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Abstract

Background

Australia is theoretically at risk of epidemic chikungunya virus (CHIKV) activity as the princi-

pal vectors are present on the mainland Aedes aegypti) and some islands of the Torres

Strait (Ae. aegypti and Ae. albopictus). Both vectors are highly invasive and adapted to

urban environments with a capacity to expand their distributions into south-east Queensland

and other states in Australia. We sought to estimate the epidemic potential of CHIKV, which

is not currently endemic in Australia, by considering exclusively transmission by the estab-

lished vector in Australia, Ae. aegypti, due to the historical relevance and anthropophilic

nature of the vector.

Methodology/Principal findings

We estimated the historical (1995–2019) epidemic potential of CHIKV in eleven Australian

locations, including the Torres Strait, using a basic reproduction number equation. We

found that the main urban centres of Northern Australia could sustain an epidemic of

CHIKV. We then estimated future trends in epidemic potential for the main centres for the

years 2020 to 2029. We also conducted uncertainty and sensitivity analyses on the vari-

ables comprising the basic reproduction number and found high sensitivity to mosquito pop-

ulation size, human population size, impact of vector control and human infectious period.

Conclusions/Significance

By estimating the epidemic potential for CHIKV transmission on mainland Australia and the

Torres Strait, we identified key areas of focus for controlling vector populations and reducing

human exposure. As the epidemic potential of the virus is estimated to rise towards 2029, a

PLOS NEGLECTED TROPICAL DISEASES

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009963 November 16, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: White T, Mincham G, Montgomery BL,

Jansen CC, Huang X, Williams CR, et al. (2021)

Past and future epidemic potential of chikungunya

virus in Australia. PLoS Negl Trop Dis 15(11):

e0009963. https://doi.org/10.1371/journal.

pntd.0009963

Editor: Christopher M. Barker, University of

California, Davis, UNITED STATES

Received: July 30, 2020

Accepted: November 2, 2021

Published: November 16, 2021

Copyright: © 2021 White et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-7755-9852
https://orcid.org/0000-0003-2337-4753
https://orcid.org/0000-0002-8707-6694
https://orcid.org/0000-0002-4758-1506
https://orcid.org/0000-0002-7257-1844
https://orcid.org/0000-0002-3446-8248
https://orcid.org/0000-0001-8628-4216
https://orcid.org/0000-0002-1418-1426
https://doi.org/10.1371/journal.pntd.0009963
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009963&domain=pdf&date_stamp=2021-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009963&domain=pdf&date_stamp=2021-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009963&domain=pdf&date_stamp=2021-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009963&domain=pdf&date_stamp=2021-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009963&domain=pdf&date_stamp=2021-11-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009963&domain=pdf&date_stamp=2021-11-30
https://doi.org/10.1371/journal.pntd.0009963
https://doi.org/10.1371/journal.pntd.0009963
http://creativecommons.org/licenses/by/4.0/


greater focus on control and prevention measures should be implemented in at-risk

locations.

Author summary

Chikungunya virus (CHIKV) is transmitted primarily by Aedes aegypti and Aedes albopic-
tus mosquitoes and causes a potentially debilitating febrile and arthralgic disease. The

virus is a threat to public health in regions where the primary vectors are established, as

evidenced by past epidemics in the Indian Ocean Islands, South America and the Carib-

bean. In Australia, there are established populations of Ae. aegypti both on the mainland

and in the Torres Strait, and of Ae. albopictus in the Torres Strait. This provides a theoreti-

cal potential for CHIKV transmission, as seen historically with dengue virus (DENV). It is

therefore important to understand the epidemic potential of CHIKV in Australia. We esti-

mated the basic reproduction number (R0) of CHIKV during the years 1995–2019 for 11

Urban Centres and Localities (UCLs) in Australia, and found that Brisbane, Cairns, Dar-

win, Rockhampton, Thursday Island, and Townsville were all susceptible to CHIKV epi-

demics. We then forecasted epidemic potential from 2020–2029 and found an increase in

R0 across the six main UCLs. By highlighting factors that significantly influence the epi-

demic potential of CHIKV in Australia, our study supports evidence-based decision mak-

ing for vector control and public health programs.

