.7 − 1.3
HLA-2-DR 17.7 ± 0.3 − 93.7 ± 7.4 − 295.7 ± 16.9 − 1.8
HLA-2-gama chain 4.4 ± 0.3 − 72.3 ± 11.0 − 405.2 ± 22.5 − 1.7
TLR-3 0.6 ± 0.4 − 115.7 ± 16.2 − 518.1 ± 19.8 − 1.8

Fig. 6  The molecular interactions between TLR-3, and predicted Vac2 construct
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methods could help to reduce the burden from laboratory, 
and decrease the costs of errors by using in silico methods.

Immunoinformatics or computational immunology is a 
branch of bioinformatics that includes investigations such 
as B- and T-cell epitope mapping, along with many other 
aspects including toxicity, and allergenicity. These meth-
ods represent high specificity, cost-effectiveness, potential 
and easy ways for vaccine development against infectious 
disorders (Nosrati et al. 2019). The potential of in silico 
designed vaccines for Influenza has also been confirmed by 
many in vivo and in vitro studies, for example, a study by 
Rodrigueza et al. reported a novel peptide-based vaccine 
(Vacc-FLU) candidate with protective efficacy against Influ-
enza A in a mouse model, and the output confirmed efficacy 
of the designed peptide against the virus (Herrera-Rodriguez 
et al. 2018).

Generation of novel vaccines that can overcome antigenic 
diversity and inherent low immunogenicity of vaccines 
against Influenza A virus is critical for pandemic prepara-
tion. Despite the recent progresses in the growth and design 
of vaccines against epidemics threats, several issues still 

require the attention of the Influenza virus community (Vries 
et al. 2018). Currently, there is not enough reports on in 
silico design of multi-epitope vaccine based on neuramini-
dase protein. Several results have demonstrated that protec-
tion by vaccination with NA mostly relies on the induction 
of antibodies that could mediate inhibition of neuraminidase 
(NI) (Job et al. 2018).

Previously, many attempts have been devoted to develop 
a novel Influenza A vaccine that covers more subtypes of 
the virus. A 2015 study by Medina et al., reported an in 
silico identification of conserved epitopes of Influenza A. 
The valuable information provided by their study is useful 
for designing the future epitope based vaccine. In their study, 
they conducted an in silico investigation of the epitopes for 
four Influenza A proteins that are antigenically most sig-
nificant (HA, NA, NP, and M2) in three strains with the 
highest world circulation in the last century (H1N1, H2N2, 
and H3N2), and one of the main aviary subtypes with a high 
importance at zoonosis (H5N1) (Muñoz-Medina et al. 2015).

At the current research, we aimed to design a potential 
multi-epitope vaccine candidate that could cover more 

Fig. 7  Molecular docking analysis of Vac2 construct with TLR-3 regarding a hydrogen bonds, b interpolated charges c hydrophobicity, and d 
ionizability of the TLR-3 receptor surface
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subtypes of Influenza virus. Three peptide constructs were 
designed based on the conserved epitopes of neuraminidase 
protein, attached together using different linkers, and were 
subjected to different bioinformatics assays. Among the 
proposed constructs, Vac2 showed the highest stability, and 

lowest allergenicity, along with being none toxic. Structure 
of this construct was confirmed by different programs, con-
sidering different aspects, such as Ramachandran plot, the 
Z-score, and ERRAT values, along other features that certi-
fied the structure of proposed peptide construct.

Fig. 8  The Immune simulation analysis of Vac2 construct influence of the a antigen and immunoglobulins loads b B-cell population c NK-cell 
count dT-cell population e TH-cell count f TR (regulatory) population per state at the following days upon injection
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The construct was ascertained to interact with immu-
nologic receptors; including different HLA1, and HLA2 
subtypes, along with TLR3. Finally, the immune responses 
including both humoral, and cellular responses (B-cell, 
T-cell, and NK-cells) were investigated through in silico 
immune response simulation.

Many of earlier studied have been focused on structural 
components of this virus, for example a study by Lohia et al. 
(2017) investigated immune responses to highly conserved 
Influenza A virus matrix 1 peptides. Another report by the 
same author was dedicated to the identification of conserved 
peptides comprising multiple T-cell epitopes of matrix 1 
protein in H1N1 Influenza virus (Lohia and Baranwal 2015).

Several methods have been used to design epitope-based 
vaccines based on HA and NA proteins. Some of the can-
didates used in clinical trials show the possibilities in the 
decreasing Influenza infection (Sebastian and Lambe 2018; 
Sautto et al. 2018; Nachbagauer and Palese 2019). How-
ever, vaccine candidates which are currently in use at clinical 
studies are aimed to elicit an antibody response against more 
conserved Influenza proteins (Doorn et al. 2017a,2017b). 
Furthermore, the limitations of currently in market seasonal 
Influenza vaccines and the persistent threat of future pan-
demics have made it necessary for novel vaccine design.

In this study, a specific epitope from each subtype of 
seven NA proteins were chosen based on their antigenic-
ity and stability. The results provided by the current in 
silico study showed that the multi-epitope construct with 
GPGPGPG linker and NA epitopes can provide promising 
outcomes against Influenza A virus and could be devoted 
for future in vitro, and in vivo studies.

Conclusion

This study provided a potential multi-epitope peptide 
vaccine candidate against Influenza A virus; based on the 
neuraminidase protein. This designed peptide could cover 
many subtypes of the virus and serve as wide rage pro-
tection against this seasonal disease. The multi-epitope 
construct presented by this study showed promising results 
through in silico step, which could be further investigated 
at in vitro and in vivo studies.
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