Introduction

Chikungunya is an often-debilitating disease caused by chikungunya virus (CHIKV), a mos-

quito-borne alphavirus of the Togaviridae family. The Makonde word “chikungunya” means

“that which bends up”, denoting the symptom of arthralgia common in many cases. Other

symptoms include fever, rash and nausea, with rarer cases of chronic joint pain [1–3]. Infec-

tion with CHIKV is self-limiting in immunologically competent individuals, however chronic

morbidity is often observed [2,4]. CHIKV is transmitted by several mosquito species, particu-

larly two highly invasive species of the Aedes genus (Subgenus: Stegomyia) Aedes aegypti and

Aedes albopictus. Urban cycles of transmission involve these species because they live in close

proximity to human habitation and possess biological and ecological attributes that increase

their vectorial capacity [5,6]. Epidemic CHIKV activity is linked to urban cycles of mosquito-

human transmission, often in locations previously naïve to the virus. Both mosquito species

are present in some regions of Australia and are capable of expanding their geographical distri-

butions, providing the opportunity for CHIKV outbreaks into novel Australian regions [7].

Since it was first identified in Tanzania in 1952, CHIKV has expanded in distribution with

numerous outbreaks recorded across Africa, Asia, the Americas, and islands of the Indian

Ocean [8]. CHIKV phylogenetically comprises into three main genotypes: West-African,

Asian and East-Central-South-African (ECSA), along with a more recently identified sub-line-

age of ECSA, the Indian Ocean Lineage (IOL). A 2005–06 outbreak in La Réunion, with the

primary vector being Ae. albopictus, resulted in an estimated 244,000 confirmed cases with an

attack rate of 35% and mortality rate of 0.03% [9]. The identification of a point mutation

(E1-A226 A to V) in the ECSA genotype was hypothesised to shorten the extrinsic incubation

period (EIP) of the IOL and result in rapid transmission by Ae. albopictus [10]. An outbreak in

Italy in 2017 resulted in an average incidence rate of 0.0068% for the region, but up to 0.335%
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in towns such as Anzio [11]. Outbreaks of the Asian genotype in the Caribbean islands in

2013–15 resulted in an attack rate of 0.6% and a mortality rate of 0.024% in hospitalized cases

(with no vector species stipulated) [12]. The severity of these outbreaks highlights the potential

risk for other locations with suitable conditions for transmission.

CHIKV can be introduced into a new region by a viraemic traveller or importation of

infected mosquitoes. After an initial outbreak is contained or becomes self-limited, CHIKV

activity may subside due to large-scale immunity in the human host population, greatly reduc-

ing the epidemic potential [6]. CHIKV transmission is influenced by climatic factors, such as

temperature and rainfall, along with human-vector interactions. Currently there are no

licensed vaccines for CHIKV, so immunologically naïve populations that have suitable condi-

tions and vectors are at risk. Treatments are also limited to targeting symptoms of fever and

overall joint pain [4]. Predicting outbreaks and measuring the risk of CHIKV transmission in

different locations are of public health importance to prioritize appropriate surveillance and

preventative measures.

The Asia-Pacific region has a high incidence of CHIKV activity [3], posing a risk to neigh-

bouring regions where climate conditions are suitable, and an abundant and competent vector

population is present. In the Pacific region, vulnerable locations include the Torres Strait

Islands with established populations of Ae. albopictus and Ae. aegypti [13] and parts of Queens-

land (Australia), with established Ae. aegypti [14–16], with expansion through national and

international freight pathways. These regions do not currently have endemic CHIKV trans-

mission but imported cases of Asian lineage and IOL CHIKV have been increasing in recent

years, consistent with increased virus activity in the Asia-Pacific [17, 18]. The full extent of

CHIKV epidemic potential in Australia has not previously been modelled but is theoretically

possible in many locations.

Historically, Australian populations of Ae. aegypti [14] have vectored endemic dengue virus

(DENV) up to the 1940s [19]. The implementation of vector control has facilitated the elimina-

tion of this vector outside Queensland [20] and from the region of south-east Queensland

[21]. Aedes aegypti has high potential to facilitate CHIKV transmission in Australia, due to the

anthropophilic nature of the vector [22]. However, the epidemic potential of CHIKV in vari-

ous regions in Australia is largely unknown. Additionally, the replacement of wild-type Ae.
aegypti populations in Cairns, Townsville, and surrounding towns with Wolbachia-infected

Ae. aegypti may decrease transmission risk. However, the epidemic potential in Australia

would potentially be broader if vector species distributions expand are re-configured by main-

land invasion by Ae. albopictus, or Wolbachia infection of Ae. aegypti populations in north

Queensland regions is lost.

Although no documented cases of transfusion-transmitted CHIKV have been reported

[23], CHIKV remains a theoretical threat to blood supply safety. Understanding the epidemic

potential of local CHIKV transmission will allow better and timely management of threats to

blood safety and assessment of public health risk. Our aims were to i) evaluate the past poten-

tial of CHIKV transmission in Ae. aegypti in specific locations of Australia, by estimating basic

reproduction number (R0) for each location; ii) forecast potential transmission in these loca-

tions for 2020–2029; and iii) estimate and understand how environmental factors and virus

genotype can impact transmission by Ae. aegypti. This will identify variables with the greatest

impact on CHIKV epidemic risk, adding to the evidence base necessary for effective vector

control measures and epidemic response programs (e.g. Queensland Chikungunya Manage-

ment Plan [24]).
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Methods

Study definition

To evaluate CHIKV epidemic potential within Australia from 1995–2019, we analysed epide-

miological and environmental parameters. Eleven locations, here referred to as urban centres

and localities (UCLs), across Australia (Fig 1) were chosen based on current and past Ae.
aegypti presence or absence (determined by Australian public health authorities using trap-

based mosquito surveillance at these locations). These locations were Cairns, Rockhampton,

Thursday Island and Townsville which have confirmed Ae. aegypti populations; Adelaide,

Hobart and Melbourne which have no recorded populations; and Brisbane, Darwin, Perth and

Sydney which have historically recorded populations but now no longer do.

Data collection

Data on temperature and human population for each UCL were gathered from publicly acces-

sible Australian government websites, whilst values for vector biting and transmission rates,

along with infectious and extrinsic incubation periods were determined from published

research (Table 1). To accurately predict the potential for transmission, the Asian genotype

(hereafter named AL) and IOL are considered here separately, as they are the most likely to be

introduced to Australia due to geographic proximity [17].

Fig 1. Map of Australia and Torres Strait identifying the UCLs of focus. Study locations are based on the Australian Bureau of Statistics UCL land definitions. The

data used to create this figure has been sourced from the Bureau of Meteorology.

https://doi.org/10.1371/journal.pntd.0009963.g001
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The monthly average maximum and minimum temperatures for the 11 UCLs were

obtained from the Australian Bureau of Meteorology (BOM), from January 1995 until Septem-

ber 2019 (S1 Fig) [25].

Human population density was calculated using population data and UCL land area size

collected from the Australian Bureau of Statistics (ABS) for the census years 1996, 2001, 2006,

2011 and 2016 [26]. Linear regression was performed using Microsoft Excel to estimate data

for non-census years starting at 1995 through to 2019. Ae. aegypti population density was pre-

dicted using the container-inhabiting mosquito simulation (CIMSiM) software [27], which

utilises minimum and maximum temperature values [25], rainfall and humidity data [25],

along with census data for human population [26], access to water-bearing containers (used as

mosquito breeding sites) and access to nutritional requirements. The simulation then returns

host-seeking female Ae. aegypti population data that were used for this study. The data on

water-bearing containers and nutritional inputs were developed as part of earlier calibration

studies for the CIMSiM model in the Australian context [28,29]. In this work, a representative

breeding container profile was established and mosquito productivity for these containers was

field validated for use in Australia. Thus, these model settings in CIMSiM were maintained for

all simulation locations.

The remaining values required for the modelling component: vector biting rate, vector

mortality rate, human-to-vector transmission rate, vector-to-human transmission, infectious

period, extrinsic incubation period, and vector control rate, were retrieved from research and

literature review sources (Table 1). To be as accurate as possible, sources were selected if they

investigated AL or IOL CHIKV for Ae. aegypti, under conditions that closely matched

Table 1. Equation variable descriptions with corresponding values/equations used.

ID Description Equation/Values Reference

b Vector bite rate (average per day) 0.0043�T+0.0943 [34]

ßm Human-to-vector transmission rate (per day) AL 0.98 [35]

IOL 0.92 [15]

ßh Vector-to-human transmission rate (per day) AL 0.56 [35,36]

IOL 0.64 [15]

ML Mosquito population density (females seeking bloodmeal per hectare) Estimated using the CIMSiM model CIMSiM

HL Human population density (per hectare) Calculated from linear regression of census years

from ABS

[26] (ABS)

γ Human infectious period (days-1) AL Worst-case limit 7 [37]

Best-case limit 2

IOL Worst-case limit 5 [38]

Best-case limit 2

μ Vector mortality rate (deaths per day) 0.8692−0.159�T
+0.01116�T2−0.0003408�T3+0.000003809�T4

[34]

τ Extrinsic incubation period (days) AL Best-case limit 11.36 [39]

Worst-case limit 2.75

IOL Best-case limit 11.63

Worst-case limit 3.39

c Vector control efficiency (rate of mosquito survival after control methods) Worst-case limit 0.3 [40,41]

Best-case limit 0.1

T Mean Temperature From Australian BOM recordings [25]

AL = ‘Asian Genotype of CHIKV’, IOL = ‘Indian Ocean Lineage of CHIKV’, CIMSiM = ‘Container-Inhabiting Mosquito Simulation’, ABS = ‘Australian Bureau of

Statistics’, BOM = ‘Bureau of Meteorology’

https://doi.org/10.1371/journal.pntd.0009963.t001
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experiments from other research groups, for the viral parameters human-to-vector and vector-

to-human transmission rates, infectious period, and extrinsic incubation period. The vector-

to-human transmission rate parameter had multiple sources contributing to the data, so values

were selected based on relevance (use of Ae. aegypti and AL or IOL CHIKV strains), then aver-

aged to provide the most accurate prediction of possible outcomes. For research conducted

using Ae. aegypti populations in other regions of the world, results were selected based on the

strains most similar to those in Queensland. For example, parameter estimates from experi-

ments conducted on Caribbean species were selected due to evidence of genetic similarity with

Asian Ae. aegypti [30].

Estimating historical potential for CHIKV

The R0 was estimated and used as the predictor of CHIKV transmission potential in humans.

R0 predicts the number of subsequent infections from one infection in a susceptible human

population, so that a R0< 1 means transmission cannot be maintained, where R0> 1 means

transmission is maintained during an outbreak. R0 = 1 identifies endemic transmission. An

equation to estimate Zika virus epidemic potential, proposed by Villela et al. [31] was adapted

for Zika virus (ZIKV) and DENV epidemic potential in Australia [32]. We used the same

adapted equation for estimation of CHIKV. As both CHIKV genotypes have slight variances

in values, a different equation for R0 and each genotype was developed, written here as RAL (Eq

1) and RIOL (Eq 2).

RAL ¼
b2 � mAL� hAL

g� mð1þ tAL � mÞ
�
ML

HL
� c ð1Þ

RIOL ¼
b2 � mIOL� hIOL

g� mð1þ tIOL � mÞ
�
ML

HL
� c ð2Þ

As well as investigating two genotypes of CHIKV, the upper and lower limits of the parame-

ters human infectious period, extrinsic incubation period and vector control efficiency were

considered, so that best- and worst-case scenarios of transmission in Ae. aegypti were pre-

dicted (Table 1). The best-case scenario was calculated by using the limits of the variables that

decrease transmission rate, whilst the worst-case scenario was calculated using the limits of the

variables that increased transmission rate (S1 Table). With the two outer limit scenarios identi-

fied, all other scenarios within those limits were excluded from the results. The standard devia-

tion was also calculated for the best- and worst-case scenarios to represent monthly variation.

Collectively, the genotype of CHIKV, and the best- and worst-case limits, combined with the

temperature variation of each UCL, were expected to accurately predict CHIKV potential

transmission by Ae. aegypti in Australia. Here, the R0 was applied as a tool for assessing relative

risk between UCLs and scenarios, with the theoretical value of 1 providing a reference line for

transmission sustainability.

The “R Software” (version 3.6.1) [33] was used to estimate the R0 for each CHIKV genotype,

then to forecast this value from 2020 to 2029. The remaining values and equations (with associ-

ated upper and lower limits) were also assigned to their respective variables. We estimated

best- and worst- case scenarios for each UCL, where best-case related to the limits of the vari-

able values that resulted in lower transmission and worst-case related to the values that

resulted in higher transmission. These two scenarios were employed for analysis as they com-

prehensively outlined the limits of CHIKV potential in Australia. Our predictive model

assumes that each locality had a population of Ae. aegypti and that this was the only vector

population present, that the human population was immunologically naïve to CHIKV, and

ß

ß ß

ß
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that the mosquito population was not infected with Wolbachia or possessed any other trait

that may reduce transmission potential.

Sensitivity analysis of variables

To quantify the relationship and impact of each variable on the R0 equation, we performed

uncertainty analysis to analyse variance, coupled with sensitivity analysis (SA). For uncertainty

analysis, we explored Monte Carlo (MC) methods and produced a matrix of 100,000 sample

values within the respective ranges for each of the test variables through Latin Hypercube Sam-

pling (LHS) [42]. Then, an additional column of 100,000 R0 values were calculated based on

these sample values, creating the uncertainty ranges for the R0 values. Sensitivity analysis was

then performed on the samples (S2 Table) using the Partial Rank Correlation Coefficients

(PRCC) method to analyse the density and variance of each variable, along with the impact of

each on the final R0 value [42]. As an MC method of uncertainty was used for simulation, a

global SA method can be used to efficiently evaluate the variation in each variable, instead of a

local SA method which only considers values close to the average range. The PRCCs were

determined between the R0 value and all variables, as well as between variables.

Forecast model construction

To forecast future R0 values from 2020–2029, we utilised the same methodology as the histori-

cal data set. We gathered the predicted variation to temperature (min and max) and total rain-

fall for each month of the ten-year period [43], and predicted relative humidity changes for

each season (three month period) [44] for the 11 UCLs. As the predicted variations are calcu-

lated relative to the reference period of 1986–2005, the datasets for this period were collected

for each variable [45]. Then the predicted change in variable was applied to the reference data,

allowing us to estimate the future values for each variable. The predicted human population

data was calculated in the same way as the historical dataset; using a linear regression from

census years to predict values for every year from 2020–2029. At this point, the entomological

population for each UCL was estimated using the CIMSiM and adult host-seeking female pop-

ulation was used for the R0 equation. The final predicted values required for the R0 equation

were the vector bite rate and vector mortality rate, which were both calculated using the mean

predicted temperature for each UCL. The same R0 equation was utilised for the forecast data

(2020–2029), which resulted in a best- and worst-case scenario for each UCL and genotype of

CHIKV.

Results

Historical R0

We estimated that only six of the 11 UCLs (Brisbane, Cairns, Darwin, Rockhampton, Thurs-

day Island, Townsville) recorded relevant R0 sufficient for analysis. The remaining five UCLs

(Adelaide, Hobart, Melbourne, Perth, and Sydney) were estimated to have R0 of, or closely

equal to, zero. These UCLs with R0 values sufficient for analysis have confirmed presence of

Ae. aegypti, apart from Brisbane and Darwin which have historical presence of the vector.

Although still an interesting finding, to allow for easier visualisation of the higher R0, we

removed the five UCLs with R0<1 from graphical representation. Of the six remaining UCLs,

each had higher R0 values for IOL compared to AL, despite sharing almost identical trend pat-

terns between strains and scenarios (Fig 2).

Brisbane was the only UCL with a R0 for the best-case scenario for both CHIKV strains

below 1. The average trendline fluctuated within a fixed range, with R0 fluctuating between 1
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and 2 for worst-case scenarios for both strains, whilst in the best-case scenarios for both strains

R0 fluctuated between 0.3 and 0.5 (Fig 2A). The predicted scenarios here suggested that Bris-

bane could have sustained transmission of either strain only if environmental conditions were

favourable, with 1995 and 2016 being the years where transmission was least favourable.

Cairns was the only UCL where the best-case scenario average was almost consistently

above R0 of 1, however the lower limit of the SD remained below R0 of 1 (Fig 2B). The Cairns

worst-case scenario displayed one of the highest R0 values predicted throughout all UCLs and

remained consistently high, around 4 and 3 for IOL and AL, respectively. The predicted sce-

narios for Cairns suggested that this UCL was the most likely to sustain CHIKV transmission

across any scenario, where only the months of May through September were unsuitable for

transmission under best-case scenarios.

Darwin was the other UCL with the highest R0 values predicted for worst-case scenarios,

however the pattern showed a R0 that increased over time by 2.5 units (Fig 2C). The upper SD

bound of this trend reached R0 values of around 8, making it the UCL with highest R0

Fig 2. R0 estimations for best- and worst-case scenarios from 1995 to 2019 for the significant UCLs. CHIKV R0 from 1995 to 2019 by

averaging monthly estimations for each year for A) Brisbane, B) Cairns, C) Darwin, D) Rockhampton, E) Thursday Island and F) Townsville.

Best- and worst-case scenarios were estimated using the limits of each variable from the R0 equation, where best-case correlates with least

transmission and worst-case correlates with most transmission of CHIKV. Each scenario also has upper and lower standard deviation limits,

with averages in bolder lines.

https://doi.org/10.1371/journal.pntd.0009963.g002
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prediction. The upward trend showed a shift for the best-case scenarios from R0 values below

1 through to 1.5. The R0 potential for Darwin increased over time, to the point where 2019

would have had a R0 greater than 1 for every scenario.

The trend for Rockhampton displayed a fluctuation pattern around R0 of 2 and 3 for worst-

case scenarios and just below 1 for best-case (Fig 2D). The lower SD limits for best- and worst-

case scenarios reached R0 of 0 or lower (but these are considered equal to zero) in 1996, 2002,

2011, 2012, 2015 and 2019. This indicated that while Rockhampton had a consistent potential

for CHIKV activity, transmission was unsustainable in the months of August and September,

regardless of the scenario.

For Thursday Island, we estimated a fluctuating trend after an increase in epidemic poten-

tial before the year 2000 (Fig 2E). For the worst-case scenario, the R0 ranged from 2.5 to 3.5,

with SD upper limits around 5 and lower limits around 1.5, indicating large inter-yearly varia-

tion in potential. The best-case scenario trend fluctuated around 1 after the initial increase,

with upper SD limits around R0 of 1.5 and 0.5 for lower SD limits, also suggesting that the

month of the year was important for transmission potential.

The potential for transmission in Townsville fluctuated while also displaying an upward

trend over time (Fig 2F). The SD limits of the worst-case scenario suggested large monthly var-

iation of potential, with the months of June, July, August, and September not supporting trans-

mission (R0 less than 1). The best-case scenario average fluctuated around R0 of 0.5 with only

the upper SD limit rarely reaching R0> 1. The potential for transmission was dependent on

the scenario, but also the monthly climate.

Sensitivity analysis of variable uncertainty

The sensitivity analysis of the variables (Fig 3) highlighted significant low positive correlations

on R0 values for mosquito population density (M) and vector control efficiency (c) (R2 = 0.17

and 0.1 respectively), along with low negative correlations for human population density (H),

infectious period (y), vector mortality rate (u) and EIP (t) (R2 = -0.11, -0.13, -0.05 and -0.02

respectively). Average temperature (AvgT) had higher significant positive correlations on vec-

tor mortality rate (u) and vector biting rate (b) (R2 = 0.41 and 1.0 respectively). The positive

correlation between vector biting rate and vector mortality rate (R2 = 0.41) identified collinear-

ity, but not a causation relationship.

Forecast model

To forecast the future epidemic potential for 2020 to 2029, we utilised the R0 equation to esti-

mate the theoretical transmission potential for each UCL. Once again, the forecasts showed

that IOL scenarios had higher R0 values than AL scenarios. Brisbane was forecasted to have sta-

ble trends, with each scenario having a varying average R0 of 1 (Fig 4A). The monthly variation

displayed as standard deviation showed a difference in R0 up to 5 for worst-case scenarios. The

average best-case scenarios for Brisbane were both above R0 of 1. Cairns also displayed stable

trends, with fluctuation of R0 of 1 for scenario averages (Fig 4B). All scenario averages and

standard deviations were above R0 of 1, with worst-case scenarios among the highest average

forecasted at R0 of 17. Greater variation in average scenario R0 was forecasted for Darwin, with

variation up to 3 for worst-case scenarios (Fig 4C). Despite such variation the average R0 still

forecasted a level trend across the time-period. Again, all scenarios were above R0 of 1, with

the highest values around R0 of 14. Rockhampton was forecasted to also be a level trend for the

average scenario values, with fluctuation in R0 of 1 (Fig 4D). The highest value was around R0

of 6, with monthly variation for every scenario passing below R0 of 1. Thursday Island dis-

played level trend lines for each scenario, with high values around 14.5 for worst-case scenarios
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(Fig 4E). The best-case scenarios were stable around R0 of 4. The monthly variation for Thurs-

day Island was around R0 of 2 for worst-case scenarios and 0.5 for best-case. Townsville was

the only UCL to forecast an upward trend in R0 values, with an increase in R0 of 5 for worst-

case scenarios (Fig 4F). The monthly variation for worst-case scenarios was around R0 of 7,

but despite such large variation, all values remained above the R0 of 1 threshold.

Discussion

The emergence of CHIKV over recent decades has seen numerous epidemics of varying sever-

ity across tropical and temperate regions where mosquito vector populations are established.

Although Australia has not experienced CHIKV outbreaks, it is important to understand how

risk of CHIKV transmission varies in the different regions, particularly over shorter future

timeframes, to enable effective public health management and mitigation. Our study suggests

that the six most northern UCLs investigated (Brisbane, Cairns, Darwin, Rockhampton,

Thursday Island and Townsville) had varying historical and future potential for CHIKV

Fig 3. Sensitivity analysis using correlation matrix of R0 variables. Sensitivity analysis was performed by Partial

Rank Correlation Coefficient using Monte Carlo methods and Latin Hypercube Sampling. Numeric and graphic

displays of the correlation coefficient are displayed in the lower left-hand side segment and the upper right-hand side,

respectively. The colour and direction of ellipse relates to the degree of correlation between parameters. The variables

are displayed diagonally, where T is average temperature, v is human-to-vector transmission rate, w is vector-to-

human transmission rate, M is mosquito population density, H is human population density, c is vector control

efficiency, y is infectious period, t is extrinsic incubation period, u is vector mortality rate, b is vector biting rate, and R0
is the basic reproduction number.

https://doi.org/10.1371/journal.pntd.0009963.g003
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epidemics facilitated by Ae. aegypti. The historical potential varied amongst UCLs and across

best- and worst-case scenarios but remained consistent with IOL CHIKV having higher R0 val-

ues compared to AL CHIKV. We showed that sustained epidemics in Brisbane, Rockhampton,

Thursday Island and Townsville were scenario dependent, meaning that worst-case scenarios

were likely to sustain epidemics whereas best-case scenarios were not likely to sustain epidem-

ics. Cairns and Darwin had R0 higher than 1 for most of the best-case scenarios, highlighting

them as the most likely to sustain epidemics under all scenarios, with only colder months

(May-September) not supportive. Our findings are in congruence with the historical distribu-

tion of Ae. aegypti in Australia. Cairns, Rockhampton, Thursday Island and Townsville have

confirmed mosquito populations, while Brisbane and Darwin, have historically recorded pop-

ulations which demonstrate the potential of CHIKV transmission if suitable conditions were

to be met. Adelaide, Hobart, and Melbourne have no recorded populations of Ae. aegypti
which also concord with our results. Finally, while Perth, and Sydney have historically

recorded Ae. aegypti populations, the vector is no longer established in either of these UCLs.

Overall, these observations are consistent with the susceptibility to DENV transmission in the

Fig 4. R0 forecast estimations for each significant UCL. Forecasts of the best- and worst-case scenarios of R0 for A) Brisbane, B) Cairns, C)

Darwin, D) Rockhampton, E) Thursday Island, and F) Townsville for 2020 to 2029. Forecasts are calculated using the R0 equation with bold

lines representing the yearly average and dashed lines representing the monthly variation as standard deviation.

https://doi.org/10.1371/journal.pntd.0009963.g004
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past reported for Brisbane, Cairns, Darwin, Rockhampton, Thursday Island and Townsville

[19].

Sensitivity analysis highlighted that mosquito population density, human population den-

sity, vector control efficiency and infectious period had a significant impact on the R0 esti-

mates. The forecasting of CHIKV outbreaks for each UCL highlighted that the northern-most

UCLs, Brisbane, Cairns, Darwin, Rockhampton, Thursday Island, and Townsville, had the

highest R0 forecasts. Brisbane and Rockhampton were forecasted to have the lowest R0 values

of these UCLs, which supports the relationship between lower mean maximum temperatures

and rainfall in colder months, and reduced potential for CHIKV epidemics. Cairns and Thurs-

day Island were forecasted to have consistent R0 values regardless of seasonality, while Bris-

bane, Darwin, Rockhampton, and Townsville were forecasted to have seasonal variation of R0.

Townsville was the UCL forecasted to have the highest R0 values, making it among the most

likely to sustain an outbreak relative to other UCLs investigated. As Australia is in the South-

ern hemisphere, the Northern UCLs are subject to, on average, hotter climates. This supports

the findings of this study, where UCLs with average hotter temperatures were identified to

have higher R0 values, both in historical and future estimations.

Temperature is an important driver of arbovirus transmission, but rainfall, proximity to

human dwellings, and availability of container habitats are also significant for vector popula-

tions [5,14,21,46]. Here we show that Ae. aegypti vector population density has a positive cor-

relation on R0. Additionally, the other temperature-dependent variables, namely vector

mortality rate and vector biting rate, have correlations with R0 also. We show that UCLs that

have average daily temperatures around 27–31˚C and high rainfall (leading to increased vector

population density) have higher R0 values. However, mosquito behaviours are known to be

temperature-dependent, with negative correlations above 35˚C for blood feeding and flight

[47], and when host and environmental temperatures are similar [48]. These temperature-

dependant behaviours were relevant to the overall prediction validity of Cairns, Darwin, and

Thursday Island, as these UCLs often enter temperature ranges that may adversely impact

mosquito fitness in summer months. Water storage containers in Brisbane are predicted to

provide suitable environments for overwintering of Ae. aegypti [49] which supports survivabil-

ity despite the negative correlations of lower temperatures on the vector.

Thursday Island (and other inhabited islands of the Torres Strait) has populations of Ae.
albopictus, a species that is more efficient at transmitting CHIKV-IOL. As we assumed that the

strains will be transmitted only by Ae. aegypti, the prediction for Thursday Island does not

account for transmission by Ae. albopictus and, therefore we may have underestimated the epi-

demic potential of IOL. Conversely, some regions of north Queensland, including Townsville

and Cairns, now possess established populations of Wolbachia-infected mosquitoes [50,51]

along with comprehensive and continued mosquito control programs, which may reduce

transmission likelihood. We excluded this from the vector control parameter as the nature of

this measure means that arbovirus transmission is predicted to be low while the Wolbachia-

infected Ae. aegypti population remains established [51–53]. Additionally, the potential contri-

bution of CHIKV outbreaks caused by involvement of Ae. albopictus that may play a role in

the future is not considered in our forecasts. Although this mosquito is frequently detected at

shipping ports in Australia, it has thus failed to establish on the mainland. Through sensitivity

analysis we identify the key drivers of the R0 to be the vector and human populations densities,

along with the vector control efficiency and the infectious period. Not all significant variables

driving transmission can be managed, but by controlling vector populations and human expo-

sure the R0 can be reduced.

Our study has some limitations. The definition of some of UCLs by the Australian Bureau

of Statistics changed throughout the census years, altering estimates of the resulting human
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population density. The impact of this on our estimates of final R0 is unlikely to have been

large as the variation in UCL boundaries was small. The reliance on CIMSiM is validated, but

only proven accurate for predicting populations of northern Queensland (where Ae. aegypti is

present). Therefore, we assumed that it is accurate for other UCLs as Ae. aegypti survivability

is supported [49] more southerly than previously predicted by CIMSiM. Factors relevant to

Australia that we were unable to take into account include the variation in available larval con-

tainer habitats (e.g. deteriorating rainwater tanks) over time, the frequency of incursion of vec-

tors in Australia, the warming climate, and other entomological factors (e.g. ability for Ae.
aegypti to overwinter). Last, the timing of the study meant that data for 2019 were only ana-

lysed until September, resulting in the final three months being excluded from the calculation

of averages for this year.

The historical absence of CHIKV in Australia creates complexity in validating the risk

model utilised in this study, however, the partial presence of DENV allows for some compari-

son. Based on the similarities of DENV and CHIKV, we theorise that transmission patterns

would be similar in respective UCLs based on climate suitability. Moreover, this study is an

extension of the study published by Watson-Brown et al. (2019) in which this same model has

been used and validated with DENV and ZIKV [32]. Our findings correlate also here with his-

torical presence of DENV in Australia, providing partial validation of our model. The addi-

tional inclusion of findings from ZIKV transmission estimation in Australia [54] also

identified similar UCLs of importance when assessing risk. The presence of the shared vector,

Ae. aegypti, in Australia allows for the accurate comparison and validation of these arboviruses.

The regression of DENV transmission to Northern Queensland, along with continued con-

tainment of CHIKV and ZIKV at entry points to Australia, reinforces the efforts of policy

makers. These efforts have ensured that Australia has not had endemic or epidemic CHIKV,

despite transmission potential of CHIKV in certain regions being clearly identified by our

work here. We suggest that the focus of management and resources be focused on susceptible

UCLs foremost, supported by past DENV transmission and ZIKV estimations of similar

nature [54].

Here we have selected localities to predict theoretical potential of CHIKV epidemics in Aus-

tralia. These Australian estimates are novel as there are no existing predictions for CHIKV.

We have shown that epidemics of two major lineages of CHIKV were theoretically possible in

Australia. From 1995 to 2019, epidemics were theoretically possible in Cairns, Townsville, and

Rockhampton. CHIKV transmission was also theoretically possible in Darwin and Brisbane if

Ae. aegypti were to re-establish in these regions and supports a strategic emphasis on surveil-

lance programs in regions vulnerable to invasion to detect incursions early to attempt eradica-

tion [20,55,56]. Aedes aegypti is also a primary vector for other arboviruses including DENV

and ZIKV and therefore this study supports comparisons of their respective transmission

potentials. ZIKV epidemic potential has previously been estimated in Australia using similar

parameters and methodologies, with the same six UCLs found to have high historical epidemic

potential. An analysis of the threat of ZIKV to blood supply safety identified that donors from

susceptible UCLs contribute only a small percentage of blood donor supply [54]. Taken

together, the results from our study and the previous ZIKV work suggest that these UCLs are

of greatest concern for sustaining transmission of multiple arboviruses [32]. There are no doc-

umented cases of transfusion-transmitted CHIKV [23]. However, CHIKV transmission

through blood transfusion is theoretically possible. Therefore, this virus could pose a threat

directly to blood safety, and indirectly on donor attendance. Our CHIKV predictions and fore-

casts confirm and support the need for continued importation security measures for infective

humans and mosquitoes, along with vector control programs in UCLs with established vector

mosquitoes and contribute to future blood safety management policies. The framework
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employed in this study can also be adopted by other countries/locations with established vector

populations but no current CHIKV epidemic activity, to analyse risk and make evidence-

based decisions for prioritizing regional vector surveillance and suppression programs.
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